Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications

Size: px
Start display at page:

Download "Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications"

Transcription

1 374 PIERS Proceedings, Stockholm, Sweden, Aug , 2013 Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications H. A. Rahim 1, F. Malek 1, N. Hisham 1, and M. F. A. Malek 2 1 Embedded, Networks and Advanced Computing Research Cluster (ENAC) School of Computer and Communication Engineering Universiti Malaysia Perlis, P. O. Box 77, d/a Pejabat Pos Besar, Kangar 01000, Malaysia 2 MISC LNG Japan MISC Berhad, Yokohama, Japan Abstract This paper presents the experimental investigation of on-body radio propagation channel utilizing textile monopole antenna at 2.45 GHz. The measurement campaign was carried out in the anechoic chamber, considering stationary movement of the human body. The position of the transmitted antenna was fixed on the right of the upper arm of the human body and the received antenna was varied on several different potential on-body locations for body-centric wireless communication (BCWC) applications. The investigation was aimed to characterize the reflection coefficient and path loss of on-body radio channel when the antenna was placed in the vicinity of human body. A statistical analysis of path loss was also performed. The results showed that the measured reflection coefficient of four on-body positions experienced an upward frequency shift at a minimum of 0.2% compared to the simulated results due to the body coupling effect. In the anechoic chamber, the highest path loss was found for right upper arm-left ankle link while the lowest path loss was observed on the right upper arm-right chest link, proving that the closer a received antenna to the transmitted antenna, the better signal reception will be obtained. Based on the measurement results, it could be seen that the lognormal distribution fits very well to the on-body radio channel for narrowband frequency. 1. INTRODUCTION BCWC has received a lot of attention recently [1 4]. Since BCWC is intended to be implemented on the user s body, it is more practical to utilize a textile antenna with an omni-directional pattern in BCWC applications as it can be integrated into clothing. On-body radio propagation channel has been extensively published in the open literature [1 4]. However, very few work reported the utilization of textile antenna for on-body radio channel [3]. Thus, this paper presents the experimental investigation of reflection coefficient and path loss characteristics using planar textile monopole antenna at 2.45 GHz. The stationary on-body propagation channel for different body positions is derived and statistically analyzed. 2. MEASUREMENT SETUP The experiment was carried out in an anechoic chamber at Electromagnetic Hyper Sensitivity (EHS) Laboratory to eliminate multipath reflections from surrounding environment. The antenna utilizes a portable Agilent Field Fox model number N9923A 2-port Vector Network Analyzer (VNA) to generate (transmit) and measure (receive) the signal. A total number of sampled points per acquisition N = 1001 is set. Measurement was performed on a female subject of weight 51 kg with a height of 1.49 m. Two planar textile monopole antennas were used in this measurement campaign [5, 6]. The transmitter antenna (Tx) was placed fixed at the right side of the upper arm (RU). The receiver (Rx) was placed on the 11 other positions: right chest (), left chest (LC), right waist (), left waist (), right thigh (), left thigh (LT), right ankle (), left ankle (), center of back (B), right back (RB), left back (LB) and left upper arm (LU). Fig. 1 shows the location of the Tx and positions of Rx antennas. Two 5 m low loss semi-rigid coaxial cables were used in the measurement campaign. The cables were wrapped with Eccosorb Flexible Broadband Urethane Absorber model: FGM-U-SA microwave absorbing foams to minimize the spurious radiation from, and coupling between, the coaxial cables. The measurement setup for on body shows in Fig. 1. A 10 mm separation was set between the antenna and the body. Table 1 shows the distance between the Tx-Rx for on-body measurement. Five sweep durations were performed for each location. The simulation was performed using CST HUGO body model software where the HUGO model was defined at mm 3 voxel resolution.

2 Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 12, Tx LC Received Antenna Transmitted Antenna LT Vector Network Analyzer Figure 1: On-body measurement setup. Placements of transmitted and received antennas. Measurement in anechoic chamber. Positions Distance (cm) Chest () Table 1: Distance between Tx-Rx for on-body measurement. Chest (LC) Waist () Waist () Thigh () Thigh (LT) Ankle () Ankle () Center (B) (RB) (LB) Upper Arm (LU) RESULTS AND ANALYSIS The measured reflection coefficient for on-body static at all positions is illustrated in Fig. 2. It is observed that the measured reflection coefficient of all on-body Rx placements shifted to the right up to 7.2% due to the body coupling effect. This result also shows that the textile monopole demonstrated reflection coefficient, S 11 < 10 db for all on-body locations. Voltage Standing Wave Ratio (VSWR) is a function of the reflection coefficient, which describes the power reflected from the antenna. Fig. 3 shows the VSWR for on-body static for free space and nine positions of textile monopole. From the graph, it is seen that VSWR for all positions and free space is less than 2. In general, if the VSWR is less than 2, the antenna matching is considered excellent. Fig. 4 shows the comparison between simulated and measured reflection coefficient for four on-body positions, i.e., LU, LB, and of textile monopole antenna. The result clearly showed that the minimum frequency detuning occurred when the antenna was placed on the left back by 0.2% as compared to the simulated reflection coefficient result. It is evident that the left back is the least affected 0 LC LT B RB LB LU Figure 2: reflection coefficient for several positions of Rx.

