Non-Deterministic Search. CS 188: Artificial Intelligence Markov Decision Processes. Grid World Actions. Example: Grid World

Size: px
Start display at page:

Download "Non-Deterministic Search. CS 188: Artificial Intelligence Markov Decision Processes. Grid World Actions. Example: Grid World"

Transcription

1 CS 188: Artificil Intelligence Mrkov Deciion Procee Non-Determinitic Serch Dn Klein, Pieter Abbeel Univerity of Cliforni, Berkeley Exmple: Grid World Grid World Action A mze-like problem The gent live in grid Wll block the gent pth Noiy movement: ction do not lwy go plnned 80% of the time, the ction North tke the gent North (if there i no wll there) 10% of the time, North tke the gent Wet; 10% Et If there i wll in the direction the gent would hve been tken, the gent ty put The gent receive rewrd ech time tep Smll living rewrd ech tep (cn be negtive) Big rewrd come t the end (good or bd) Gol: mximize um of rewrd Determinitic Grid World Stochtic Grid World Gridworldexmple: Sturt Ruell Mrkov Deciion Procee Wht i Mrkov bout MDP? An MDP i defined by: A et of tte S A et of ction A A trnition function T(,, ) Probtht from led to, i.e., P(,) Alo clled the model or the dynmic A rewrd function R(,, ) Sometime jut R() or R( ) A trt tte Mybe terminl tte MDP re non-determinitic erch problem One wy to olve them i with expectimx erch We ll hve new tool oon Mrkov generlly men tht given the preent tte, the future nd the pt re independent For Mrkov deciion procee, Mrkov men ction outcome depend only on the current tte Thi i jut like erch, where the ucceor function could only depended on the current tte (not the hitory) AndreyMrkov ( ) 1

2 Policie Optiml Policie In determinitic ingle-gent erch problem, we wnted n optiml pln, or equence of ction, from trt to gol For MDP, we wnt n optiml policy π*: S A A policy πgive n ction for ech tte An optiml policy i one tht mximize expected utility if followed An explicit policy define reflex gent Expectimx didn t compute entire policie It computed the ction for ingle tte only Optiml policy when R(,, ) = for ll non-terminl R() = R() = R() = -0.4 R() = -2.0 Exmple: Rcing Exmple: Rcing A robot cr wnt to trvel fr, quickly Three tte: Cool, Wrm, Overheted Two ction: Slow, Ft Going fter get double rewrd +1 Slow Ft -10 Slow Wrm Ft Cool Overheted Rcing Serch Tree MDP Serch Tree Ech MDP tte project n expectimx-like erch tree i tte (, ) i q-tte, (,, ) clled trnition,, T(,, ) = P(,) R(,, ) 2

3 Utilitie of Sequence Utilitie of Sequence Wht preference hould n gent hve over rewrd equence? More or le? Now or lter? [1, 2, 2] or [2, 3, 4] [0, 0, 1] or [1, 0, 0] Dicounting It reonble to mximize the um of rewrd It lo reonble to prefer rewrd now to rewrd lter One olution: vlue of rewrd decy exponentilly How to dicount? Ech time we decend level, we multiply in the dicount once Dicounting Why dicount? Sooner rewrd probbly do hve higher utility thn lter rewrd Alo help our lgorithm converge Worth Now Worth Next Step Worth In Two Step Exmple: dicount of 0.5 U([1,2,3]) = 1* * *3 U([1,2,3]) < U([3,2,1]) Sttionry Preference Theorem: if we ume ttionry preference: Then: there re only two wy to define utilitie Additive utility: Dicounted utility: Infinite Utilitie?! Problem: Wht if the gme lt forever? Do we get infinite rewrd? Solution: Finite horizon: (imilr to depth-limited erch) Terminte epiode fter fixed T tep (e.g. life) Give nonttionrypolicie (π depend on time left) Dicounting: ue 0 < γ< 1 Smller γ men mller horizon horter term focu Aborbing tte: gurntee tht for every policy, terminl tte will eventully be reched (like overheted for rcing) 3

4 Recp: Defining MDP Solving MDP Mrkov deciion procee: Set of tte S Strt tte 0 Set of ction A Trnition P(,) (or T(,, )) Rewrd R(,, ) (nd dicount γ),,, MDP quntitie o fr: Policy = Choice of ction for ech tte Utility = um of (dicounted) rewrd Optiml Quntitie Vlue of Stte The vlue(utility) of tte : V * () = expected utility trting in nd cting optimlly The vlue (utility) of q-tte (,): Q * (,) = expected utility trting out hving tken ction from tte nd (therefter) cting optimlly,,, i tte (, ) i q-tte (,, ) i trnition Fundmentl opertion: compute the (expectimx) vlue of tte Expected utility under optiml ction Averge um of (dicounted) rewrd Thi i jut wht expectimx computed! Recurive definition of vlue:,,, The optiml policy: π * () = optiml ction from tte [demo gridworldvlue] Rcing Serch Tree Rcing Serch Tree 4

5 We re doing wy too much work with expectimx! Problem: Stte re repeted Ide: Only compute needed quntitie once Rcing Serch Tree Key ide: time-limited vlue Time-Limited Vlue Define V k () to be the optiml vlue of if the gme end in k more time tep Equivlently, it wht depth-k expectimx would give from Problem: Tree goe on forever Ide: Do depth-limited computtion, but with increing depth until chnge i mll Note: deep prt of the tree eventully don t mtter if γ< 1 [demo time-limited vlue] Computing Time-Limited Vlue Vlue Itertion Vlue Itertion Exmple: Vlue Itertion Strt with V 0 () = 0: no time tep left men n expected rewrd um of zero Given vector of V k () vlue, do one ply of expectimxfrom ech tte: Repet until convergence Complexity of ech itertion: O(S 2 A) Theorem: will converge to unique optiml vlue Bic ide: pproximtion get refined towrd optiml vlue Policy my converge long before vlue do,,, V k( ) V k+1() Aume no dicount! 5

