Path Loss Model Using Geographic Information System (GIS)

Size: px
Start display at page:

Download "Path Loss Model Using Geographic Information System (GIS)"

Transcription

1 International Journal of Engineering and Technology Volume 3 No. 3, March, 2013 Path Loss Model Using Geographic Information System (GIS) Biebuma, J.J, Omijeh. B.O Department of Electrical/Electronic Engineering, University of Port Harcourt ABSTRACT This paper presents Geographic Information System (GIS) as an invaluable tool in path loss modeling. It shows how GIS can reveal features through its visualization capabilities. A program was written in Visual Basic for Applications (VBA) to automatically compute the path loss using Cost 231 Hata Model, and display it spatially on an administrative map and satellite imagery (Land Use/Land Cover) using ArcMap 9.0 Application. The results gotten were tested to be consistent with results of previous study done in Southern Nigeria and it shows how the excellent visualization and spatial handling capabilities of GIS gives it an extra advantage as a path loss modeling tool. Thus, the integration of GIS into existing path loss analysis applications is recommended for fast, accurate and exciting results brought about by the ability to visualize the terrain and other great features. Keywords: Geographic Information Systems, Path Loss, Cost 231 Hata, Model 1. INTRODUCTION A Geographic Information System is a system of hardware, software and procedures to facilitate the management, manipulation, analysis, modeling, representation and display of geo-referenced data to solve complex problems regarding planning and management of resource. But GIS is much more than maps. A GIS can perform complicated analytical functions and then present the results visually as maps, tables or graphs, allowing decision-makers to virtually see the issues before them and then select the best course of action. There are several spatial applications in use such as ArcGIS, MapInfo etc. The most prominent of which is the ArcGIS developed by ESRI (Environmental System Research Institute), Redlands. ArcGIS is a suite of software product lines produced by ESRI. At the desktop GIS level, ArcGIS can include: ArcReader, which allows one to view and query maps created with the other Arc products; ArcView, which allows one to view spatial data, create maps, and perform basic spatial analysis; ArcEditor which includes all the functionality of ArcView, includes more advanced tools for manipulation of shapefiles and geodatabases; or ArcInfo the most advanced version of ArcGIS, which includes added capabilities for data manipulation, editing, and analysis. reflection, aperture-medium coupling loss, and absorption. Path loss is also influenced by terrain contours, environment (urban or rural, vegetation and foliage), propagation medium (dry or moist air), the distance between the transmitter and the receiver, and the height and location of antennas. There are several path loss models, prominent of which are reviewed below. 2. LITERATURE REVIEWS The Okumura et al. method is based on empirical data collected in detailed propagation tests over various situations of an irregular terrain and environmental clutter[1]. The results are analyzed statistically and compiled into diagrams. The basic prediction of the median field strength is obtained for the quasi-smooth terrain in an urban area[2]. A correction factor for either an open area or a suburban area is also taken into account. Additional correction factors, such as for a rolling hilly terrain, an isolated mountain, mixed land-sea paths, street direction, general slope of the terrain etc., make the final prediction closer to the actual field strength values [3]. The Okumura model is formally expressed as: L = L FSL + A MU H MG - H BG (1) where, Path loss is a major component in the analysis and design of the link budget of a telecommunication system. It is the attenuation undergone by an electromagnetic wave in transit between a transmitter and a receiver in a communication system. Path loss may be due to many effects, such as free-space loss, refraction, diffraction, L = Median path loss (db). L FSL = Free Space Loss (db). A M = Median attenuation (db). H MG = Mobile station antenna height gain factor. 269