3 376 PIERS Proceedings, Stockholm, Sweden, Aug , VSWR Free Space VSWR LC LT B Figure 3: VSWR for stationary on-body in free spaces and positions of Rx (c) -22 Figure 4: Comparison between left upper arm, left back, (c) right chest, (d) right thigh for simulated and measured reflection coefficient. (d) location by the body coupling when textile monopole was used as Tx. However, this on-body location is impractical to be applied in BCWC as it will make the user feel uncomfortable if the antenna is to be attached to the clothing. Hence, left upper arm is chosen as Tx position since the frequency detuning is less than 2% compared to the simulation result. The path loss is defined as the ratio of received to transmitted power computed from the measured data, averaging over the measured frequency transfers at each frequency point [7]. Fig. 5 shows the path loss for 5 locations of stationary on-body. The result shows that highest path loss at 2.45 GHz was obtained for RU- link with a maximum value of 53 db due to the longest distance between Tx and Rx. Meanwhile the lowest path loss was observed on the RU- link with a maximum value of 43 db. Since the propagation distance is shorter between RU and

4 Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 12, On body Least Square fit (γ = 1.7) Path loss (db) Figure 5: Path loss of five Rx position for stationary on-body propagation. LU LB Path loss (db) log(d /d 0 ) Figure 6: and modeled path loss for stationary on-body channel. locations, the electromagnetic wave can propagate in a direct path from transmitter to the receiver. The on-body radio channel can be modelled as a linear function of the logarithmic distance d between transmitter and receiver, expressed as [2] ( ) d P L db (d) = P L db (d 0 ) + 10γ log + X σ (1) where PL db (d 0 ) is the average path loss at 0.1 m and γ is the path loss exponent. X σ represents a shadowing (large-scale) fading defined as variation of the local mean around the path loss, Gaussian distributed random variable with standard deviation σ in db. In order to obtain the average path loss at d 0 and the path loss exponent γ, a least square fit technique is applied. Fig. 6 shows the measured and modeled path loss value for stationary on-body radio propagation channel, involving nine on-body positions, i.e.,, LC,,,, LT,, and B. The path loss exponent for this case is γ = 1.7 and the mean path loss is 32.3 db. A shadowing factor is determined by computing the deviation between measured and the calculated average path losses. Fig. 7 presents the measured CDF of path loss for stationary on- body radio channel in the chamber fitted to normal distribution (σ = 2.6). This explains that human body shadowing plays insignificant role to the stationary on-body path loss variation when utilizing an omni-directional antenna. A statistical analysis is also performed to the measured path loss by fitting the data to an empirical distribution, lognormal distribution. The measured CDF of stationary on-body path loss is shown in Fig. 7. The result exhibits that the measured on-body path loss in the chamber is very well fit to lognormal distribution (µ = 3.82, σ = 0.10). A smaller spread of data, indicating by σ = 0.10, shows that there is a direct path of propagation occurred along the body surface. d 0 Figure 7: CDF of deviation from average path loss fitted to normal distribution, path loss in the chamber.

5 378 PIERS Proceedings, Stockholm, Sweden, Aug , CONCLUSIONS The stationary on-body radio channel involving different body positions was carried out in an anechoic chamber. The characteristics of the reflection coefficient and path loss of on-body radio propagation channel were studied. The channel model derivation and statistical analysis of stationary on-body radio channel were also performed. The measured path loss was fitted to an empirical distribution function. Results exhibit that the textile monopole obtained S 11 < 10 db for all on-body positions and demonstrated an upward frequency shift of four selected on-body locations at a minimum of 0.2% compared to the simulated results. The results also confirm the distance dependency between Tx-Rx of stationary on-body radio channel in non-reflecting environment. The measured path loss was very well fitted to the lognormal distribution. REFERENCES 1. Cotton, S. L., G. A. Conway, and W. G. Scanlon, A time-domain approach to the analysis and modeling of on-body propagation characteristics using synchronized measurements at 2.45 GHz, IEEE Trans. on Antennas and Propagation, Vol. 57, No. 4, , Apr Sani, A., Y. Zhao, Y. Hao, S.-L. Lee, and G.-Z. Yang, A subject-specific radio propagation study in wireless body area networks, 2009 Loughborough Antennas and Propagation Conference (PC), 80 83, Loughborough, UK, Nov , Michalopoulou, A., A. A. Alexandridis, K. Peppas, T. Zervos, F. Lazarakis, K. Dangakis, and D. I. Kaklamani, On-body channel modelling: Measurement and statistical analysis, 2010 Loughborough Antennas and Propagation Conference (PC), , Loughborough, UK, Nov. 8 9, Abbasi, Q. H., M. M. Khan, S. Liaqat, A. Alomainy, and Y. Hao, Experimental investigation of ultra wideband diversity techniques for on-body radio communications, Progress In Electromagnetics Research C, Vol. 34, , Rahim, H. A., F. Malek, I. Adam, S. Ahmad, N. B. Hashim, and P. S. Hall, Design and simulation of a wearable textile monopole antenna for body centric wireless communications, PIERS Proceedings, , Moscow, Russia, Aug , Rahim, H. A., F. Malek, I. Adam, S. Ahmad, N. B. Hashim, and P. S. Hall, On-body textile monopole antenna characterisation for body-centric wireless communications, PIERS Proceedings, , Moscow, Russia, Aug , Dabin, J. A., N. Ni, M. Haimovich, E. Niver, and H. Grebel, The effects of antenna directivity on path loss and multipath propagation in UWB indoor wireless channels, Proc. of IEEE Conf. Ultra Wideband Syst. Technol., , Newark, New Jersey, 2003.

