Path Loss Models and Link Budget

Size: px
Start display at page:

Download "Path Loss Models and Link Budget"

Transcription

1 Path Loss Models and Link Budget

2 A universal path loss model P r dbm = P t dbm + db Gains db Losses Gains: the antenna gains compared to isotropic antennas Transmitter antenna gain Receiver antenna gain

3 Losses: path loss large scale path loss (path loss on average) Reflection, diffraction, scattering, or shadowing losses (if you know these specifically) imperfect matching small scale fading loss (receive power variation over very short distance. This is random, we have to prepare for deep fading. So we d have a fading margin.) other margins

4 Path loss models Theoretical: 1. Free Space path loss, 2. Exponential Decay Empirical: 3. Path loss exponent model

5 1. Free Space Path Loss Friis Equation 2 λ P r = P t G t G r = P 4πd t G t G r /L p P r dbm = P t dbm + G t db + G r db L p db P r is the received power, not average received power P t is the transmit power G t is the transmitter antenna gain. Effective Isotropic Radiated Power (EIRP) is P t G t G r is the receiver antenna gains. 4πd L p db = 20log 10 is the free space path loss λ λ is the wavelength. Wavelength λ = c where c = 3 f 10 8 m/s is the speed of light, and f is the frequency.

6 Free Space Path Loss Friis Equation 2 λ P r = P t G t G r = P 4πd t G t G r /L p P r dbm = P t dbm + G t db + G r db L p db Why P r is proportional to d 2? Why P r is proportional to λ 2? Space communications, satellite communications

7 Received Power Reference In some cases, the antenna gains and mismatches and transmit power are not known, while the received power at the certain distance d 0 can be measured λ d0 d 0 P r = P t G t G r = P 4πd 0 d 0 d d P r dbm = P 0 dbm 20log 10 λ 2 where P 0 = P t G t G r, is the received power at 4πd 0 the reference distance d 0. Keep in mind this is the actual received power, not on average. d 0

8 Antenna gain Isotropic radiator Antenna gain G is 1 (linear terms) or 0 db in all directions. Does not exist in practice Any antenna that is not isotropic is directive dbi: Gain compared to isotropic radiator Directivity D = P r(maximum) P r (isotropic) where P r (maximum) is the maximum received power (at the same distance but max across angle)

9 Half-wave dipole antenna Antenna gains referred to dipole: dbd: Gain compared to a half-wave dipole antenna. The 1/2 wave dipole has gain 1.64 (linear) or 2.15 db, so dbi is 2.15 db greater than dbd.

10 Antenna mismatches Γ t and Γ r. Both are 1, and only one if there is a perfect impedance match and no loss.

11 2. Exponential Decay P r = P t G t G r λ 4πd 2 10 αd/10 due to its propagation through certain medium that absorbs the power for example, at 60 GHz, at which oxygen molecules absorb RF radiation, or due to rain at 30 GHz

12 3. Path Loss Exponent Model d P r dbm = P 0 dbm 10nlog 10 d 0 find the parameter n from measurements

13 Path Loss Exponent Model d P r dbm = P 0 dbm 10nlog 10 d 0 For some situations, P 0 is not available or the measurement at d 0 varies significantly over a very short distance (much shorter than d 0 ), such as an indoor environment, what to do? Recall that P 0 (intercept) and n (slope) both are parameters of a linear function of P r dbm with respect to 10log 10 (d/d 0 ). Given sufficient number of measurements over different distance d, both P 0 and n can be calculated. The math tool is linear fit (linear regression).

14 Link budgeting Accounting the gains and losses that occur in a radio channel between a transmitter and receiver. For a given required S/N ratio (SNR), some valid questions are: What is the required base station (or mobile) transmit power? What is the maximum coverage (i.e., path length)? What is the effect of changing the frequency of operation? S/I, S/N, C/N (carrier to noise ratio), P r /P N

15 Link Budget S N db = P r dbw P N dbw = P t dbw + db Gains db Losses P N dbw P N : noise power Receiver sensitivity: required S N + P N dbw.