2 H BG = Base station antenna height gain factor. 2.1 Lee Model Lee.W.C.Y proposed this model in 1982 [4]. In a very short time it became widely popular among researchers and system engineers mainly because the parameters of the model can be easily adjusted to the local environment by additional field calibration measurements (drive tests). By doing so, greater accuracy of the model can be achieved. In addition, the prediction algorithm is simple and fast. 2.2 COST-231 Hata Model The Hata Model [5] is an empirical formulation of the graphical path loss information provided by Okumura. Hata presented the urban area propagation loss as the standard formula and supplied correction equations to the standard formula for application to other situations [6]. PL = log 10 (f) 13.82log 10 (h b) - ah m + ( log 10 (hb)) log 10 d + c m (2) Where, f is the frequency in MHZ, d is the distance between the transmitting and the receiving antennas in km; h b is the transmitting antenna height above ground level in meters. The parameter c m is defined as 0 db for suburban or open environments and 3 db for urban environments. The parameter ah m is define for urban environments, ah m = 3.20 (log 10 (11.75h r)) , for f > 400MHz (3) for suburban or rural (flat) environments, ah m = (1.1log 10f 0.7) h r (1.56log 10f 0.8), (4) where, hr is the receiver antenna height above the ground level. Equally make a provision for rain attenuation that is the total path loss to be added to the rain attenuation. 3. DESIGN METHODOLOGY In this design, the Cost 231-Hata Model was used[7]. Using Microsoft Access, a database to capture the parameters in the COST-231 Hata model and the geographic Coordinates of the transmitter and receiver stations was set up. A form to link to the database was created. The path loss was calculated using VBA code which was linked to a button in the form. The table was imported into ArcCatalog as a geodatabase and displayed as an ESRI shapefile on ArcMap. The points were joined and the calculated pathloss displayed. This was overlayed with administrative boundaries and satellite imagery (land use/ land cover). Results gotten were tested to be consistent with a previous research carried out [8][9][10]. 3.1 Mathematical Model In carrying out Path loss analysis, COST-231 Hata Model equation was used to model the path loss using industry data from the region. PL= log 10 (f) 13.82log 10 (h b) - ah m +( log 10 (hb))log 10d + C m (5) Where, f is the frequency in MHZ, d is the distance between the transmitting and the receiving antennas in km; h b is the transmitting antenna height above ground level in meters. The parameter C m is defined as 0 db for suburban or open environments and 3 db for urban environments. The parameter ah m is define for urban environments, ah m = 3.20 (log 10 (11.75h r)) , for f > 400MHz (6) for suburban or rural (flat) environments, ii. iii. iv. coordinates both for receiving and transmitting stations Create a table in a database with the declared variables as the fields Create a form containing identical fields with the table created Link the table with the form v. Input Cordinates and Station information ah m = (1.1log 10f 0.7) h r (1.56log 10f 0.8) (7) where, hr is the receiver antenna height above the ground level. 3.2 Algorithm i. Declare all variables using the appropriate format/structure (PL, f, h r, h b, ah m, C m and vi. vii. viii. Set values for the terrain (Urban, Suburban and Rural) Define the parameter ah m for different terrain conditions, that is: Urban - ah m = 3.20 (log 10 (11.75h r)) Surburban/Rural - ah m = (1.1log 10f 0.7) h r (1.56log 10f 0.8) Define value of Cm for the different terrain conditions: 270

3 Urban, C m = 3, Suburban/Rural, C m = 0 ix. Input other Parameters (f, h r, h b and d) x. Compute Pathloss the Cost 231-Hata model showed below: xi. PL = log 10 (f) 13.82log 10 (h b) - ah m + ( log 10 (hb)) log 10 d + c m Output Computed value of Pathloss Figure 1 shows the Flowchart for Path loss Analysis using Cost 231-Hata Model Fig 1. Flowchart for Path loss Analysis using Cost 231-Hata Model 271

4 Fig 2 Path loss calculation application interface Table 1 Pathloss results for Different stations Link Name, Antenn a Antenna Latitude, MO Tx Gain Height Longitude DE Power Distance Cable type With Losses Path loss Fade Margin Rx Level Odeama creek /Soku km LMR N LOS dbi 103m/ 600 Coax at E 118m 110m N db E db Ughelli / Afiesere LOS dbi 72m/68 m 31.84km N E 6.43 db N E LMR db 13.7 Coax at 78m Diebu creek / Nun River LMR N 112m/ Coax at 120m E LOS dbi 118m db N 25.4km E 153.3d B

5 Fig 3 Odeama creek /Soku displayed on land use on administrative boundaries. Fig 4 Odeama creek/soku stations displayed land cover showing the legend. 4. RESULTS AND DISCUSSION Figure 2 shows a screen capture of the form view of the path loss calculation interface. The program was tested with a previous research done and the results were compared with the output of the application. Table 1 below summarizes the results obtained (Edeh, 2008) From this legend, it is clear that that Odeama creek and Soku (a built up area) are separated basically by Tall Mangrove forest. This alongside other attenuation factors explains the high value of path loss calculated, thus the received signal will be low if measures are not taken to improve signal quality. This makes better understanding than when it is merely described with words. Even before going to do real field survey, preliminary planning can be done based on this analysis. Figure 4 above shows Odeama creek/soku stations displayed on administrative boundaries and river layer. This is necessary for the planner to know the administrative delineations so he can plan towards complying with the respective state and local government statutory requirements. Figure 5 shows Ughelli/Afiesere stations and computed pathloss displayed on land use land cover. Using the legend in fig 3 it is clear that Ughelli and Afiesere are separated by heavy forests which include palm, rubber etc. This alongside other attenuation factors explains the high value of path loss calculated, thus the received signal 273