Indoor Measurement And Propagation Prediction Of WLAN At

Indoor Measurement And Propagation Prediction Of WLAN At Indoor Measurement And Propagation Prediction Of WLAN At.4GHz Oguejiofor O. S, Aniedu A. N, Ejiofor H. C, Oechuwu G. N Department of Electronic and Computer Engineering, Nnamdi Aziiwe University, Awa Abstract

More information

Radio Propagation Modelling

Radio Propagation Modelling Radio Propagation Modelling Ian Wassell and Yan Wu University of Cambridge Computer Laboratory Why is it needed? To predict coverage between nodes in a wireless network Path loss is different from environment

More information

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss Practical Link Budget Design using Path Loss Models Most radio propagation models are derived using

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Large-Scale Signal Propagation Models 1 Propagation Models Basic Model is to determine the major path loss effects This can be refined to take into account

More information

White Paper: Comparison of Narrowband and Ultra Wideband Channels. January 2008

White Paper: Comparison of Narrowband and Ultra Wideband Channels. January 2008 White Paper: Comparison of Narrowband and Ultra Wideband Channels January 28 DOCUMENT APPROVAL: Author signature: Satisfied that this document is fit for purpose, contains sufficient and correct detail

More information

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group 1 Radio Path Loss and Penetration Loss Measurements in and around Homes and Trees at 5.85 GHz Greg Durgin, Theodore S. Rappaport, Hao Xu Mobile and Portable Radio Research Group Bradley Department of Electrical

More information

Abstract: [The contribution provides the statistical property of dynamic ban channel gain.]

Abstract: [The contribution provides the statistical property of dynamic ban channel gain.] July 008 Project: IEEE P80.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Statistical Property of Dynamic BAN Channel Gain at 4.5GHz] Date Submitted: [July 13, 008] Source: [Minseok

More information

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz 2011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Performance of Path Loss Model in 4G Wimax Wireless Communication System

More information

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory 1 Table of Contents Estimating Path Loss Exponent and Application with Log Normal Shadowing...2 Abstract...3 1Path Loss Models...4 1.1Free Space Path Loss Model...4 1.1.1Free Space Path Loss Equation:...4

More information

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA Divyanshi Singh 1, Dimple 2 UG Student 1,2, Department of Electronics &Communication Engineering Raj Kumar Goel Institute of Technology for Women, Ghaziabad

More information

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss EELE 5414 Wireless Communications Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss In the last lecture Outline Diffraction. Scattering. Practical link budget design. Log-distance model Log-normal

More information

Proposed Propagation Model for Dehradun Region

Proposed Propagation Model for Dehradun Region Proposed Propagation Model for Dehradun Region Pranjali Raturi, Vishal Gupta, Samreen Eram Abstract This paper presents a review of the outdoor propagation prediction models for GSM 1800 MHz in which propagation

More information

Indoor Propagation Models

Indoor Propagation Models Indoor Propagation Models Outdoor models are not accurate for indoor scenarios. Examples of indoor scenario: home, shopping mall, office building, factory. Ceiling structure, walls, furniture and people

More information

Review of Comparative Analysis of Empirical Propagation model for WiMAX

Review of Comparative Analysis of Empirical Propagation model for WiMAX Review of Comparative Analysis of Empirical Propagation model for WiMAX Sachin S. Kale 1 A.N. Jadhav 2 Abstract The propagation models for path loss may give different results if they are used in different

More information

PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY

PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY MOHD. DANI BABA, MOHAMAD IBRAHIM, ABDULMUKTI AHMAD Faculty of Electrical Engineering Universiti Teknologi MARA 445 Shah Alam, Selangor MALAYSIA Abstract :-

More information

The Wireless Communication Channel. Objectives

The Wireless Communication Channel. Objectives The Wireless Communication Channel muse Objectives Understand fundamentals associated with free space propagation. Define key sources of propagation effects both at the large and small scales Understand

More information

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements Post-print of: Zhang, J., Salmi, J. and Lohan, E-S. Analysis of kurtosis-based LOS/NLOS identification using indoor MIMMO channel measurement in IEEE transactions on vehicular technology, vol. 62, no.