16 Thermal noise P N = FkT 0 B k is Boltzmann s constant, k = J/K. The units are J/K (Joules/Kelvin) or W s/k (1 Joule = 1 Watt second). T 0 is the ambient temperature, typically taken to be K. If not given, use 294 K, which is 70 degrees Fahrenheit. B is the bandwidth, in Hz (equivalently, 1/s). F is the (unitless) noise figure, which quantifies the gain to the noise produced in the receiver. The noise figure F = SNR out /SNR in 1.

17 In db terms, P N dbw = F db + k dbws/k + T 0 dbk + B(dBHz) k dbws/k = 10 log J/K = dbws/k

18 Noise figure and noise temperature of a receiver Equivalent noise temperature of receiver T e the level of available noise power introduced by a receiver Input Signal S Input Noise N i Temperature T 0 F = SNR out /SNR in = 1 + T e Gain G Receiver Noise N e Noise Temp. T e T 0 Output Signal GS Output Noise G(N i +N e )

19 Relationship among link budget variables

20 Example Assume two wireless sensors 1 foot above ground need to communicate over a range of 30 meters. They operate the standard (DS-SS at 2.4 GHz). Assume the log-distance model with reference distance 1m, with path loss at 1 m is Π 0 = 40dB, and path loss exponent 3 beyond 1m. Assume the antenna gains are both 3.0 dbi. The transmitter is the TI CC2520, which has max P t = 1 mw, and its spec sheet gives a receiver sensitivity of -98 dbm. What is the fading margin at a 30 meter range?

21 Solution Margin is the difference between the expected receive power and the receiver sensitivity (P N (dbm) plus the required S/N(dB) S N db = P r dbm P N dbm = P t dbm + db Gains db Losses P N dbm Receiver Sensitivity = S N db + P N dbm = P t dbm + db Gains db Losses = P t dbm + G t db + G r db L p db Margin(dB)

22 Margin(dB) = P t dbm + G t db + G r db L p db Receiver Sensitivity 1. P t dbm = 0dBm. 2. G t db = G r db = 3. d 3. L p db = Π nlog 10 = 40 + d log 10 = 84.3dB 1 4. Receiver Sensitivity = 98dBm Margin(dB)=19.7dB

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 5 Today: (1) Path Loss Models (revisited), (2) Link Budgeting Reading Today: Haykin/Moher handout (2.9-2.10) (on Canvas),

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Link Budgeting. Lecture 7. Today: (1) Link Budgeting

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Link Budgeting. Lecture 7. Today: (1) Link Budgeting ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall 2011 Lecture 7 Today: (1) Link Budgeting Reading Today: Haykin/Moher 2.9-2.10 (WebCT). Thu: Rap 4.7, 4.8. 6325 note: 6325-only assignment

More information

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P Path Loss I Path loss L P relates the received signal power P r to the transmitted signal power P t : P r = P t Gr G t L P, where G t and G r are antenna gains. I Path loss is very important for cell and

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 2 : Path Loss and Shadowing (Part Two) Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.2 Dr. Musbah Shaat 1 / 23 Outline 1 Empirical Path Loss Models

More information

The Wireless Communication Channel. Objectives

The Wireless Communication Channel. Objectives The Wireless Communication Channel muse Objectives Understand fundamentals associated with free space propagation. Define key sources of propagation effects both at the large and small scales Understand

More information

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing EE6604 Personal & Mobile Communications Week 7 Path Loss Models Shadowing 1 Okumura-Hata Model L p = A+Blog 10 (d) A+Blog 10 (d) C A+Blog 10 (d) D for urban area for suburban area for open area where A

More information

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss Practical Link Budget Design using Path Loss Models Most radio propagation models are derived using

More information

AN021: RF MODULES RANGE CALCULATIONS AND TEST

AN021: RF MODULES RANGE CALCULATIONS AND TEST AN021: RF MODULES RANGE CALCULATIONS AND TEST We Make Embedded Wireless Easy to Use RF Modules Range Calculation and Test By T.A.Lunder and P.M.Evjen Keywords Definition of Link Budget, Link Margin, Antenna

More information

Radio Propagation Modelling

Radio Propagation Modelling Radio Propagation Modelling Ian Wassell and Yan Wu University of Cambridge Computer Laboratory Why is it needed? To predict coverage between nodes in a wireless network Path loss is different from environment

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Large-Scale Signal Propagation Models 1 Propagation Models Basic Model is to determine the major path loss effects This can be refined to take into account