6 will be low if measures are not taken to improve signal quality. Fig 5 Ughelli/Afiesere stations displayed on LULC Fig 6 Diebu creek/nun River stations and Calculated pathloss displayed on land use land cover. It is clear that Diebu Creek and Nun River are separated by mangrove and forests as seen in fig 6. This alongside other attenuation factors explains the high value of pathloss calculated, thus the received signal will be low if measures are not taken to improve signal quality. 5. CONCLUSION While classic path loss models alone can form the basis of correct analysis, it only relies on descriptions of terrain and other geographical parameters which are quite important. Thus, the planner in the office, who never went to the field, may not have a visual description of the terrain, distance between transmit and receiving stations and other geographical parameters. This paper addressed this problem using Geographic Information Systems, customized for this purpose. The visual and spatial handling capabilities brought an extra edge into the study of path loss analysis. Thus achieving the same result (faster) but with an extra advantage of allowing the planner see the terrain parameters from his desktop while making accurate decisions. Apart from this, certain other analysis (Proximity, Network and Overlay) can be used to further simplify the work of the telecommunications engineer. REFERENCES [1] Okumura, Y. (1968). Field strength and it s variability in VHF and UHF land-mobile radioservices. Review of the Electrical Communications Laboratory, vol. 16. [2] Baldassaro,P.M, Bostian.C.W, Carstensen.L.M, and Sweeney.D.G (2002): Path Loss Predictions and Measurements over urban and rural terrain at frequencies between 900 MHz and 28 GHz. Proc. IEEE AP-S2002 International Symposium, in press. [3] Neskovic.A(2000); Modern Approaches in Modeling of Mobile Radio Systems Propagation Environment; IEEE Communiation Surveys. [4] Lee, W. C. Y(1998): Mobile Communications Engineering: Theory and Applications, McGraw- Hill, [5] Hata, M. (1980); Empirical Formula for Propagation Loss in Land Mobile Radio Services; IEEE Trans. Vehicular Technology. [6] Sweeney, D (2003); Propagation Issues for Land Mobile Radio (LMR) in the 100 to 1000 MHz Region; Center for Wireless Telecommunications, Virgin [7] 231 Final Report, Digital Mobile Radio(1990): COST 231 View on the Evolution Towards 3rd Generation Systems, Commisiion of the European Communities and COST Telecommunications, Brussels, [8] Edeh, P.O (2008); Path Loss Model for Microwave radio link in Southern part of Nigeria; University of Port Harcourt 274

7 [9] Prasad. M.V.S.N and A. Iqbal (1997): Comparison of some path loss prediction methods with VHF&UHF measurements, IEEE Transactions On Broadcasting, Vol. 43, No. 4, pp , [10] Rama.T, Rao, S. Vijaya Bhaskara Rao, M.V.S.N. Prasad, Mangal Sain, A. Iqbal, and D. R. Lakshmi(2000): Mobile Radio Propagation Path Loss Studies at VHF/UHF Bands in Southern India, IEEE Transactions On Broadcasting, Vol. 46, No. 2, pp ,

Proposed Propagation Model for Dehradun Region

Proposed Propagation Model for Dehradun Region Proposed Propagation Model for Dehradun Region Pranjali Raturi, Vishal Gupta, Samreen Eram Abstract This paper presents a review of the outdoor propagation prediction models for GSM 1800 MHz in which propagation

More information

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz 2011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Performance of Path Loss Model in 4G Wimax Wireless Communication System

More information

Review of Comparative Analysis of Empirical Propagation model for WiMAX

Review of Comparative Analysis of Empirical Propagation model for WiMAX Review of Comparative Analysis of Empirical Propagation model for WiMAX Sachin S. Kale 1 A.N. Jadhav 2 Abstract The propagation models for path loss may give different results if they are used in different

More information

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA Divyanshi Singh 1, Dimple 2 UG Student 1,2, Department of Electronics &Communication Engineering Raj Kumar Goel Institute of Technology for Women, Ghaziabad

More information

Seasonal Pathloss Modeling at 900MHz for OMAN

Seasonal Pathloss Modeling at 900MHz for OMAN 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Seasonal Pathloss Modeling at 900MHz for OMAN Zia Nadir + Electrical

More information

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-109-115 www.ajer.org Research Paper Open Access Comparative Study of Path Loss Models for Wireless

More information

Unit 1: The wireless channel

Unit 1: The wireless channel Unit 1: The wireless channel Wireless communications course Ronal D. Montoya M. http://tableroalparque.weebly.com/radiocomunicaciones.html ronalmontoya5310@correo.itm.edu.co August 23, 2017 1/26 Outline

More information

Statistical Tuning of Hata Model for 3G Communication Networks at GHz in Porth Harcourt, Nigeria

Statistical Tuning of Hata Model for 3G Communication Networks at GHz in Porth Harcourt, Nigeria International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Statistical Tuning of Hata Model for 3G Communication Networks at 1.857 GHz in Porth Harcourt, Nigeria Nkwachukwu

More information

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz A.N. Jadhav 1, Sachin S. Kale 2 Department of Electronics & Telecommunication Engineering, D.Y. Patil College

More information

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss EELE 5414 Wireless Communications Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss In the last lecture Outline Diffraction. Scattering. Practical link budget design. Log-distance model Log-normal

More information

Performance Evaluation of Hata-Davidson Pathloss Model Tuning Approaches for a Suburban Area

Performance Evaluation of Hata-Davidson Pathloss Model Tuning Approaches for a Suburban Area American Journal of Software Engineering and Applications 2017; 6(3): 93-98 http://www.sciencepublishinggroup.com/j/ajsea doi: 10.11648/j.ajsea.20170603.16 ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

More information

Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia

Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Adjustment of Lee Path Loss Model for Suburban Area in Kuala Lumpur-Malaysia