6 Convergence* How do we know the V k vector re going to converge? CS 188: Artificil Intelligence Mrkov Deciion Procee II Ce 1: If the tree h mximum depth M, then V M hold the ctul untrunctedvlue Ce 2: If the dicount i le thn 1 Sketch: For ny tte V knd V k+1cn be viewed depth k+1 expectimxreult in nerly identicl erch tree The difference i tht on the bottom lyer, V k+1h ctul rewrd while V kh zero Tht lt lyer i t bet ll R MAX It i t wort R MIN But everything i dicounted by γ k tht fr out So V knd V k+1re t mot γ k mx R different So k incree, the vlue converge Dn Klein, Pieter Abbeel Univerity of Cliforni, Berkeley A mze-like problem The gent live in grid Wll block the gent pth Exmple: Grid World Noiy movement: ction do not lwy go plnned 80% of the time, the ction North tke the gent North 10% of the time, North tke the gent Wet; 10% Et If there i wll in the direction the gent would hve been tken, the gent ty put The gent receive rewrd ech time tep Smll living rewrd ech tep (cn be negtive) Big rewrd come t the end (good or bd) Gol: mximize um of (dicounted) rewrd Mrkov deciion procee: Stte S Action A Trnition P(,) (or T(,, )) Rewrd R(,, ) (nd dicount γ) Strt tte 0 Recp: MDP,, Quntitie: Policy = mp of tte to ction Utility = um of dicounted rewrd Vlue = expected future utility from tte (mx node) Q-Vlue = expected future utility from q-tte (chnce node), Optiml Quntitie The Bellmn Eqution The vlue(utility) of tte : V * () = expected utility trting in nd cting optimlly The vlue (utility) of q-tte (,): Q * (,) = expected utility trting out hving tken ction from tte nd (therefter) cting optimlly,,, i tte (, ) i q-tte (,, ) i trnition How to be optiml: Step 1: Tke correct firt ction Step 2: Keep being optiml The optiml policy: π * () = optiml ction from tte [demo gridworldvlue] 6

7 The Bellmn Eqution Vlue Itertion Definition of optiml utility vi expectimx recurrence give imple one-tep lookhed reltionhip mongt optiml utility vlue, Bellmn eqution chrcterizethe optiml vlue: V(),,, Vlue itertion compute them:,, V( ) Thee re the Bellmn eqution, nd they chrcterize optiml vlue in wy we ll ue over nd over Vlue itertion i jut fixed point olution method though the V k vector re lo interpretble time-limited vlue Policy Method Policy Evlution Fixed Policie Utilitie for Fixed Policy Do the optiml ction,,, Do wht πy to do π(), π(), π(), Another bic opertion: compute the utility of tte under fixed (generlly non-optiml) policy Define the utility of tte, under fixed policy π: V π () = expected totl dicounted rewrd trting in nd following π Recurive reltion (one-tep look-hed / Bellmn eqution): π(), π(), π(), Expectimx tree mx over ll ction to compute the optiml vlue If we fixed ome policy π(), then the tree would be impler only one ction per tte though the tree vlue would depend on which policy we fixed 7

8 Exmple: Policy Evlution Exmple: Policy Evlution Alwy Go Right Alwy Go Forwrd Alwy Go Right Alwy Go Forwrd Policy Evlution Policy Extrction How do we clculte the V for fixed policy π? Ide 1: Turn recurive Bellmn eqution into updte (like vlue itertion) π(), π(), π(), Efficiency: O(S 2 ) per itertion Ide 2: Without the mxe, the Bellmn eqution re jut liner ytem Solve with Mtlb(or your fvorite liner ytem olver) Computing Action from Vlue Let imgine we hve the optiml vlue V*() How hould we ct? It not obviou! Computing Action from Q-Vlue Let imgine we hve the optiml q-vlue: How hould we ct? Completely trivil to decide! We need to do mini-expectimx(one tep) Thi i clled policy extrction, ince it get the policy implied by the vlue Importnt leon: ction re eier to elect from q-vlue thn vlue! 8

9 Policy Itertion Problem with Vlue Itertion Vlue itertion repet the Bellmn updte: Problem 1: It low O(S 2 A) per itertion Problem 2: The mx t ech tte rrely chnge,,, Problem 3: The policy often converge long before the vlue [demo vlue itertion] Policy Itertion Alterntive pproch for optiml vlue: Step 1: Policy evlution: clculte utilitie for ome fixed policy (not optiml utilitie!) until convergence Step 2: Policy improvement: updte policy uing one-tep look-hed with reulting converged (but not optiml!) utilitie future vlue Repet tep until policy converge Thi i policy itertion It till optiml! Cn converge (much) fter under ome condition Policy Itertion Evlution: For fixed current policy π, find vlue with policy evlution: Iterte until vlue converge: Improvement: For fixed vlue, get better policy uing policy extrction One-tep look-hed: Comprion Both vlue itertion nd policy itertion compute the me thing (ll optiml vlue) In vlue itertion: Every itertion updte both the vlue nd (implicitly) the policy We don t trck the policy, but tking the mx over ction implicitly recomputeit In policy itertion: We do everl pe tht updte utilitie with fixed policy (ech p i ft becue we conider only one ction, not ll of them) After the policy i evluted, new policy i choen (low like vlue itertion p) The new policy will be better (or we re done) Summry: MDP Algorithm So you wnt to. Compute optiml vlue: ue vlue itertion or policy itertion Compute vlue for prticulr policy: ue policy evlution Turn your vlue into policy: ue policy extrction (one-tep lookhed) Thee ll look the me! They biclly re they re ll vrition of Bellmn updte They ll ue one-tep lookhed expectimx frgment They differ only in whether we plug in fixed policy or mx over ction Both re dynmic progrm for olving MDP 9