More information

Path Loss Prediction in Wireless Communication System using Fuzzy Logic

Path Loss Prediction in Wireless Communication System using Fuzzy Logic Indian Journal of Science and Technology, Vol 7(5), 64 647, May 014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Path Loss Prediction in Wireless Communication System using Fuzzy Logic Sanu Mathew

More information

Path Loss Models and Link Budget

Path Loss Models and Link Budget Path Loss Models and Link Budget A universal path loss model P r dbm = P t dbm + db Gains db Losses Gains: the antenna gains compared to isotropic antennas Transmitter antenna gain Receiver antenna gain

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 5 Today: (1) Path Loss Models (revisited), (2) Link Budgeting Reading Today: Haykin/Moher handout (2.9-2.10) (on Canvas),

More information

EE Large Scale Path Loss Log Normal Shadowing. The Flat Fading Channel

EE Large Scale Path Loss Log Normal Shadowing. The Flat Fading Channel EE447- Large Scale Path Loss Log Normal Shadowing The Flat Fading Channel The channel functions are random processes and hard to characterize We therefore use the channel correlation functions Now assume:

More information

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions Empirical Path Loss Models for 802.11n Wireless networks at 2.4Ghz in rural regions Jean Louis Fendji Kedieng Ebongue, Mafai Nelson, and Jean Michel Nlong University of Ngaoundéré, Computer Science, P.O.

More information

Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia

Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia Dong You Choi Division of Electronics & Information Engineering, Cheongju University, #36 Naedok-dong, Sangdang-gu, Cheongju-city

More information

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India)

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Enhance Study on Indoor RF Models: based on Two Residential Areas Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Abstract Indoor Propagation modeling is demanded for

More information

Wireless Communications

Wireless Communications NETW701 Wireless Communications Dr. Wassim Alexan Winter 2018 Lecture 5 NETW705 Mobile Communication Networks Dr. Wassim Alexan Winter 2018 Lecture 5 Wassim Alexan 2 Outdoor Propagation Models Radio transmission

More information

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DEVELOPMENT OF A PATHLOSS MODEL FOR 3G NETWORKS AT 1.857 GHz IN PORT HARCOURT NIGERIA Anyanwu Chinedu *, Chukwuchekwa Nkwachukwu

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 2 : Path Loss and Shadowing (Part Two) Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.2 Dr. Musbah Shaat 1 / 23 Outline 1 Empirical Path Loss Models

More information

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment J. Turkka, M. Renfors Abstract This paper shows results of narrowband path loss measurements in a typical urban and suburban

More information

Seasonal Pathloss Modeling at 900MHz for OMAN

Seasonal Pathloss Modeling at 900MHz for OMAN 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Seasonal Pathloss Modeling at 900MHz for OMAN Zia Nadir + Electrical

More information

Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia

Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia

More information

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Bulg. J. Phys. 44 (2017) 145 154 Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Ph. Atanasov, Zh. Kiss ovski Faculty of Physics, University of Sofia, 5 James

More information

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling Progress In Electromagnetics Research Letters, Vol. 50, 91 98, 2014 An Investigation on the Use of ITU-R P.1411-7 in IEEE 802.11N Path Loss Modelling Thiagarajah Siva Priya, Shamini P. N. Pillay *, Manogaran

More information

Internet of Animals: On-and Off-body Propagation Analysis for Energy Efficient WBAN Design for Dairy Cows

Internet of Animals: On-and Off-body Propagation Analysis for Energy Efficient WBAN Design for Dairy Cows Internet of Animals: On-and Off-body Propagation Analysis for Energy Efficient WBAN Design for Dairy Cows Said Benaissa 1, 2, David Plets 1, Emmeric Tanghe 1, Günter Vermeeren 1, Luc Martens 1, Bart Sonck

More information

SPECIFICATION. Product Name : 4G/3G/2G Cellular Hinged SMA(M) Mount Monopole

SPECIFICATION. Product Name : 4G/3G/2G Cellular Hinged SMA(M) Mount Monopole SPECIFICATION Part No. : TG.9.113 Product Name : 4G/3G/2G Cellular Hinged SMA(M) Mount Monopole Feature : 7MHz to 38MHz LTE*/GSM/CDMA/HSPA/UMTS 7*/85/9/17/18/19/21/23/35/37 Rotatable hinge design for optimal