More information

Tuning and Cross Validation of Blomquist-Ladell Model for Pathloss Prediction in the GSM 900 Mhz Frequency Band

Tuning and Cross Validation of Blomquist-Ladell Model for Pathloss Prediction in the GSM 900 Mhz Frequency Band International Journal of Theoretical and Applied Mathematics 2017; 3(2): 94-99 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20170302.18 Tuning and Cross Validation of Blomquist-Ladell

More information

Wireless Communications

Wireless Communications NETW701 Wireless Communications Dr. Wassim Alexan Winter 2018 Lecture 5 NETW705 Mobile Communication Networks Dr. Wassim Alexan Winter 2018 Lecture 5 Wassim Alexan 2 Outdoor Propagation Models Radio transmission

More information

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obot a, O. Simeon b, J. Afolayan c Department of Electrical/Electronics & Computer Engineering, University of

More information

Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria

Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria Computer Simulation of Path Loss Characterization of a Wireless Propagation Model in Kwara State, Nigeria K. O. Kadiri Department of Electronics and Electrical Engineering, Federal Polytechnic Offa, Kwara

More information

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area Nwaokoro A. A. Department of Electrical and Electronic Engineering Federal University of Technology Owerri, Nigeria Emerole

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Large-Scale Signal Propagation Models 1 Propagation Models Basic Model is to determine the major path loss effects This can be refined to take into account

More information

Path Loss Prediction in Wireless Communication System using Fuzzy Logic

Path Loss Prediction in Wireless Communication System using Fuzzy Logic Indian Journal of Science and Technology, Vol 7(5), 64 647, May 014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Path Loss Prediction in Wireless Communication System using Fuzzy Logic Sanu Mathew

More information

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION OF COST 231 MODEL FOR 3G WIRELESS COMMUNICATION SIGNAL IN SUBURBAN AREA OF PORT HARCOURT, NIGERIA Akujobi Ekeocha

More information

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DEVELOPMENT OF A PATHLOSS MODEL FOR 3G NETWORKS AT 1.857 GHz IN PORT HARCOURT NIGERIA Anyanwu Chinedu *, Chukwuchekwa Nkwachukwu

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 2 : Path Loss and Shadowing (Part Two) Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.2 Dr. Musbah Shaat 1 / 23 Outline 1 Empirical Path Loss Models

More information

Optimization of Empirical Pathloss Models of WiMax at 4.5 GHz Frequency Band

Optimization of Empirical Pathloss Models of WiMax at 4.5 GHz Frequency Band IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. II (Jan. 2014), PP 01-08 Optimization of Empirical Pathloss Models of

More information

Indoor Measurement And Propagation Prediction Of WLAN At

Indoor Measurement And Propagation Prediction Of WLAN At Indoor Measurement And Propagation Prediction Of WLAN At.4GHz Oguejiofor O. S, Aniedu A. N, Ejiofor H. C, Oechuwu G. N Department of Electronic and Computer Engineering, Nnamdi Aziiwe University, Awa Abstract

More information

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions Empirical Path Loss Models for 802.11n Wireless networks at 2.4Ghz in rural regions Jean Louis Fendji Kedieng Ebongue, Mafai Nelson, and Jean Michel Nlong University of Ngaoundéré, Computer Science, P.O.

More information

Comparison Between Measured and Predicted Path Loss for Mobile Communication in Malaysia

Comparison Between Measured and Predicted Path Loss for Mobile Communication in Malaysia World Applied Sciences Journal 21 (Mathematical Applications in Engineering): 123-128, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.21.mae.99936 Comparison Between Measured

More information

Near Ground Path Loss Prediction for UMTS 2100 MHz Frequency Band Over Propagating Over a Smooth-Earth Terrain

Near Ground Path Loss Prediction for UMTS 2100 MHz Frequency Band Over Propagating Over a Smooth-Earth Terrain International Journal of Theoretical and Applied Mathematics 2017; 3(2): 70-76 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20170302.14 Near Ground Path Loss Prediction for UMTS

More information

Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia

Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia Measurement of Radio Propagation Path Loss over the Sea for Wireless Multimedia Dong You Choi Division of Electronics & Information Engineering, Cheongju University, #36 Naedok-dong, Sangdang-gu, Cheongju-city

More information

Computer Engineering and Intelligent Systems ISSN (Paper) ISSN (Online) Vol.4, No.9, 2013

Computer Engineering and Intelligent Systems ISSN (Paper) ISSN (Online) Vol.4, No.9, 2013 Computer Analysis of the COST 231 Hata Model and Least Squares Approximation for Path Loss Estimation at 900MHz on the Mountain Terrains of the Jos-Plateau, Nigeria Abstract Abraham Deme 1,2*, Danjuma

More information

Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria

Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria Hata-Okumura Model Computer Analysis for Path Loss Determination at 900MHz for Maiduguri, Nigeria Abraham Deme 1,2*, Danjuma Dajab 2, Buba Bajoga 2, Mohammed Mu azu 2, Davou Choji 3 1. ICT Directorate,