10 Double Bndit Double-Bndit MDP Action: Blue, Red Stte: Win, Loe W 0.75 $ $ $ $0 L No dicount 100 time tep Both tte hve the me vlue Offline Plnning Let Ply! Solving MDP i offline plnning You determine ll quntitie through computtion You need to know the detil of the MDP You do not ctully ply the gme! No dicount 100 time tep Both tte hve the me vlue Ply Red Ply Blue Vlue W 0.75 $ $ $ $0 L $2 $2 $0 $2 $2 $2 $2 $0 $0 $0 Online Plnning Let Ply! Rule chnged! Red win chnce i different.?? $0 W?? $2?? $2?? $0 L $0 $0 $0 $2 $0 $2 $0 $0 $0 $0 10

11 Wht Jut Hppened? Tht wn t plnning, it w lerning! Specificlly, reinforcement lerning There w n MDP, but you couldn t olve it with jut computtion You needed to ctully ct to figure it out Importnt ide in reinforcement lerning tht cme up Explortion: you hve to try unknown ction to get informtion Exploittion: eventully, you hve to ue wht you know Regret: even if you lern intelligently, you mke mitke Smpling: becue of chnce, you hve to try thing repetedly Difficulty: lerning cn be much hrder thn olving known MDP 11

Gridworld Values V* Gridworld: Q*

Gridworld Values V* Gridworld: Q* CS 188: Artificil Intelligence Mrkov Deciion Procee II Intructor: Dn Klein nd Pieter Abbeel --- Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI

More information

Reinforcement Learning. CS 188: Artificial Intelligence Fall Grid World. Markov Decision Processes. What is Markov about MDPs?

Reinforcement Learning. CS 188: Artificial Intelligence Fall Grid World. Markov Decision Processes. What is Markov about MDPs? CS 188: Artificil Intelligence Fll 2010 Lecture 9: MDP 9/2/2010 Reinforcement Lerning [DEMOS] Bic ide: Receive feedbck in the form of rewrd Agent utility i defined by the rewrd function Mut (lern to) ct

More information

Fully Observable. Perfect

Fully Observable. Perfect CS 188: Ar)ficil Intelligence Mrkov Deciion Procee II Stoch)c Plnning: MDP Sttic Environment Fully Obervble Perfect Wht ction next? Stochtic Intntneou Intructor: Dn Klein nd Pieter Abbeel - - - Univerity

More information

Announcements. CS 188: Artificial Intelligence Fall Reinforcement Learning. Markov Decision Processes. Example Optimal Policies.

Announcements. CS 188: Artificial Intelligence Fall Reinforcement Learning. Markov Decision Processes. Example Optimal Policies. CS 188: Artificil Intelligence Fll 2008 Lecture 9: MDP 9/25/2008 Announcement Homework olution / review eion: Mondy 9/29, 7-9pm in 2050 Vlley LSB Tuedy 9/0, 6-8pm in 10 Evn Check web for detil Cover W1-2,

More information

Outline. CS 188: Artificial Intelligence Spring Speeding Up Game Tree Search. Minimax Example. Alpha-Beta Pruning. Pruning

Outline. CS 188: Artificial Intelligence Spring Speeding Up Game Tree Search. Minimax Example. Alpha-Beta Pruning. Pruning CS 188: Artificil Intelligence Spring 2011 Lecture 8: Gme, MDP 2/14/2010 Pieter Abbeel UC Berkeley Mny lide dpted from Dn Klein Outline Zero-um determinitic two plyer gme Minimx Evlution function for non-terminl

More information

Static Fully Observable Stochastic What action next? Instantaneous Perfect

Static Fully Observable Stochastic What action next?  Instantaneous Perfect CS 188: Ar)ficil Intelligence Mrkov Deciion Procee K+1 Intructor: Dn Klein nd Pieter Abbeel - - - Univerity of Cliforni, Berkeley [Thee lide were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to

More information

Recap: MDPs. CS 188: Artificial Intelligence Fall Optimal Utilities. The Bellman Equations. Value Estimates. Practice: Computing Actions

Recap: MDPs. CS 188: Artificial Intelligence Fall Optimal Utilities. The Bellman Equations. Value Estimates. Practice: Computing Actions CS 188: Artificil Intelligence Fll 2008 Lecture 10: MDP 9/30/2008 Dn Klein UC Berkeley Recp: MDP Mrkov deciion procee: Stte S Action A Trnition P(,) (or T(,, )) Rewrd R(,, ) (nd dicount γ) Strt tte 0 Quntitie:

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: MDPs. Recap: Optimal Utilities. Practice: Computing Actions. Recap: Bellman Equations

Announcements. CS 188: Artificial Intelligence Fall Recap: MDPs. Recap: Optimal Utilities. Practice: Computing Actions. Recap: Bellman Equations CS 188: Artificil Intelligence Fll 2009 Lecture 10: MDP 9/29/2009 Announcement P2: Due Wednedy P3: MDP nd Reinforcement Lerning i up! W2: Out lte thi week Dn Klein UC Berkeley Mny lide over the coure dpted

More information

Maximum Expected Utility. CS 188: Artificial Intelligence Fall Preferences. MEU Principle. Rational Preferences. Utilities: Uncertain Outcomes