More information

Proposed Propagation Model for Dehradun Region

Proposed Propagation Model for Dehradun Region Proposed Propagation Model for Dehradun Region Pranjali Raturi, Vishal Gupta, Samreen Eram Abstract This paper presents a review of the outdoor propagation prediction models for GSM 1800 MHz in which propagation

More information

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory 1 Table of Contents Estimating Path Loss Exponent and Application with Log Normal Shadowing...2 Abstract...3 1Path Loss Models...4 1.1Free Space Path Loss Model...4 1.1.1Free Space Path Loss Equation:...4

More information

Lecture 2: Wireless Propagation Channels

Lecture 2: Wireless Propagation Channels Lecture 2: Wireless Propagation Channels RezaMohammadkhani, UniversityofKurdistan WirelessCommunications,2015 eng.uok.ac.ir/mohammadkhani 1 2 Outline Wireless Propagation Multipath Propagation Large scale

More information

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro Link Budget Calculation Ermanno Pietrosemoli Marco Zennaro Goals To be able to calculate how far we can go with the equipment we have To understand why we need high masts for long links To learn about

More information

Wireless Communications

Wireless Communications NETW701 Wireless Communications Dr. Wassim Alexan Winter 2018 Lecture 5 NETW705 Mobile Communication Networks Dr. Wassim Alexan Winter 2018 Lecture 5 Wassim Alexan 2 Outdoor Propagation Models Radio transmission

More information

Indoor Measurement And Propagation Prediction Of WLAN At

Indoor Measurement And Propagation Prediction Of WLAN At Indoor Measurement And Propagation Prediction Of WLAN At.4GHz Oguejiofor O. S, Aniedu A. N, Ejiofor H. C, Oechuwu G. N Department of Electronic and Computer Engineering, Nnamdi Aziiwe University, Awa Abstract

More information

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss EELE 5414 Wireless Communications Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss In the last lecture Outline Diffraction. Scattering. Practical link budget design. Log-distance model Log-normal

More information

Wireless communication for Smart Buildings Kortrijk, 07/04/2017

Wireless communication for Smart Buildings Kortrijk, 07/04/2017 Wireless communication for Smart Buildings Kortrijk, 07/04/2017 Smart Buildings: What for? Access control Smart HVAC management Smart light management Indoor location Room management (occupancy / reservation

More information

PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY

PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY MOHD. DANI BABA, MOHAMAD IBRAHIM, ABDULMUKTI AHMAD Faculty of Electrical Engineering Universiti Teknologi MARA 445 Shah Alam, Selangor MALAYSIA Abstract :-

More information

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA Divyanshi Singh 1, Dimple 2 UG Student 1,2, Department of Electronics &Communication Engineering Raj Kumar Goel Institute of Technology for Women, Ghaziabad

More information

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions Empirical Path Loss Models for 802.11n Wireless networks at 2.4Ghz in rural regions Jean Louis Fendji Kedieng Ebongue, Mafai Nelson, and Jean Michel Nlong University of Ngaoundéré, Computer Science, P.O.

More information

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz A.N. Jadhav 1, Sachin S. Kale 2 Department of Electronics & Telecommunication Engineering, D.Y. Patil College

More information

Unit 1: The wireless channel

Unit 1: The wireless channel Unit 1: The wireless channel Wireless communications course Ronal D. Montoya M. http://tableroalparque.weebly.com/radiocomunicaciones.html ronalmontoya5310@correo.itm.edu.co August 23, 2017 1/26 Outline

More information

ITRAINONLINE MMTK RADIO LINK CALCULATION HANDOUT

ITRAINONLINE MMTK RADIO LINK CALCULATION HANDOUT ITRAINONLINE MMTK RADIO LINK CALCULATION HANDOUT Developed by: Sebastian Buettrich, wire.less.dk Edited by: Alberto Escudero Pascual, IT +46 Table of Contents 1. About this document...1 1.1 Copyright information...2

More information

Indoor Propagation Models

Indoor Propagation Models Indoor Propagation Models Outdoor models are not accurate for indoor scenarios. Examples of indoor scenario: home, shopping mall, office building, factory. Ceiling structure, walls, furniture and people