More information

I. INTRODUCTION II. COVERAGE AREA

I. INTRODUCTION II. COVERAGE AREA Analysis of Large Scale Propagation Models & RF Coverage Estimation Purnima K. Sharma Doctoral candidate UTU, Dehradun (India) R.K.Singh Professor (OSD) UTU, Dehradun (India) Abstract The main task in

More information

Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms

Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms Frontiers in Sensors (FS) Volume 4, 2016 doi: 10.14355/fs.2016.04.004 www.seipub.org/fs Propagation Path Loss Measurements for Wireless Sensor Networks in Sand and Dust Storms Hana Mujlid*, Ivica Kostanic

More information

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 6464(Print),

More information

Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication

Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication American Journal of Applied Sciences Original Research Paper Performance Evaluation of Channel Propagation Models and Developed Model for Mobile Communication 1,2 Yahia Zakaria and 1 Lubomir Ivanek 1 Department

More information

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 530MHz Band in Sub- Saharan Africa Awal Halifa Dep t of Electrical Engineering Kwame Nkrumah Univ. of Science and Technology

More information

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue., February 014,

More information

COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE

COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE Page 1 of 32 COMPARISON OF RADIO PROPAGATION CHARACTERISTICS AT 700 AND 2,500 MHz PERTAINING TO MACROCELLULAR COVERAGE Communications Research Centre Canada Ottawa, April 2011 Prepared for: Bell Canada

More information

Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria

Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria Development of Propagation Path Loss Prediction Model for Mobile Communications Network Deployment in Osogbo, Nigeria Hammed Lasisi, Yinusa A. Adediran, and Anjolaoluwa A. Ayodele Abstract Path loss, a

More information

Lecture 2: Wireless Propagation Channels

Lecture 2: Wireless Propagation Channels Lecture 2: Wireless Propagation Channels RezaMohammadkhani, UniversityofKurdistan WirelessCommunications,2015 eng.uok.ac.ir/mohammadkhani 1 2 Outline Wireless Propagation Multipath Propagation Large scale

More information

AN021: RF MODULES RANGE CALCULATIONS AND TEST

AN021: RF MODULES RANGE CALCULATIONS AND TEST AN021: RF MODULES RANGE CALCULATIONS AND TEST We Make Embedded Wireless Easy to Use RF Modules Range Calculation and Test By T.A.Lunder and P.M.Evjen Keywords Definition of Link Budget, Link Margin, Antenna

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PATH LOSS PROPAGATION MODEL PREDICTION FOR GSM MOBILE NETWORK PLANNING IN KADUNA TOWN Dominic S. Nyitamen*, Musa Ahmed, Tonga

More information

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling Progress In Electromagnetics Research Letters, Vol. 50, 91 98, 2014 An Investigation on the Use of ITU-R P.1411-7 in IEEE 802.11N Path Loss Modelling Thiagarajah Siva Priya, Shamini P. N. Pillay *, Manogaran

More information

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Okorogu V.N Onyishi D.U Nwalozie G.C Utebor N.N Department of Electronic & Computer Department

More information

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss Practical Link Budget Design using Path Loss Models Most radio propagation models are derived using

More information

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Wireless Pers Commun (2013) 69:793 803 DOI 10.1007/s11277-012-0612-8 Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Yazan A. Alqudah Published online: 8 April 2012

More information

Coverage Planning for LTE system Case Study

Coverage Planning for LTE system Case Study Coverage Planning for LTE system Case Study Amer M. Daeri 1, Amer R. Zerek 2 and Mohammed M. Efeturi 3 1 Zawia University. Faculty of Engineering, Computer Engineering Department Zawia Libya Email: amer.daeri@

More information

Experimental Analysis of Cellular Outdoor Propagation at 1800 MHz over Dense Urban Regions of Ghaziabad

Experimental Analysis of Cellular Outdoor Propagation at 1800 MHz over Dense Urban Regions of Ghaziabad Experimental Analysis of Cellular Outdoor Propagation at 1 MHz over Dense Urban Regions of Ghaziabad Ranjeeta Verma #1, Garima Saini #2, Chhaya Dalela *3 1, 2 Electronics and Communication Engineering,

More information

Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression

Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression SUPACHAI PHAIBOON, PISIT PHOKHARATKUL Faculty of Engineering,

More information

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications.

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications. IJEETC www.ijeetc.com InternationalJournalof ElectricalandElectronicEngineering& Telecommunications editorijeetc@gmail.com oreditor@ijeetc.com Int. J. Elec&Electr.Eng&Telecoms. 2015 Ranjeeta Verma and

More information

Volume 4, Number 2, 2018 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 4, Number 2, 2018 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume 4, Number 2, 2018 Pages 114-128 Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619 Path Loss Characterization of Long Term Evolution Network for Lagos,

More information

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing EE6604 Personal & Mobile Communications Week 7 Path Loss Models Shadowing 1 Okumura-Hata Model L p = A+Blog 10 (d) A+Blog 10 (d) C A+Blog 10 (d) D for urban area for suburban area for open area where A