Maximum Expected Utility. CS 188: Artificial Intelligence Fall Preferences. MEU Principle. Rational Preferences. Utilities: Uncertain Outcomes CS 188: Artificil Intelligence Fll 2011 Mximum Expected Utility Why hould we verge utilitie? Why not minimx? Lecture 8: Utilitie / MDP 9/20/2011 Dn Klein UC Berkeley Principle of mximum expected utility:

More information

4/30/2012. Overview. MDPs. Planning Agent. Grid World. Review: Expectimax. Introduction & Agents Search, Heuristics & CSPs Adversarial Search

4/30/2012. Overview. MDPs. Planning Agent. Grid World. Review: Expectimax. Introduction & Agents Search, Heuristics & CSPs Adversarial Search Overview CSE 473 Mrkov Deciion Procee Dn Weld Mny lide from Chri Bihop, Mum, Dn Klein, Sturt Ruell, Andrew Moore & Luke Zettlemoyer Introduction & Agent Serch, Heuritic & CSP Adverril Serch Logicl Knowledge

More information

Announcements. Maximizing Expected Utility. Preferences. Rational Preferences. Rational Preferences. Introduction to Artificial Intelligence

Announcements. Maximizing Expected Utility. Preferences. Rational Preferences. Rational Preferences. Introduction to Artificial Intelligence Introduction to Artificil Intelligence V22.0472-001 Fll 2009 Lecture 8: Utilitie Announcement Will hve Aignment 1 grded by Wed. Aignment 2 i up on webpge Due on Mon 19 th October (2 week) Rob Fergu Dept

More information

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities CS 188: Artificial Intelligence Markov Deciion Procee II Intructor: Dan Klein and Pieter Abbeel --- Univerity of California, Berkeley [Thee lide were created by Dan Klein and Pieter Abbeel for CS188 Intro

More information

DYNAMIC PROGRAMMING REINFORCEMENT LEARNING. COGS 202 : Week 7 Presentation

DYNAMIC PROGRAMMING REINFORCEMENT LEARNING. COGS 202 : Week 7 Presentation DYNAMIC PROGRAMMING REINFORCEMENT LEARNING COGS 202 : Week 7 Preenttion OUTLINE Recp (Stte Vlue nd Action Vlue function) Computtion in MDP Dynmic Progrmming (DP) Policy Evlution Policy Improvement Policy

More information

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011 CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDP 2/16/2011 Announcement Midterm: Tueday March 15, 5-8pm P2: Due Friday 4:59pm W3: Minimax, expectimax and MDP---out tonight, due Monday February

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 4

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 4 CS 188 Introduction to Artificil Intelligence Fll 2018 Note 4 These lecture notes re hevily bsed on notes originlly written by Nikhil Shrm. Non-Deterministic Serch Picture runner, coming to the end of

More information

CS 188: Artificial Intelligence Fall Markov Decision Processes

CS 188: Artificial Intelligence Fall Markov Decision Processes CS 188: Artificial Intelligence Fall 2007 Lecture 10: MDP 9/27/2007 Dan Klein UC Berkeley Markov Deciion Procee An MDP i defined by: A et of tate S A et of action a A A tranition function T(,a, ) Prob

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Chapter 3: The Reinforcement Learning Problem. The Agent'Environment Interface. Getting the Degree of Abstraction Right. The Agent Learns a Policy

Chapter 3: The Reinforcement Learning Problem. The Agent'Environment Interface. Getting the Degree of Abstraction Right. The Agent Learns a Policy Chpter 3: The Reinforcement Lerning Problem The Agent'Environment Interfce Objectives of this chpter: describe the RL problem we will be studying for the reminder of the course present idelized form of

More information

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1)

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1) CS 188: Artificial Intelligence Fall 007 Lecture 9: Utilitie 9/5/007 Dan Klein UC Berkeley Project (due 10/1) Announcement SVN group available, email u to requet Midterm 10/16 in cla One ide of a page

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

3: Inventory management

3: Inventory management INSE6300 Ji Yun Yu 3: Inventory mngement Concordi Februry 9, 2016 Supply chin mngement is bout mking sequence of decisions over sequence of time steps, fter mking observtions t ech of these time steps.

More information

INF 4130 Exercise set 4

INF 4130 Exercise set 4 INF 4130 Exercise set 4 Exercise 1 List the order in which we extrct the nodes from the Live Set queue when we do redth first serch of the following grph (tree) with the Live Set implemented s LIFO queue.

More information

Cache CPI and DFAs and NFAs. CS230 Tutorial 10

Cache CPI and DFAs and NFAs. CS230 Tutorial 10 Cche CPI nd DFAs nd NFAs CS230 Tutoril 10 Multi-Level Cche: Clculting CPI When memory ccess is ttempted, wht re the possible results? ccess miss miss CPU L1 Cche L2 Cche Memory L1 cche hit L2 cche hit

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 7: The Endowment Economy. Today s Aims. The Story So Far. An Endowment Economy.

3/1/2016. Intermediate Microeconomics W3211. Lecture 7: The Endowment Economy. Today s Aims. The Story So Far. An Endowment Economy. 1 Intermedite Microeconomics W3211 Lecture 7: The Endowment Economy Introduction Columbi University, Spring 2016 Mrk Den: mrk.den@columbi.edu 2 The Story So Fr. 3 Tody s Aims 4 Remember: the course hd

More information

10/12/2012. Logistics. Planning Agent. MDPs. Review: Expectimax. PS 2 due Tuesday Thursday 10/18. PS 3 due Thursday 10/25.