More information

Unit 1: The wireless channel

Unit 1: The wireless channel Unit 1: The wireless channel Wireless communications course Ronal D. Montoya M. http://tableroalparque.weebly.com/radiocomunicaciones.html ronalmontoya5310@correo.itm.edu.co August 23, 2017 1/26 Outline

More information

Probability distributions relevant to radiowave propagation modelling

Probability distributions relevant to radiowave propagation modelling Rec. ITU-R P.57 RECOMMENDATION ITU-R P.57 PROBABILITY DISTRIBUTIONS RELEVANT TO RADIOWAVE PROPAGATION MODELLING (994) Rec. ITU-R P.57 The ITU Radiocommunication Assembly, considering a) that the propagation

More information

Optimizing the Existing Indoor Propagation Prediction Models

Optimizing the Existing Indoor Propagation Prediction Models 2012 International Conference on Wireless Networks (ICWN 2012) IPCSIT vol. 49 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V49.37 Optimizing the Existing Indoor Propagation Prediction

More information

A Model of Coverage Probability under Shadow Fading

A Model of Coverage Probability under Shadow Fading A Model of Coverage Probability under Shadow Fading Kenneth L. Clarkson John D. Hobby August 25, 23 Abstract We give a simple analytic model of coverage probability for CDMA cellular phone systems under

More information

Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication

Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication American Journal of Applied Sciences Original Research Paper Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication 1,2 Yahia Zakaria and 1 Lubomir Ivanek 1 Department

More information

Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz

Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz 19th International Conference on Telecommunications (ICT 212) Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz Theofilos Chrysikos, Stavros Kotsopoulos

More information

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P Path Loss I Path loss L P relates the received signal power P r to the transmitted signal power P t : P r = P t Gr G t L P, where G t and G r are antenna gains. I Path loss is very important for cell and

More information

An Improvement of Vegetation Height Estimation Using Multi-baseline Polarimetric Interferometric SAR Data

An Improvement of Vegetation Height Estimation Using Multi-baseline Polarimetric Interferometric SAR Data PIERS ONLINE, VOL. 5, NO. 1, 29 6 An Improvement of Vegetation Height Estimation Using Multi-baseline Polarimetric Interferometric SAR Data Y. S. Zhou 1,2,3, W. Hong 1,2, and F. Cao 1,2 1 National Key

More information

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 530MHz Band in Sub- Saharan Africa Awal Halifa Dep t of Electrical Engineering Kwame Nkrumah Univ. of Science and Technology

More information

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION OF COST 231 MODEL FOR 3G WIRELESS COMMUNICATION SIGNAL IN SUBURBAN AREA OF PORT HARCOURT, NIGERIA Akujobi Ekeocha

More information

I. INTRODUCTION II. COVERAGE AREA

I. INTRODUCTION II. COVERAGE AREA Analysis of Large Scale Propagation Models & RF Coverage Estimation Purnima K. Sharma Doctoral candidate UTU, Dehradun (India) R.K.Singh Professor (OSD) UTU, Dehradun (India) Abstract The main task in

More information

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz A.N. Jadhav 1, Sachin S. Kale 2 Department of Electronics & Telecommunication Engineering, D.Y. Patil College

More information

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area Nwaokoro A. A. Department of Electrical and Electronic Engineering Federal University of Technology Owerri, Nigeria Emerole

More information

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro Link Budget Calculation Ermanno Pietrosemoli Marco Zennaro Goals To be able to calculate how far we can go with the equipment we have To understand why we need high masts for long links To learn about

More information

Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications

Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications 8 S. TAKAHASHI ET AL., DISTANCE DEPENDENCE OF PATH LOSS FOR INTER-VEHICLE COMMUNICATIONS Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications Satoshi TAKAHASHI, Akihito KATO,

More information

arxiv: v2 [cs.it] 22 Feb 2016

arxiv: v2 [cs.it] 22 Feb 2016 G. R. MacCartney, Jr., S. Deng, and T. S. Rappaport, Indoor Office Plan Environment and Layout-Based MmWave Path Loss Models for 28 GHz and 73 GHz, to be published in 2016 IEEE 83rd Vehicular Technology

More information

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method On Predicting Large Scale Fading Characteristics with the MR-FDPF Method Meiling Luo, Nikolai Lebedev, Guillaume Villemaud, Guillaume De La Roche, Jie Zhang, Jean-Marie Gorce To cite this version: Meiling

More information

Path Loss Model Using Geographic Information System (GIS)

Path Loss Model Using Geographic Information System (GIS) International Journal of Engineering and Technology Volume 3 No. 3, March, 2013 Path Loss Model Using Geographic Information System (GIS) Biebuma, J.J, Omijeh. B.O Department of Electrical/Electronic Engineering,