More information

Optimizing the Existing Indoor Propagation Prediction Models

Optimizing the Existing Indoor Propagation Prediction Models 2012 International Conference on Wireless Networks (ICWN 2012) IPCSIT vol. 49 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V49.37 Optimizing the Existing Indoor Propagation Prediction

More information

Comparative Analysis of Path Loss Propagation Models in Radio Communication

Comparative Analysis of Path Loss Propagation Models in Radio Communication Comparative Analysis of Path Loss Propagation Models in Radio Communication Kiran J. Parmar 1, Dr. Vishal D. Nimavat 2 M.E., Research Scholar, Department of Electronics, V.V.P. Engineering College, Rajkot,

More information

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P Path Loss I Path loss L P relates the received signal power P r to the transmitted signal power P t : P r = P t Gr G t L P, where G t and G r are antenna gains. I Path loss is very important for cell and

More information

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment J. Turkka, M. Renfors Abstract This paper shows results of narrowband path loss measurements in a typical urban and suburban

More information

PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY

PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY PERFORMANCE ANALYSIS OF INDOOR WLAN MOBILITY MOHD. DANI BABA, MOHAMAD IBRAHIM, ABDULMUKTI AHMAD Faculty of Electrical Engineering Universiti Teknologi MARA 445 Shah Alam, Selangor MALAYSIA Abstract :-

More information

COMPARATIVE STUDY OF EMPIRICAL PATH LOSS MODELS OF UHF BAND, CASE STUDY OF OSOGBO TELEVISION STATION, ILE IFE, SOUTH-WEST NIGERIA

COMPARATIVE STUDY OF EMPIRICAL PATH LOSS MODELS OF UHF BAND, CASE STUDY OF OSOGBO TELEVISION STATION, ILE IFE, SOUTH-WEST NIGERIA 1. L.O. AFOLABI, 2. S.B. BAKARE, 3. E.T. OLAWOLE, 4. J.O. AZANUBI COMPARATIVE STUDY OF EMPIRICAL PATH LOSS MODELS OF UHF BAND, CASE STUDY OF OSOGBO TELEVISION STATION, ILE IFE, SOUTH-WEST NIGERIA 1,2,4.

More information

Radio Propagation Modelling

Radio Propagation Modelling Radio Propagation Modelling Ian Wassell and Yan Wu University of Cambridge Computer Laboratory Why is it needed? To predict coverage between nodes in a wireless network Path loss is different from environment

More information

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory 1 Table of Contents Estimating Path Loss Exponent and Application with Log Normal Shadowing...2 Abstract...3 1Path Loss Models...4 1.1Free Space Path Loss Model...4 1.1.1Free Space Path Loss Equation:...4

More information

Comparative Evaluation of the Pathloss Prediction Performance Hata-Okumura Pathloss Model for Urban, Suburban and Rural Areas

Comparative Evaluation of the Pathloss Prediction Performance Hata-Okumura Pathloss Model for Urban, Suburban and Rural Areas International Journal of Systems Science and Applied Mathematics 2017; 2(1): 42-50 http://www.sciencepublishinggroup.com/j/ijssam doi: 10.11648/j.ijssam.20170201.16 Comparative Evaluation of the Pathloss

More information

Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means

Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means Optimization of Base Station Location in 3G Networks using Mads and Fuzzy C-means A. O. Onim 1* P. K. Kihato 2 S. Musyoki 3 1. Jomo Kenyatta University of Agriculture and Technology, Department of Telecommunication

More information

ANALYSIS OF A DEVELOPED BUILDING PENETRATION PATH LOSS MODEL FOR GSM WIRELESS ACCESS

ANALYSIS OF A DEVELOPED BUILDING PENETRATION PATH LOSS MODEL FOR GSM WIRELESS ACCESS ANALYSIS OF A DEVELOPED BUILDING PENETRATION PATH LOSS MODEL FOR GSM WIRELESS ACCESS Elechi, P. Department of Electrical Engineering, Rivers State University of Science and Technology, Port Harcourt, Nigeria.

More information

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro Link Budget Calculation Ermanno Pietrosemoli Marco Zennaro Goals To be able to calculate how far we can go with the equipment we have To understand why we need high masts for long links To learn about

More information

Application of Artificial Neural Network For Path Loss Prediction In Urban Macrocellular Environment

Application of Artificial Neural Network For Path Loss Prediction In Urban Macrocellular Environment American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-02, pp-270-275 www.ajer.org Research Paper Open Access Application of Artificial Neural Network For

More information

CSP Algorithm In Predicting And Optimizing The Path Loss Of Wireless Empirical Propagation Models

CSP Algorithm In Predicting And Optimizing The Path Loss Of Wireless Empirical Propagation Models CSP Algorithm In Predicting And Optimizing The Path Loss Of Wireless Empirical Propagation Models Nagendra sah and Amit Kumar Abstract Constraint satisfaction programming (CSP) is an emergent software

More information

ISSN: Guizhen * et al., 6(11): November, 2017] Impact Factor: 4.116

ISSN: Guizhen * et al., 6(11): November, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION MODEL OF WAVE PROPAGATION IN COMPLEX ENVIRONMENTS Cao Zhi, Lu Guizhen* *Communication University of China DOI: 10.581/zenodo.104066