10/12/2012. Logistics. Planning Agent. MDPs. Review: Expectimax. PS 2 due Tuesday Thursday 10/18. PS 3 due Thursday 10/25. Logitic PS 2 due Tueday Thurday 10/18 CSE 473 Markov Deciion Procee PS 3 due Thurday 10/25 Dan Weld Many lide from Chri Bihop, Mauam, Dan Klein, Stuart Ruell, Andrew Moore & Luke Zettlemoyer MDP Planning

More information

ECE 410 Homework 1 -Solutions Spring 2008

ECE 410 Homework 1 -Solutions Spring 2008 ECE 410 Homework 1 -Solution Spring 2008 Prolem 1 For prolem 2-4 elow, ind the voltge required to keep the trnitor on ppling the rule dicued in cl. Aume VDD = 2.2V FET tpe Vt (V) Vg (V) Vi (V) n-tpe 0.5

More information

CH 71 COMPLETING THE SQUARE INTRODUCTION FACTORING PERFECT SQUARE TRINOMIALS

CH 71 COMPLETING THE SQUARE INTRODUCTION FACTORING PERFECT SQUARE TRINOMIALS CH 7 COMPLETING THE SQUARE INTRODUCTION I t s now time to py our dues regrding the Qudrtic Formul. Wht, you my sk, does this men? It mens tht the formul ws merely given to you once or twice in this course,

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

UNIT 7 SINGLE SAMPLING PLANS

UNIT 7 SINGLE SAMPLING PLANS UNIT 7 SINGLE SAMPLING PLANS Structure 7. Introduction Objectives 7. Single Smpling Pln 7.3 Operting Chrcteristics (OC) Curve 7.4 Producer s Risk nd Consumer s Risk 7.5 Averge Outgoing Qulity (AOQ) 7.6

More information

Arithmetic and Geometric Sequences

Arithmetic and Geometric Sequences Arithmetic nd Geometric Sequences A sequence is list of numbers or objects, clled terms, in certin order. In n rithmetic sequence, the difference between one term nd the next is lwys the sme. This difference

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

Outline. CSE 326: Data Structures. Priority Queues Leftist Heaps & Skew Heaps. Announcements. New Heap Operation: Merge

Outline. CSE 326: Data Structures. Priority Queues Leftist Heaps & Skew Heaps. Announcements. New Heap Operation: Merge CSE 26: Dt Structures Priority Queues Leftist Heps & Skew Heps Outline Announcements Leftist Heps & Skew Heps Reding: Weiss, Ch. 6 Hl Perkins Spring 2 Lectures 6 & 4//2 4//2 2 Announcements Written HW

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

Addition and Subtraction

Addition and Subtraction Addition nd Subtrction Nme: Dte: Definition: rtionl expression A rtionl expression is n lgebric expression in frction form, with polynomils in the numertor nd denomintor such tht t lest one vrible ppers

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

Multi-Step Reinforcement Learning: A Unifying Algorithm

Multi-Step Reinforcement Learning: A Unifying Algorithm Multi-Step Reinforcement Lerning: A Unifying Algorithm Kristopher De Asis, 1 J. Fernndo Hernndez-Grci, 1 G. Zchris Hollnd, 1 Richrd S. Sutton Reinforcement Lerning nd Artificil Intelligence Lbortory, University

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Today s Outline. One More Operation. Priority Queues. New Operation: Merge. Leftist Heaps. Priority Queues. Admin: Priority Queues

Today s Outline. One More Operation. Priority Queues. New Operation: Merge. Leftist Heaps. Priority Queues. Admin: Priority Queues Tody s Outline Priority Queues CSE Dt Structures & Algorithms Ruth Anderson Spring 4// Admin: HW # due this Thursdy / t :9pm Printouts due Fridy in lecture. Priority Queues Leftist Heps Skew Heps 4// One

More information

A ppendix to. I soquants. Producing at Least Cost. Chapter

A ppendix to. I soquants. Producing at Least Cost. Chapter A ppendix to Chpter 0 Producing t est Cost This ppendix descries set of useful tools for studying firm s long-run production nd costs. The tools re isoqunts nd isocost lines. I soqunts FIGURE A0. SHOWS

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

R-automata. 1 Introduction. Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi

R-automata. 1 Introduction. Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi R-utomt Proh Aziz Abdull, Pvel Krcl, nd Wng Yi Deprtment of Informtion Technology, Uppl Univerity, Sweden Emil: {proh,pvelk,yi}@it.uu.e Abtrct. We introduce R-utomt nite tte mchine which operte on nite

More information

(a) by substituting u = x + 10 and applying the result on page 869 on the text, (b) integrating by parts with u = ln(x + 10), dv = dx, v = x, and

(a) by substituting u = x + 10 and applying the result on page 869 on the text, (b) integrating by parts with u = ln(x + 10), dv = dx, v = x, and Supplementry Questions for HP Chpter 5. Derive the formul ln( + 0) d = ( + 0) ln( + 0) + C in three wys: () by substituting u = + 0 nd pplying the result on pge 869 on the tet, (b) integrting by prts with

More information

Chapter55. Algebraic expansion and simplification

Chapter55. Algebraic expansion and simplification Chpter55 Algebric expnsion nd simplifiction Contents: A The distributive lw B The product ( + b)(c + d) C Difference of two squres D Perfect squres expnsion E Further expnsion F The binomil expnsion 88

More information

MARKET POWER AND MISREPRESENTATION

MARKET POWER AND MISREPRESENTATION MARKET POWER AND MISREPRESENTATION MICROECONOMICS Principles nd Anlysis Frnk Cowell Note: the detil in slides mrked * cn only e seen if you run the slideshow July 2017 1 Introduction Presenttion concerns

More information

11.1 Two-Port Power Gains

11.1 Two-Port Power Gains 5//7 _ Twoort ower G /. Twoort ower G Redg Aignment: pp. 53654 pecifyg the g of n mplifier i it more miguou thn you my thk. The prolem i tht there re o mny wy to defe power! HO: THE OWER THAT BE HO: OWER

More information

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING

UNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING UNIVERSITY OF NOTTINGHAM Discussion Ppers in Economics Discussion Pper No. 0/0 BERTRAND VS. COURNOT COMPETITION IN ASYMMETRIC DUOPOLY: THE ROLE OF LICENSING by Arijit Mukherjee April 00 DP 0/0 ISSN 160-48

More information

THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA.

THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA. THE FINAL PROOF SUPPORTING THE TURNOVER FORMULA. I would like to thnk Aris for his mthemticl contriutions nd his swet which hs enled deeper understnding of the turnover formul to emerge. His contriution

More information

What is Monte Carlo Simulation? Monte Carlo Simulation

What is Monte Carlo Simulation? Monte Carlo Simulation Wht is Monte Crlo Simultion? Monte Crlo methods re widely used clss of computtionl lgorithms for simulting the ehvior of vrious physicl nd mthemticl systems, nd for other computtions. Monte Crlo lgorithm

More information

Roadmap of This Lecture

Roadmap of This Lecture Reltionl Model Rodmp of This Lecture Structure of Reltionl Dtbses Fundmentl Reltionl-Algebr-Opertions Additionl Reltionl-Algebr-Opertions Extended Reltionl-Algebr-Opertions Null Vlues Modifiction of the

More information

3. Argumentation Frameworks

3. Argumentation Frameworks 3. Argumenttion Frmeworks Argumenttion current hot topic in AI. Historiclly more recent thn other pproches discussed here. Bsic ide: to construct cceptble set(s) of beliefs from given KB: 1 construct rguments

More information

Continuous Optimal Timing

Continuous Optimal Timing Srlnd University Computer Science, Srbrücken, Germny My 6, 205 Outline Motivtion Preliminries Existing Algorithms Our Algorithm Empiricl Evlution Conclusion Motivtion Probbilistic models unrelible/unpredictble

More information

Smart Investment Strategies

Smart Investment Strategies Smrt Investment Strtegies Risk-Rewrd Rewrd Strtegy Quntifying Greed How to mke good Portfolio? Entrnce-Exit Exit Strtegy: When to buy? When to sell? 2 Risk vs.. Rewrd Strtegy here is certin mount of risk

More information

Controlling a population of identical MDP

Controlling a population of identical MDP Controlling popultion of identicl MDP Nthlie Bertrnd Inri Rennes ongoing work with Miheer Dewskr (CMI), Blise Genest (IRISA) nd Hugo Gimert (LBRI) Trends nd Chllenges in Quntittive Verifiction Mysore,

More information

JFE Online Appendix: The QUAD Method

JFE Online Appendix: The QUAD Method JFE Online Appendix: The QUAD Method Prt of the QUAD technique is the use of qudrture for numericl solution of option pricing problems. Andricopoulos et l. (00, 007 use qudrture s the only computtionl

More information

Chapter 2: Relational Model. Chapter 2: Relational Model

Chapter 2: Relational Model. Chapter 2: Relational Model Chpter : Reltionl Model Dtbse System Concepts, 5 th Ed. See www.db-book.com for conditions on re-use Chpter : Reltionl Model Structure of Reltionl Dtbses Fundmentl Reltionl-Algebr-Opertions Additionl Reltionl-Algebr-Opertions

More information

164 CHAPTER 2. VECTOR FUNCTIONS

164 CHAPTER 2. VECTOR FUNCTIONS 164 CHAPTER. VECTOR FUNCTIONS.4 Curvture.4.1 Definitions nd Exmples The notion of curvture mesures how shrply curve bends. We would expect the curvture to be 0 for stright line, to be very smll for curves

More information

Decision Making Under Uncertainty

Decision Making Under Uncertainty CSC384: Intro to Artificil Intelligence Preferences Decision Mking Under Uncertinty Decision Trees DBN: 15.1 nd 15.5 Decision Network: 16.1,16.2,16.5,16.6 I give root plnning prolem: I wnt coffee ut coffee

More information

Agent Commission and Coordinated Pricing For Online Group-Buying Channel

Agent Commission and Coordinated Pricing For Online Group-Buying Channel Interntionl Acdemic Workhop on Socil Science (IAW-SC 013) Agent Commiion nd Coordinted Pricing For Online Group-Buying Chnnel Hilin Su Jixing Univerity School of Buine Jixing, Chin huimeimumu198@16.com

More information

The Market Approach to Valuing Businesses (Second Edition)

The Market Approach to Valuing Businesses (Second Edition) BV: Cse Anlysis Completed Trnsction & Guideline Public Comprble MARKET APPROACH The Mrket Approch to Vluing Businesses (Second Edition) Shnnon P. Prtt This mteril is reproduced from The Mrket Approch to

More information

A Fuzzy Inventory Model With Lot Size Dependent Carrying / Holding Cost

A Fuzzy Inventory Model With Lot Size Dependent Carrying / Holding Cost IOSR Journl of Mthemtics (IOSR-JM e-issn: 78-578,p-ISSN: 9-765X, Volume 7, Issue 6 (Sep. - Oct. 0, PP 06-0 www.iosrournls.org A Fuzzy Inventory Model With Lot Size Dependent Crrying / olding Cost P. Prvthi,

More information

Technical Appendix. The Behavior of Growth Mixture Models Under Nonnormality: A Monte Carlo Analysis

Technical Appendix. The Behavior of Growth Mixture Models Under Nonnormality: A Monte Carlo Analysis Monte Crlo Technicl Appendix 1 Technicl Appendix The Behvior of Growth Mixture Models Under Nonnormlity: A Monte Crlo Anlysis Dniel J. Buer & Ptrick J. Currn 10/11/2002 These results re presented s compnion

More information

Option exercise with temptation

Option exercise with temptation Economic Theory 2008) 34: 473 501 DOI 10.1007/s00199-006-0194-3 RESEARCH ARTICLE Jinjun Mio Option exercise with tempttion Received: 25 Jnury 2006 / Revised: 5 December 2006 / Published online: 10 Jnury

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

Buckling of Stiffened Panels 1 overall buckling vs plate buckling PCCB Panel Collapse Combined Buckling

Buckling of Stiffened Panels 1 overall buckling vs plate buckling PCCB Panel Collapse Combined Buckling Buckling of Stiffened Pnels overll uckling vs plte uckling PCCB Pnel Collpse Comined Buckling Vrious estimtes hve een developed to determine the minimum size stiffener to insure the plte uckles while the

More information

Name Date. Find the LCM of the numbers using the two methods shown above.