More information

Optimizing the Existing Indoor Propagation Prediction Models

Optimizing the Existing Indoor Propagation Prediction Models 2012 International Conference on Wireless Networks (ICWN 2012) IPCSIT vol. 49 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V49.37 Optimizing the Existing Indoor Propagation Prediction

More information

Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms

Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms Frontiers in Sensors (FS) Volume 4, 2016 doi: 10.14355/fs.2016.04.004 www.seipub.org/fs Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms Hana Mujlid*, Ivica Kostanic

More information

LTE RF Planning Training LTE RF Planning, Design, Optimization Training

LTE RF Planning Training LTE RF Planning, Design, Optimization Training LTE RF Planning Training LTE RF Planning, Design, Optimization Training Why should you choose LTE RF Planning Training? LTE RF Planning Training is focused on carrying out RF planning and Design and capacity

More information

Review of Comparative Analysis of Empirical Propagation model for WiMAX

Review of Comparative Analysis of Empirical Propagation model for WiMAX Review of Comparative Analysis of Empirical Propagation model for WiMAX Sachin S. Kale 1 A.N. Jadhav 2 Abstract The propagation models for path loss may give different results if they are used in different

More information

Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means

Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means A. O. Onim 1* P. K. Kihato 2 S. Musyoki 3 1. Jomo Kenyatta University of Agriculture and Technology, Department of Telecommunication

More information

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Okorogu V.N Onyishi D.U Nwalozie G.C Utebor N.N Department of Electronic & Computer Department

More information

Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia

Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia Dong You Choi Division of Electronics & Information Engineering, Cheongju University, #36 Naedok-dong, Sangdang-gu, Cheongju-city

More information

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment J. Turkka, M. Renfors Abstract This paper shows results of narrowband path loss measurements in a typical urban and suburban

More information

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application Prof. Ms. S. M. Patil Prof. A. R. Nigvekar Prof. P B. Ghewari Assistant Professor Associate Professor Associate professor

More information

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Bulg. J. Phys. 44 (2017) 145 154 Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Ph. Atanasov, Zh. Kiss ovski Faculty of Physics, University of Sofia, 5 James

More information

Tony Hill GPON. RF Budget Calculation Using dbm

Tony Hill GPON. RF Budget Calculation Using dbm Tony Hill GPON RF Budget Calculation Using dbm Signal to Noise Ratio SNR is a ratio expressed in db logarithmically db = 10Log 10 (S/N) SNR is not linear Log 10(100) = 2 If y= Log 10 (x) then x= 10 y Power

More information

Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication

Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication American Journal of Applied Sciences Original Research Paper Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication 1,2 Yahia Zakaria and 1 Lubomir Ivanek 1 Department

More information

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling Progress In Electromagnetics Research Letters, Vol. 50, 91 98, 2014 An Investigation on the Use of ITU-R P.1411-7 in IEEE 802.11N Path Loss Modelling Thiagarajah Siva Priya, Shamini P. N. Pillay *, Manogaran

More information

Seasonal Pathloss Modeling at 900MHz for OMAN

Seasonal Pathloss Modeling at 900MHz for OMAN 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Seasonal Pathloss Modeling at 900MHz for OMAN Zia Nadir + Electrical

More information

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Wireless Pers Commun (2013) 69:793 803 DOI 10.1007/s11277-012-0612-8 Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Yazan A. Alqudah Published online: 8 April 2012

More information

Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on

Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on Rachel Cardell- Oliver School of Computer Science & So8ware Engineering semester- 2 2018 MoBvaBon (for CS students to study radio propagabon)

More information

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz 2011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Performance of Path Loss Model in 4G Wimax Wireless Communication System

More information

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obot a, O. Simeon b, J. Afolayan c Department of Electrical/Electronics & Computer Engineering, University of

More information

APPLICATION FORM: Authorization for the installing, maintaining and operating of a VSAT network. REVENUE STAMP OF NAF. 10

APPLICATION FORM: Authorization for the installing, maintaining and operating of a VSAT network. REVENUE STAMP OF NAF. 10 Authorization for the installing, maintaining and operating of a VSAT network. REVENUE STAMP OF NAF. 10 1 GENERAL INFORMATION The application for the authorization for installing, maintaining and operating