More information

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue., February 014,

More information

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Okorogu V.N Onyishi D.U Nwalozie G.C Utebor N.N Department of Electronic & Computer Department

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer The Distribution of Path Losses for Uniformly Distributed Nodes in a Circle Citation for published version: Bharucha, Z & Haas, H 2008, 'The Distribution of Path Losses for

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Channel Model for Intra-Device Communications Date Submitted: 15 January 2016 Source: Alexander Fricke, Thomas Kürner,

More information

Path Loss at the Exact Location of TV inside Residences using Digital Terrestrial Television Signal at 677 MHz

Path Loss at the Exact Location of TV inside Residences using Digital Terrestrial Television Signal at 677 MHz Path Loss at the Exact Location of TV inside Residences using Digital Terrestrial Television Signal at 677 MHz Jennifer C. Dela Cruz, Felicito S. Caluyo Abstract This paper presents the results of in propagation

More information

Lecture 2: Wireless Propagation Channels

Lecture 2: Wireless Propagation Channels Lecture 2: Wireless Propagation Channels RezaMohammadkhani, UniversityofKurdistan WirelessCommunications,2015 eng.uok.ac.ir/mohammadkhani 1 2 Outline Wireless Propagation Multipath Propagation Large scale

More information

Comparison Between Measured and Predicted Path Loss for Mobile Communication in Malaysia

Comparison Between Measured and Predicted Path Loss for Mobile Communication in Malaysia World Applied Sciences Journal 21 (Mathematical Applications in Engineering): 123-128, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.21.mae.99936 Comparison Between Measured

More information

AN021: RF MODULES RANGE CALCULATIONS AND TEST

AN021: RF MODULES RANGE CALCULATIONS AND TEST AN021: RF MODULES RANGE CALCULATIONS AND TEST We Make Embedded Wireless Easy to Use RF Modules Range Calculation and Test By T.A.Lunder and P.M.Evjen Keywords Definition of Link Budget, Link Margin, Antenna

More information

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Wireless Pers Commun (2013) 69:793 803 DOI 10.1007/s11277-012-0612-8 Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Yazan A. Alqudah Published online: 8 April 2012

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PATH LOSS PROPAGATION MODEL PREDICTION FOR GSM MOBILE NETWORK PLANNING IN KADUNA TOWN Dominic S. Nyitamen*, Musa Ahmed, Tonga

More information

Real-Time Path Loss Modelling for a More Robust Wireless Performance

Real-Time Path Loss Modelling for a More Robust Wireless Performance Real-Time Path Loss Modelling for a More Robust Wireless Performance Q. Braet 1, D. Plets 1, W. Joseph 1, L. Martens 1 1 Information Technology Department, Ghent University/iMinds Gaston Crommenlaan 8,

More information

Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression

Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression SUPACHAI PHAIBOON, PISIT PHOKHARATKUL Faculty of Engineering,

More information

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application Prof. Ms. S. M. Patil Prof. A. R. Nigvekar Prof. P B. Ghewari Assistant Professor Associate Professor Associate professor

More information

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing EE6604 Personal & Mobile Communications Week 7 Path Loss Models Shadowing 1 Okumura-Hata Model L p = A+Blog 10 (d) A+Blog 10 (d) C A+Blog 10 (d) D for urban area for suburban area for open area where A

More information

Segmentation and Scattering of Fatigue Time Series Data by Kurtosis and Root Mean Square

Segmentation and Scattering of Fatigue Time Series Data by Kurtosis and Root Mean Square Segmentation and Scattering of Fatigue Time Series Data by Kurtosis and Root Mean Square Z. M. NOPIAH 1, M. I. KHAIRIR AND S. ABDULLAH Department of Mechanical and Materials Engineering Universiti Kebangsaan

More information

Optimization of Empirical Pathloss Models of WiMax at 4.5 GHz Frequency Band

Optimization of Empirical Pathloss Models of WiMax at 4.5 GHz Frequency Band IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. II (Jan. 2014), PP 01-08 Optimization of Empirical Pathloss Models of

More information

ISSN: Guizhen * et al., 6(11): November, 2017] Impact Factor: 4.116

ISSN: Guizhen * et al., 6(11): November, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION MODEL OF WAVE PROPAGATION IN COMPLEX ENVIRONMENTS Cao Zhi, Lu Guizhen* *Communication University of China DOI: 10.581/zenodo.104066

More information

2J9547a CELLULAR/LTE MIMO and 2.4/5.0 GHz ISM MIMO Mast Mount

2J9547a CELLULAR/LTE MIMO and 2.4/5.0 GHz ISM MIMO Mast Mount Product Datasheet 2J9547a CELLULAR/LTE MIMO and 2.4/5. GHz ISM MIMO Mast Mount Key Features Cable 1 and 2: CELLULAR / LTE - 698-96 MHz - 171-217 MHz - 25-27 MHz Cable 3 and 4: 2.4/5. GHz ISM - 241-249