More information

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Bulg. J. Phys. 44 (2017) 145 154 Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Ph. Atanasov, Zh. Kiss ovski Faculty of Physics, University of Sofia, 5 James

More information

LTE RF Planning Training LTE RF Planning, Design, Optimization Training

LTE RF Planning Training LTE RF Planning, Design, Optimization Training LTE RF Planning Training LTE RF Planning, Design, Optimization Training Why should you choose LTE RF Planning Training? LTE RF Planning Training is focused on carrying out RF planning and Design and capacity

More information

PATH LOSS PREDICTION FOR LOW-RISE BUILDINGS WITH IMAGE CLASSIFICATION ON 2-D AERIAL PHOTOGRAPHS

PATH LOSS PREDICTION FOR LOW-RISE BUILDINGS WITH IMAGE CLASSIFICATION ON 2-D AERIAL PHOTOGRAPHS Progress In Electromagnetics Research, PIER 95, 135 152, 2009 PATH LOSS PREDICTION FOR LOW-RISE BUILDINGS WITH IMAGE CLASSIFICATION ON 2-D AERIAL PHOTOGRAPHS S. Phaiboon Electrical Engineering Department

More information

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group 1 Radio Path Loss and Penetration Loss Measurements in and around Homes and Trees at 5.85 GHz Greg Durgin, Theodore S. Rappaport, Hao Xu Mobile and Portable Radio Research Group Bradley Department of Electrical

More information

ITRAINONLINE MMTK RADIO LINK CALCULATION HANDOUT

ITRAINONLINE MMTK RADIO LINK CALCULATION HANDOUT ITRAINONLINE MMTK RADIO LINK CALCULATION HANDOUT Developed by: Sebastian Buettrich, wire.less.dk Edited by: Alberto Escudero Pascual, IT +46 Table of Contents 1. About this document...1 1.1 Copyright information...2

More information

Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications

Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications 374 PIERS Proceedings, Stockholm, Sweden, Aug. 12 15, 2013 Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications H. A. Rahim 1, F. Malek 1, N. Hisham 1, and

More information

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application Prof. Ms. S. M. Patil Prof. A. R. Nigvekar Prof. P B. Ghewari Assistant Professor Associate Professor Associate professor

More information

Path Loss Models and Link Budget

Path Loss Models and Link Budget Path Loss Models and Link Budget A universal path loss model P r dbm = P t dbm + db Gains db Losses Gains: the antenna gains compared to isotropic antennas Transmitter antenna gain Receiver antenna gain

More information

Path Loss at the Exact Location of TV inside Residences using Digital Terrestrial Television Signal at 677 MHz

Path Loss at the Exact Location of TV inside Residences using Digital Terrestrial Television Signal at 677 MHz Path Loss at the Exact Location of TV inside Residences using Digital Terrestrial Television Signal at 677 MHz Jennifer C. Dela Cruz, Felicito S. Caluyo Abstract This paper presents the results of in propagation

More information

Implementation of Path Loss Model in Wireless Network Anupa Saini 1 MsVarsha Chauhan 2

Implementation of Path Loss Model in Wireless Network Anupa Saini 1 MsVarsha Chauhan 2 International Journal for Research in Technological Studies Vol. 5, Issue 7, June 2018 ISSN (online): 2348-1439 Anupa Saini 1 MsVarsha Chauhan 2 1,2 Department of Computer Science &Engineering 1,2 Shri

More information

The Wireless Communication Channel. Objectives

The Wireless Communication Channel. Objectives The Wireless Communication Channel muse Objectives Understand fundamentals associated with free space propagation. Define key sources of propagation effects both at the large and small scales Understand

More information

Assessment and Modeling of GSM Signal Propagation in Uyo, Nigeria

Assessment and Modeling of GSM Signal Propagation in Uyo, Nigeria Assessment and Modeling of GSM Signal Propagation in Uyo, Nigeria Sunny Orike, Promise Elechi, and Iboro Asuquo Ekanem Abstract- High quality of service is a paramount concern in wireless networks. One

More information

Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on

Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on Rachel Cardell- Oliver School of Computer Science & So8ware Engineering semester- 2 2018 MoBvaBon (for CS students to study radio propagabon)

More information

A GIS BASED EARTHQUAKE LOSSES ASSESSMENT AND EMERGENCY RESPONSE SYSTEM FOR DAQING OIL FIELD

A GIS BASED EARTHQUAKE LOSSES ASSESSMENT AND EMERGENCY RESPONSE SYSTEM FOR DAQING OIL FIELD A GIS BASED EARTHQUAKE LOSSES ASSESSMENT AND EMERGENCY RESPONSE SYSTEM FOR DAQING OIL FIELD Li Li XIE, Xiaxin TAO, Ruizhi WEN, Zhengtao CUI 4 And Aiping TANG 5 SUMMARY The basic idea, design, structure