More information

Real-Time Path Loss Modelling for a More Robust Wireless Performance

Real-Time Path Loss Modelling for a More Robust Wireless Performance Real-Time Path Loss Modelling for a More Robust Wireless Performance Q. Braet 1, D. Plets 1, W. Joseph 1, L. Martens 1 1 Information Technology Department, Ghent University/iMinds Gaston Crommenlaan 8,

More information

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area Nwaokoro A. A. Department of Electrical and Electronic Engineering Federal University of Technology Owerri, Nigeria Emerole

More information

The Effects of VSWR on Transmitted Power

The Effects of VSWR on Transmitted Power The Effects of VSWR on Transmitted Power By James G. Lee, W6VAT o matter how long you have been a ham, sooner of later you will be involved in at least one discussion of something called the Voltage Standing

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PATH LOSS PROPAGATION MODEL PREDICTION FOR GSM MOBILE NETWORK PLANNING IN KADUNA TOWN Dominic S. Nyitamen*, Musa Ahmed, Tonga

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Lecture 3. Interference and Shadow Margins, Handoff Gain, Coverage

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Lecture 3. Interference and Shadow Margins, Handoff Gain, Coverage ECE6604 PERSONAL & MOBILE COMMUNICATIONS Lecture 3 Interference and Shadow Margins, Handoff Gain, Coverage 1 Interference Margin As the subscriber load increases, additional interference is generated from

More information

Dokumentnamn. Document - Ref PTS-ER-2004:32

Dokumentnamn. Document - Ref PTS-ER-2004:32 1 (18) 1 SUMMARY The purpose of this report is to find out how the signal requirement matches the service requirement in a UMTS network, and to comment on some of the specific issues raised by the Swedish

More information

White Paper: Comparison of Narrowband and Ultra Wideband Channels. January 2008

White Paper: Comparison of Narrowband and Ultra Wideband Channels. January 2008 White Paper: Comparison of Narrowband and Ultra Wideband Channels January 28 DOCUMENT APPROVAL: Author signature: Satisfied that this document is fit for purpose, contains sufficient and correct detail

More information

Coverage Planning for LTE system Case Study

Coverage Planning for LTE system Case Study Coverage Planning for LTE system Case Study Amer M. Daeri 1, Amer R. Zerek 2 and Mohammed M. Efeturi 3 1 Zawia University. Faculty of Engineering, Computer Engineering Department Zawia Libya Email: amer.daeri@

More information

arxiv: v2 [cs.it] 22 Feb 2016

arxiv: v2 [cs.it] 22 Feb 2016 G. R. MacCartney, Jr., S. Deng, and T. S. Rappaport, Indoor Office Plan Environment and Layout-Based MmWave Path Loss Models for 28 GHz and 73 GHz, to be published in 2016 IEEE 83rd Vehicular Technology

More information

CDMA2000 Network Planning. cdma university. Student Guide X3

CDMA2000 Network Planning. cdma university. Student Guide X3 cdma university CDMA2000 CDMA2000 Student Guide Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law prohibited. Material Use Restrictions These written

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Considerations of frequency resources for fast moving mobile backhaul] Date Submitted: [7 JAN, 2015] Source: [Minsoo

More information

EE Large Scale Path Loss Log Normal Shadowing. The Flat Fading Channel

EE Large Scale Path Loss Log Normal Shadowing. The Flat Fading Channel EE447- Large Scale Path Loss Log Normal Shadowing The Flat Fading Channel The channel functions are random processes and hard to characterize We therefore use the channel correlation functions Now assume:

More information

37th Telecommunications Policy Research Conference, Sept. 2009

37th Telecommunications Policy Research Conference, Sept. 2009 37th Telecommunications Policy Research Conference, Sept. 2009 The Business Case of a Nationwide Wireless Network that Serves both Public Safety and Commercial Subscribers * Ryan Hallahan and Jon M. Peha

More information

Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications

Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications 374 PIERS Proceedings, Stockholm, Sweden, Aug. 12 15, 2013 Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications H. A. Rahim 1, F. Malek 1, N. Hisham 1, and