More information

INFLUENCES OF PARTS OF TREE ON PROPAGATION PATH LOSSES FOR WSN DEPLOYMENT IN GREENHOUSE ENVIRONMENTS

INFLUENCES OF PARTS OF TREE ON PROPAGATION PATH LOSSES FOR WSN DEPLOYMENT IN GREENHOUSE ENVIRONMENTS INFLUENCES OF PARTS OF TREE ON PROPAGATION PATH LOSSES FOR WSN DEPLOYMENT IN GREENHOUSE ENVIRONMENTS 1 AUDA RAHEEMAH, 2 NASEER SABRI, 3 M.S.SALIM, 2 PHAKLEN EHKAN, 4 R. KAMARUDDIN, 2 R. BADLISHAH AHMAD,

More information

THE ENERGY EFFICIENCY OF THE ERGODIC FADING RELAY CHANNEL

THE ENERGY EFFICIENCY OF THE ERGODIC FADING RELAY CHANNEL 7th European Signal Processing Conference (EUSIPCO 009) Glasgow, Scotland, August 4-8, 009 THE ENERGY EFFICIENCY OF THE ERGODIC FADING RELAY CHANNEL Jesús Gómez-Vilardebó Centre Tecnològic de Telecomunicacions

More information

PATH LOSS PREDICTION FOR LOW-RISE BUILDINGS WITH IMAGE CLASSIFICATION ON 2-D AERIAL PHOTOGRAPHS

PATH LOSS PREDICTION FOR LOW-RISE BUILDINGS WITH IMAGE CLASSIFICATION ON 2-D AERIAL PHOTOGRAPHS Progress In Electromagnetics Research, PIER 95, 135 152, 2009 PATH LOSS PREDICTION FOR LOW-RISE BUILDINGS WITH IMAGE CLASSIFICATION ON 2-D AERIAL PHOTOGRAPHS S. Phaiboon Electrical Engineering Department

More information

Statistical Tuning of Hata Model for 3G Communication Networks at GHz in Porth Harcourt, Nigeria

Statistical Tuning of Hata Model for 3G Communication Networks at GHz in Porth Harcourt, Nigeria International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Statistical Tuning of Hata Model for 3G Communication Networks at 1.857 GHz in Porth Harcourt, Nigeria Nkwachukwu

More information

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 6464(Print),

More information

COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE

COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE Page 1 of 32 COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE Communications Research Centre Canada Ottawa, April 2011 Prepared for: Bell Canada

More information

Linear Dispersion Over Time and Frequency

Linear Dispersion Over Time and Frequency Linear Dispersion Over Time and Frequency Jinsong Wu and Steven D Blostein Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario, Canada, K7L3N6 Email: {jwu, sdb@eequeensuca

More information

Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria

Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria K. O. Kadiri Department of Electronics and Electrical Engineering, Federal Polytechnic Offa, Kwara

More information

A Sum-Product Model as a Physical Basis for Shadow Fading

A Sum-Product Model as a Physical Basis for Shadow Fading 1 A Sum-Product Model as a Physical Basis for Shadow Fading Jari Salo arxiv:cs/0702098v1 [cs.oh] 18 Feb 2007 Abstract Shadow fading (slow fading) effects play a central role in mobile communication system

More information

Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms

Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms Frontiers in Sensors (FS) Volume 4, 2016 doi: 10.14355/fs.2016.04.004 www.seipub.org/fs Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms Hana Mujlid*, Ivica Kostanic

More information

Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments

Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments Shu Sun NYU WIRELESS Polytechnic Institute of New York University, Brooklyn, NY 11201 USA ss7152@nyu.edu Theodore

More information

38050 Povo Trento (Italy), Via Sommarive 14

38050 Povo Trento (Italy), Via Sommarive 14 UNIVERSITY OF TRENTO DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 38050 Povo Trento (Italy), Via Sommarive 14 http://www.dit.unitn.it STOCHASTIC AND REACTIVE METHODS FOR THE DETERMINATION OF

More information

Research Article Sparsity-constraint LMS Algorithms for Time-varying UWB Channel Estimation

Research Article Sparsity-constraint LMS Algorithms for Time-varying UWB Channel Estimation Research Journal of Applied Sciences, Engineering and echnology 8(4): 408-45, 04 DOI:0.906/rjaset.8.47 ISSN: 040-7459; e-issn: 040-7467 04 Maxwell Scientific Publication Corp. Submitted: August 03, 04

More information

THE rapidly increasing demands for higher mobile data

THE rapidly increasing demands for higher mobile data IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 5, MAY 2016 2843 Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless

More information

Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means

Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means A. O. Onim 1* P. K. Kihato 2 S. Musyoki 3 1. Jomo Kenyatta University of Agriculture and Technology, Department of Telecommunication