Name Date. Find the LCM of the numbers using the two methods shown above. Lest Common Multiple Multiples tht re shred by two or more numbers re clled common multiples. The lest of the common multiples is clled the lest common multiple (LCM). There re severl different wys to

More information

production for Community & Culture Project Reference e 2 design episodes Bogotá: Building a Sustainable City and Affordable Green Housing.

production for Community & Culture Project Reference e 2 design episodes Bogotá: Building a Sustainable City and Affordable Green Housing. Community & Culture Project Reference e 2 design episodes Bogotá: Building Sustinble City nd Affordble Green Housing. 1) Red the bckground essy nd discussion questions for e 2 design episodes Bogotá: Building

More information

Access your online resources today at

Access your online resources today at 978--07-670- - CmbridgeMths: NSW Syllbus for the Austrlin Curriculum: Yer 0: Stte./. Access your online resources tody t www.cmbridge.edu.u/go. Log in to your existing Cmbridge GO user ccount or crete

More information

CSCI 104 Splay Trees. Mark Redekopp

CSCI 104 Splay Trees. Mark Redekopp CSCI 0 Sply Trees Mrk edekopp Soures / eding Mteril for these slides ws derived from the following soures https://www.s.mu.edu/~sletor/ppers/selfdjusting.pdf http://digitl.s.usu.edu/~lln/ds/notes/ch.pdf

More information

9.3. Regular Languages

9.3. Regular Languages 9.3. REGULAR LANGUAGES 139 9.3. Regulr Lnguges 9.3.1. Properties of Regulr Lnguges. Recll tht regulr lnguge is the lnguge ssocited to regulr grmmr, i.e., grmmr G = (N, T, P, σ) in which every production

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 9: MDPs 9/22/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 2 Grid World The agent lives in

More information

Economics Department Fall 2013 Student Learning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics)

Economics Department Fall 2013 Student Learning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics) Jnury 2014 Economics Deprtment Fll 2013 Stuent Lerning Outcomes (SLOs) Assessment Economics 4 (Principles of Microeconomics) Lerning Outcome Sttement: In the Fll 2013 semester the Economics Deprtment engge

More information

Open Space Allocation and Travel Costs

Open Space Allocation and Travel Costs Open Spce Alloction nd Trvel Costs By Kent Kovcs Deprtment of Agriculturl nd Resource Economics University of Cliforni, Dvis kovcs@priml.ucdvis.edu Pper prepred for presenttion t the Americn Agriculturl

More information

)''/?\Xck_

)''/?\Xck_ bcbsnc.com Deductible options: $250, $500, $1,000 or $2,500 Deductible options $500, $1,000, $2,500, $3,500 or $5,000 D or (100% coinsurnce is not vilble on the $2,500 deductible option) coinsurnce plns:

More information

Problem Set 2 Suggested Solutions

Problem Set 2 Suggested Solutions 4.472 Prolem Set 2 Suggested Solutions Reecc Zrutskie Question : First find the chnge in the cpitl stock, k, tht will occur when the OLG economy moves to the new stedy stte fter the government imposes

More information

Burrows-Wheeler Transform and FM Index

Burrows-Wheeler Transform and FM Index Burrows-Wheeler Trnsform nd M Index Ben ngmed You re free to use these slides. If you do, plese sign the guestbook (www.lngmed-lb.org/teching-mterils), or emil me (ben.lngmed@gmil.com) nd tell me briefly

More information

A Closer Look at Bond Risk: Duration

A Closer Look at Bond Risk: Duration W E B E X T E S I O 4C A Closer Look t Bond Risk: Durtion This Extension explins how to mnge the risk of bond portfolio using the concept of durtion. BOD RISK In our discussion of bond vlution in Chpter

More information

Trigonometry - Activity 21 General Triangle Solution: Given three sides.

Trigonometry - Activity 21 General Triangle Solution: Given three sides. Nme: lss: p 43 Mths Helper Plus Resoure Set. opyright 003 rue. Vughn, Tehers hoie Softwre Trigonometry - tivity 1 Generl Tringle Solution: Given three sides. When the three side lengths '', '' nd '' of

More information

Chapter 4. Profit and Bayesian Optimality

Chapter 4. Profit and Bayesian Optimality Chpter 4 Profit nd Byesin Optimlity In this chpter we consider the objective of profit. The objective of profit mximiztion dds significnt new chllenge over the previously considered objective of socil

More information

arxiv: v1 [cs.lg] 23 Jan 2019

arxiv: v1 [cs.lg] 23 Jan 2019 Robust temporl difference lerning for criticl domins rxiv:1901.08021v1 [cs.lg] 23 Jn 2019 Richrd Klim University of Liverpool, UK richrd.klim@liverpool.c.uk Michel Kisers Centrum Wiskunde & Informtic,