More information

Path Loss Prediction in Wireless Communication System using Fuzzy Logic

Path Loss Prediction in Wireless Communication System using Fuzzy Logic Indian Journal of Science and Technology, Vol 7(5), 64 647, May 014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Path Loss Prediction in Wireless Communication System using Fuzzy Logic Sanu Mathew

More information

Analyzing EME Path Loss at 77 GHz

Analyzing EME Path Loss at 77 GHz Analyzing EME Path Loss at 77 GHz By Al Ward W5LUA 2014 EME Conference Pleumeur-Bodou, France Abstract Having successfully communicated via the moon on 47GHz, our interests now turn towards 77 GHz. Sergei

More information

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue., February 014,

More information

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-109-115 www.ajer.org Research Paper Open Access Comparative Study of Path Loss Models for Wireless

More information

Performance Evaluation of Hata-Davidson Pathloss Model Tuning Approaches for a Suburban Area

Performance Evaluation of Hata-Davidson Pathloss Model Tuning Approaches for a Suburban Area American Journal of Software Engineering and Applications 2017; 6(3): 93-98 http://www.sciencepublishinggroup.com/j/ajsea doi: 10.11648/j.ajsea.20170603.16 ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

More information

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION OF COST 231 MODEL FOR 3G WIRELESS COMMUNICATION SIGNAL IN SUBURBAN AREA OF PORT HARCOURT, NIGERIA Akujobi Ekeocha

More information

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DEVELOPMENT OF A PATHLOSS MODEL FOR 3G NETWORKS AT 1.857 GHz IN PORT HARCOURT NIGERIA Anyanwu Chinedu *, Chukwuchekwa Nkwachukwu

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer The Distribution of Path Losses for Uniformly Distributed Nodes in a Circle Citation for published version: Bharucha, Z & Haas, H 2008, 'The Distribution of Path Losses for

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Channel Model for Intra-Device Communications Date Submitted: 15 January 2016 Source: Alexander Fricke, Thomas Kürner,

More information

Millimeter Wave Wireless Communications: New Results for Rural Connectivity

Millimeter Wave Wireless Communications: New Results for Rural Connectivity Millimeter Wave Wireless Communications: New Results for Rural Connectivity George R. MacCartney, Jr., Shu Sun, Theodore S. Rappaport, Yunchou Xing, Hangsong Yan, Jeton Koka, Ruichen Wang, and Dian Yu

More information

Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments

Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments Shu Sun NYU WIRELESS Polytechnic Institute of New York University, Brooklyn, NY 11201 USA ss7152@nyu.edu Theodore

More information

ISSN: Guizhen * et al., 6(11): November, 2017] Impact Factor: 4.116

ISSN: Guizhen * et al., 6(11): November, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION MODEL OF WAVE PROPAGATION IN COMPLEX ENVIRONMENTS Cao Zhi, Lu Guizhen* *Communication University of China DOI: 10.581/zenodo.104066

More information

Experimental Analysis of Cellular Outdoor Propagation at 1800 MHz over Dense Urban Regions of Ghaziabad

Experimental Analysis of Cellular Outdoor Propagation at 1800 MHz over Dense Urban Regions of Ghaziabad Experimental Analysis of Cellular Outdoor Propagation at 1 MHz over Dense Urban Regions of Ghaziabad Ranjeeta Verma #1, Garima Saini #2, Chhaya Dalela *3 1, 2 Electronics and Communication Engineering,

More information

Computer Engineering and Intelligent Systems ISSN (Paper) ISSN (Online) Vol.4, No.9, 2013

Computer Engineering and Intelligent Systems ISSN (Paper) ISSN (Online) Vol.4, No.9, 2013 Computer Analysis of the COST 231 Hata Model and Least Squares Approximation for Path Loss Estimation at 900MHz on the Mountain Terrains of the Jos-Plateau, Nigeria Abstract Abraham Deme 1,2*, Danjuma

More information

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group 1 Radio Path Loss and Penetration Loss Measurements in and around Homes and Trees at 5.85 GHz Greg Durgin, Theodore S. Rappaport, Hao Xu Mobile and Portable Radio Research Group Bradley Department of Electrical

More information

Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria

Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria K. O. Kadiri Department of Electronics and Electrical Engineering, Federal Polytechnic Offa, Kwara

More information

THE rapidly increasing demands for higher mobile data

THE rapidly increasing demands for higher mobile data IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 5, MAY 2016 2843 Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless

More information

ANALYSIS OF A DEVELOPED BUILDING PENETRATION PATH LOSS MODEL FOR GSM WIRELESS ACCESS

ANALYSIS OF A DEVELOPED BUILDING PENETRATION PATH LOSS MODEL FOR GSM WIRELESS ACCESS ANALYSIS OF A DEVELOPED BUILDING PENETRATION PATH LOSS MODEL FOR GSM WIRELESS ACCESS Elechi, P. Department of Electrical Engineering, Rivers State University of Science and Technology, Port Harcourt, Nigeria.