More information

The Impact of Fading on the Outage Probability in Cognitive Radio Networks

The Impact of Fading on the Outage Probability in Cognitive Radio Networks 1 The Impact of Fading on the Outage obability in Cognitive Radio Networks Yaobin Wen, Sergey Loyka and Abbas Yongacoglu Abstract This paper analyzes the outage probability in cognitive radio networks,

More information

SPECIFICATION. Product Name : Dual-Band WiFi 2.4~2.5GHz/5.15~5.85GHz Terminal Mount Monopole Antenna

SPECIFICATION. Product Name : Dual-Band WiFi 2.4~2.5GHz/5.15~5.85GHz Terminal Mount Monopole Antenna SPECIFICATION Part No. : GW.05.0153 Product Name : Dual-Band WiFi 2.4~2.5GHz/5.15~5.85GHz Terminal Mount Monopole Antenna Features : High Efficiency with and without groundplane WiFi/Bluetooth/igbee Extremely

More information

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-109-115 www.ajer.org Research Paper Open Access Comparative Study of Path Loss Models for Wireless

More information

Chapter 6 Forecasting Volatility using Stochastic Volatility Model

Chapter 6 Forecasting Volatility using Stochastic Volatility Model Chapter 6 Forecasting Volatility using Stochastic Volatility Model Chapter 6 Forecasting Volatility using SV Model In this chapter, the empirical performance of GARCH(1,1), GARCH-KF and SV models from

More information

Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India

Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India Hemant Kumar Rath 1, Sumanth Timmadasari 2, Bighnaraj Panigrahi 1, and Anantha Simha 1 1 TCS Research & Innovation, India, Email:{hemant.rath,

More information

Free Space Path Loss of UWB Communications

Free Space Path Loss of UWB Communications Free Spae Path Loss of UWB Communiations Pihaya Supanakoon 1, Sathit Aroonpraparat 1, Sathaporn Promwong 1 and Jun-ihi Takada 1 Department of Information Engineering, Faulty of Engineering, King Mongkut

More information

Comparative Analysis of Path Loss Propagation Models in Radio Communication

Comparative Analysis of Path Loss Propagation Models in Radio Communication Comparative Analysis of Path Loss Propagation Models in Radio Communication Kiran J. Parmar 1, Dr. Vishal D. Nimavat 2 M.E., Research Scholar, Department of Electronics, V.V.P. Engineering College, Rajkot,

More information

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obot a, O. Simeon b, J. Afolayan c Department of Electrical/Electronics & Computer Engineering, University of

More information

THE REACTION OF THE WIG STOCK MARKET INDEX TO CHANGES IN THE INTEREST RATES ON BANK DEPOSITS

THE REACTION OF THE WIG STOCK MARKET INDEX TO CHANGES IN THE INTEREST RATES ON BANK DEPOSITS OPERATIONS RESEARCH AND DECISIONS No. 1 1 Grzegorz PRZEKOTA*, Anna SZCZEPAŃSKA-PRZEKOTA** THE REACTION OF THE WIG STOCK MARKET INDEX TO CHANGES IN THE INTEREST RATES ON BANK DEPOSITS Determination of the

More information

Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria

Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria Hammed Lasisi, Yinusa A. Adediran, and Anjolaoluwa A. Ayodele Abstract Path loss, a

More information

Mysteries of DRA Modes Unresolved Issues for the Future

Mysteries of DRA Modes Unresolved Issues for the Future Mysteries of DRA Modes Unresolved Issues for the Future Debatosh Guha Institute of Radio Physics and Electronics, University of Calcutta, India University College of Science and Technology 1914-214 1 On

More information

Experimental Analysis of Cellular Outdoor Propagation at 1800 MHz over Dense Urban Regions of Ghaziabad

Experimental Analysis of Cellular Outdoor Propagation at 1800 MHz over Dense Urban Regions of Ghaziabad Experimental Analysis of Cellular Outdoor Propagation at 1 MHz over Dense Urban Regions of Ghaziabad Ranjeeta Verma #1, Garima Saini #2, Chhaya Dalela *3 1, 2 Electronics and Communication Engineering,

More information

A Path Loss Calculation Scheme for Highway ETC Charging Signal Propagation

A Path Loss Calculation Scheme for Highway ETC Charging Signal Propagation A Path Loss Calculation Scheme for Highway ETC Charging Signal Propagation Chunxiao LI, Dawei HE, Zhenghua ZHANG College of Information Engineering Yangzhou University, Jiangsu Province No.196, West Huayang

More information

The Effects of VSWR on Transmitted Power

The Effects of VSWR on Transmitted Power The Effects of VSWR on Transmitted Power By James G. Lee, W6VAT o matter how long you have been a ham, sooner of later you will be involved in at least one discussion of something called the Voltage Standing

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information