More information

Research Article Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales

Research Article Existence of Positive Solution to Second-Order Three-Point BVPs on Time Scales Hindwi Publishing Corportion Boundry Vlue Problems Volume 2009, Article ID 685040, 6 pges doi:10.1155/2009/685040 Reserch Article Existence of Positive Solution to Second-Order hree-point BVPs on ime Scles

More information

On-demand, Spot, or Both: Dynamic Resource Allocation for Executing Batch Jobs in the Cloud

On-demand, Spot, or Both: Dynamic Resource Allocation for Executing Batch Jobs in the Cloud On-demnd, Spot, or Both: Dynmic Resource Alloction for Executing Btch Jobs in the Cloud Ishi Menche Microsoft Reserch Ohd Shmir Weizmnn Institute Nvendu Jin Microsoft Reserch Abstrct Cloud computing provides

More information

Revision Topic 14: Algebra

Revision Topic 14: Algebra Revision Topi 1: Algebr Indies: At Grde B nd C levels, you should be fmilir with the following rules of indies: b b y y y i.e. dd powers when multiplying; y b b y y i.e. subtrt powers when dividing; b

More information

The Option-Critic Architecture

The Option-Critic Architecture The Option-Critic Architecture Pierre-Luc Bcon nd Jen Hrb nd Doin Precup Resoning nd Lerning Lb, School of Computer Science McGill University {pbcon, jhrb, dprecup}@cs.mcgill.c Preliminries nd Nottion

More information

Math F412: Homework 4 Solutions February 20, κ I = s α κ α

Math F412: Homework 4 Solutions February 20, κ I = s α κ α All prts of this homework to be completed in Mple should be done in single worksheet. You cn submit either the worksheet by emil or printout of it with your homework. 1. Opre 1.4.1 Let α be not-necessrily

More information

MIXED OLIGOPOLIES AND THE PROVISION OF DURABLE GOODS. Baranovskyi Volodymyr. MA in Economic Analysis. Kyiv School of Economics

MIXED OLIGOPOLIES AND THE PROVISION OF DURABLE GOODS. Baranovskyi Volodymyr. MA in Economic Analysis. Kyiv School of Economics MIXED OLIGOPOLIES AND THE PROVISION OF DURABLE GOODS by Brnovskyi Volodymyr A thesis submitted in prtil fulfillment of the requirements for the degree of MA in Economic Anlysis Kyiv School of Economics

More information

The Combinatorial Seller s Bid Double Auction: An Asymptotically Efficient Market Mechanism*

The Combinatorial Seller s Bid Double Auction: An Asymptotically Efficient Market Mechanism* The Combintoril Seller s Bid Double Auction: An Asymptoticlly Efficient Mret Mechnism* Rhul Jin IBM Wtson Reserch Hwthorne, NY rhul.jin@us.ibm.com Prvin Vriy EECS Deprtment University of Cliforni, Bereley

More information

Problem Set for Chapter 3: Simple Regression Analysis ECO382 Econometrics Queens College K.Matsuda

Problem Set for Chapter 3: Simple Regression Analysis ECO382 Econometrics Queens College K.Matsuda Problem Set for Chpter 3 Simple Regression Anlysis ECO382 Econometrics Queens College K.Mtsud Excel Assignments You re required to hnd in these Excel Assignments by the due Mtsud specifies. Legibility

More information

E-Merge Process Table (Version 1)

E-Merge Process Table (Version 1) E-Merge Proess Tle (Version 1) I 1 Indiies Trgets Stte Energy Environmentl ESTABLISHING GOALS & BASELINES Identify gols from stte energy offie perspetive Identify stte puli helth nd welfre gols ffeted

More information

Earning Money. Earning Money. Curriculum Ready ACMNA: 189.

Earning Money. Earning Money. Curriculum Ready ACMNA: 189. Erning Money Curriculum Redy ACMNA: 189 www.mthletics.com Erning EARNING Money MONEY Different jos py different mounts of moneys in different wys. A slry isn t pid once in yer. It is pid in equl prts

More information

Dynamic model of funding in interbank payment systems

Dynamic model of funding in interbank payment systems 5 th Bn of Fnlnd s Pyment nd Settlement Smulton Semnr August 2007 Dscusson of Mrco Glbt nd Kmmo Sormä s Dynmc model of fundng n nterbn pyment systems By Fben Renult (Bnque de Frnce) The vews expressed

More information

MDPs: Bellman Equations, Value Iteration

MDPs: Bellman Equations, Value Iteration MDPs: Bellman Equations, Value Iteration Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) Adapted from slides kindly shared by Stuart Russell Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 1 Appreciations

More information

Pushdown Automata. Courtesy: Costas Busch RPI

Pushdown Automata. Courtesy: Costas Busch RPI Pushdown Automt Courtesy: Costs Busch RPI Pushdown Automt Pushdown Automt Pushdown Automt Pushdown Automt Pushdown Automt Pushdown Automt Non-Determinism:NPDA PDAs re non-deterministic: non-deterministic

More information

Information Acquisition and Disclosure: the Case of Differentiated Goods Duopoly

Information Acquisition and Disclosure: the Case of Differentiated Goods Duopoly Informtion Acquisition nd Disclosure: the Cse of Differentited Goods Duopoly Snxi Li Jinye Yn Xundong Yin We thnk Dvid Mrtimort, Thoms Mriotti, Ptrick Rey, Wilfried Snd-Zntmn, Frnces Xu nd Yongsheng Xu

More information

Rational Equity Bubbles

Rational Equity Bubbles ANNALS OF ECONOMICS AND FINANCE 14-2(A), 513 529 (2013) Rtionl Equity Bubbles Ge Zhou * College of Economics, Zhejing University Acdemy of Finncil Reserch, Zhejing University E-mil: flhszh@gmil.com This

More information