More information

Aalborg Universitet. Published in: 2015 IEEE Globecom Workshops (GC Wkshps) DOI (link to publication from Publisher): /GLOCOMW.2015.

Aalborg Universitet. Published in: 2015 IEEE Globecom Workshops (GC Wkshps) DOI (link to publication from Publisher): /GLOCOMW.2015. Aalborg Universitet Path Loss, Shadow Fading, and Line-Of-Sight Probability Models for 5G Urban Macro- Cellular Scenarios Sun, Shu; Thomas, Timothy; Rappaport, Theodore S.; Nguyen, Huan Cong; Kovács, István;

More information

Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India

Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India Hemant Kumar Rath 1, Sumanth Timmadasari 2, Bighnaraj Panigrahi 1, and Anantha Simha 1 1 TCS Research & Innovation, India, Email:{hemant.rath,

More information

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements Post-print of: Zhang, J., Salmi, J. and Lohan, E-S. Analysis of kurtosis-based LOS/NLOS identification using indoor MIMMO channel measurement in IEEE transactions on vehicular technology, vol. 62, no.

More information

Path Loss Model Using Geographic Information System (GIS)

Path Loss Model Using Geographic Information System (GIS) International Journal of Engineering and Technology Volume 3 No. 3, March, 2013 Path Loss Model Using Geographic Information System (GIS) Biebuma, J.J, Omijeh. B.O Department of Electrical/Electronic Engineering,

More information

The Impact of Fading on the Outage Probability in Cognitive Radio Networks

The Impact of Fading on the Outage Probability in Cognitive Radio Networks 1 The Impact of Fading on the Outage obability in Cognitive Radio Networks Yaobin Wen, Sergey Loyka and Abbas Yongacoglu Abstract This paper analyzes the outage probability in cognitive radio networks,

More information

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method On Predicting Large Scale Fading Characteristics with the MR-FDPF Method Meiling Luo, Nikolai Lebedev, Guillaume Villemaud, Guillaume De La Roche, Jie Zhang, Jean-Marie Gorce To cite this version: Meiling

More information

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India)

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Enhance Study on Indoor RF Models: based on Two Residential Areas Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Abstract Indoor Propagation modeling is demanded for

More information

Modulating Retro-Reflector Cubesat Payload operating at 1070nm for Asymmetric Free-space Optical Communications

Modulating Retro-Reflector Cubesat Payload operating at 1070nm for Asymmetric Free-space Optical Communications operating at 1070nm for Asymmetric Free-space Optical Communications Modulating Retro-Reflector: Working Principle Jan Stupl, Alberto Guillen Salas SGT / NASA Ames Research Center Dayne Kemp MEI / NASA

More information

CSP Algorithm In Predicting And Optimizing The Path Loss Of Wireless Empirical Propagation Models

CSP Algorithm In Predicting And Optimizing The Path Loss Of Wireless Empirical Propagation Models CSP Algorithm In Predicting And Optimizing The Path Loss Of Wireless Empirical Propagation Models Nagendra sah and Amit Kumar Abstract Constraint satisfaction programming (CSP) is an emergent software

More information

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 6464(Print),

More information

I. INTRODUCTION II. COVERAGE AREA

I. INTRODUCTION II. COVERAGE AREA Analysis of Large Scale Propagation Models & RF Coverage Estimation Purnima K. Sharma Doctoral candidate UTU, Dehradun (India) R.K.Singh Professor (OSD) UTU, Dehradun (India) Abstract The main task in

More information

Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria

Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria Abraham Deme 1,2*, Danjuma Dajab 2, Buba Bajoga 2, Mohammed Mu azu 2, Davou Choji 3 1. ICT Directorate,

More information

Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz

Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz 19th International Conference on Telecommunications (ICT 212) Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz Theofilos Chrysikos, Stavros Kotsopoulos

More information

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 530MHz Band in Sub- Saharan Africa Awal Halifa Dep t of Electrical Engineering Kwame Nkrumah Univ. of Science and Technology

More information

Realignment of the / MHz Band To Create a Private Enterprise Broadband Allocation

Realignment of the / MHz Band To Create a Private Enterprise Broadband Allocation Realignment of the 896-901/935-940 MHz Band To Create a Private Enterprise Broadband Allocation Petition for Rulemaking of the Enterprise Wireless Alliance and Pacific DataVision, Inc. RM-11738 PROPOSED

More information

Volume 4, Number 2, 2018 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 4, Number 2, 2018 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume 4, Number 2, 2018 Pages 114-128 Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619 Path Loss Characterization of Long Term Evolution Network for Lagos,

More information

COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE

COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE Page 1 of 32 COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE Communications Research Centre Canada Ottawa, April 2011 Prepared for: Bell Canada

More information

Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications

Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications 8 S. TAKAHASHI ET AL., DISTANCE DEPENDENCE OF PATH LOSS FOR INTER-VEHICLE COMMUNICATIONS Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications Satoshi TAKAHASHI, Akihito KATO,

More information

INFLUENCES OF PARTS OF TREE ON PROPAGATION PATH LOSSES FOR WSN DEPLOYMENT IN GREENHOUSE ENVIRONMENTS

INFLUENCES OF PARTS OF TREE ON PROPAGATION PATH LOSSES FOR WSN DEPLOYMENT IN GREENHOUSE ENVIRONMENTS INFLUENCES OF PARTS OF TREE ON PROPAGATION PATH LOSSES FOR WSN DEPLOYMENT IN GREENHOUSE ENVIRONMENTS 1 AUDA RAHEEMAH, 2 NASEER SABRI, 3 M.S.SALIM, 2 PHAKLEN EHKAN, 4 R. KAMARUDDIN, 2 R. BADLISHAH AHMAD,

More information

Comparative Analysis of Path Loss Propagation Models in Radio Communication

Comparative Analysis of Path Loss Propagation Models in Radio Communication Comparative Analysis of Path Loss Propagation Models in Radio Communication Kiran J. Parmar 1, Dr. Vishal D. Nimavat 2 M.E., Research Scholar, Department of Electronics, V.V.P. Engineering College, Rajkot,

More information

Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia

Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia

More information

Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria

Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria Hammed Lasisi, Yinusa A. Adediran, and Anjolaoluwa A. Ayodele Abstract Path loss, a

More information

SPECIFICATION. : 2 x 4G/3G/2G MIMO Antenna (698~960MHz, 1710~2170MHz,2300~2700MHz, MHz) MIMO1 antenna MIMO2 antenna

SPECIFICATION. : 2 x 4G/3G/2G MIMO Antenna (698~960MHz, 1710~2170MHz,2300~2700MHz, MHz) MIMO1 antenna MIMO2 antenna SPECIFICATION Part No. Product Name Feature : MA761.B.BICG.003 : Pantheon Antenna 4in1 MA761 Screw-Mount [Permanent Mount] 4G/3G/2G MIMO/ 2.4/5GHz MIMO : 2 x 4G/3G/2G MIMO Antenna (698~960MHz, 1710~2170MHz,2300~2700MHz,

More information

3.6V / 2600mAh Primary Lithium x 0.85 (60mm x 21mm) 1.0 oz (28 gr) -30 C to +77 C. Bluetooth Low Energy dBm. +5dBm. 1Mbit/s / 2Mbit/s*

3.6V / 2600mAh Primary Lithium x 0.85 (60mm x 21mm) 1.0 oz (28 gr) -30 C to +77 C. Bluetooth Low Energy dBm. +5dBm. 1Mbit/s / 2Mbit/s* SPECIFICATION SHEET BEEKs Industrial VER 1.6 HARDWARE SPECIFICATION Battery Size Weight Temperature Range Bluetooth Type Bluetooth Sensitivity Bluetooth Max Power Output Bluetooth Antenna Frequency Supported

More information