More information

Real-Time Path Loss Modelling for a More Robust Wireless Performance

Real-Time Path Loss Modelling for a More Robust Wireless Performance Real-Time Path Loss Modelling for a More Robust Wireless Performance Q. Braet 1, D. Plets 1, W. Joseph 1, L. Martens 1 1 Information Technology Department, Ghent University/iMinds Gaston Crommenlaan 8,

More information

Design and Modeling of Propagation Models for WiMAX Communication System at 3.7GHz & 4.2GHz

Design and Modeling of Propagation Models for WiMAX Communication System at 3.7GHz & 4.2GHz Design and Modeling of Propagation Models for WiMAX Communication System at 3.7GHz & 4.2GHz B.Chandran Mahesh 1, Dr. B. Prahakara Rao 2 1 Malineni Perumallu College of Engineering, Affiliated to JNTUK,

More information

What You Need to Know about the Spatial Information Function. Role of a SIF in NG9-1-1

What You Need to Know about the Spatial Information Function. Role of a SIF in NG9-1-1 What You Need to Know about the Spatial Information Function Table of Contents Preface... 2 Introduction... 3 What is GIS?... 4 What is the Role of GIS in 9-1-1 and NG9-1-1?... 5 Tactical Mapping... 5

More information

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements Post-print of: Zhang, J., Salmi, J. and Lohan, E-S. Analysis of kurtosis-based LOS/NLOS identification using indoor MIMMO channel measurement in IEEE transactions on vehicular technology, vol. 62, no.

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Link Budgeting. Lecture 7. Today: (1) Link Budgeting

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Link Budgeting. Lecture 7. Today: (1) Link Budgeting ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall 2011 Lecture 7 Today: (1) Link Budgeting Reading Today: Haykin/Moher 2.9-2.10 (WebCT). Thu: Rap 4.7, 4.8. 6325 note: 6325-only assignment

More information

A Path Loss Calculation Scheme for Highway ETC Charging Signal Propagation

A Path Loss Calculation Scheme for Highway ETC Charging Signal Propagation A Path Loss Calculation Scheme for Highway ETC Charging Signal Propagation Chunxiao LI, Dawei HE, Zhenghua ZHANG College of Information Engineering Yangzhou University, Jiangsu Province No.196, West Huayang

More information

Wireless communication for Smart Buildings Kortrijk, 07/04/2017

Wireless communication for Smart Buildings Kortrijk, 07/04/2017 Wireless communication for Smart Buildings Kortrijk, 07/04/2017 Smart Buildings: What for? Access control Smart HVAC management Smart light management Indoor location Room management (occupancy / reservation

More information

GIS - Introduction and Sample Uses

GIS - Introduction and Sample Uses PDHonline Course L145 (5 PDH) GIS - Introduction and Sample Uses Instructor: Jonathan Terry, P.L.S. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

FLOOD HAZARD AND RISK MANAGEMENT UTILIZING HYDRAULIC MODELING AND GIS TECHNOLOGIES IN URBAN ENVIRONMENT

FLOOD HAZARD AND RISK MANAGEMENT UTILIZING HYDRAULIC MODELING AND GIS TECHNOLOGIES IN URBAN ENVIRONMENT Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 FLOOD HAZARD AND RISK MANAGEMENT UTILIZING HYDRAULIC MODELING AND GIS TECHNOLOGIES

More information

COMPARATIVE ANALYSIS OF PATH LOSS ATTENUATION AT OUTDOOR FOR 1.8GHZ, 2.1GHZ IN URBAN ENVIRONMENT

COMPARATIVE ANALYSIS OF PATH LOSS ATTENUATION AT OUTDOOR FOR 1.8GHZ, 2.1GHZ IN URBAN ENVIRONMENT COMPARATIVE ANALYSIS OF PATH LOSS ATTENUATION AT OUTDOOR FOR 1.8GHZ, 2.1GHZ IN URBAN ENVIRONMENT N.V.K.RAMESH, 1 K. SARAT KUMAR, 2 D.VENKATA RATNAM,, 3 DR. MD. ALI HUSSAIN 4 Y.V.SAI JASWANTH 5 P.SARAT

More information

GIS - Introduction and Sample Uses

GIS - Introduction and Sample Uses PDHonline Course L145 (5 PDH) GIS - Introduction and Sample Uses Instructor: Jonathan Terry, P.L.S. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India)

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Enhance Study on Indoor RF Models: based on Two Residential Areas Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Abstract Indoor Propagation modeling is demanded for

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: [Considerations of frequency resources for fast moving mobile backhaul] Date Submitted: [7 JAN, 2015] Source: [Minsoo

More information

CHARACTERIZATION OF PROPAGATION PATH LOSS AT VHF/UHF BANDS FOR ILORIN CITY, NIGERIA

CHARACTERIZATION OF PROPAGATION PATH LOSS AT VHF/UHF BANDS FOR ILORIN CITY, NIGERIA Nigerian Journal of Technology (NIJOTECH) Vol. 32. No. 2. July 2013, pp. 253-265 Copyright Faculty of Engineering, University of Nigeria, Nsukka, ISSN 1115-8443 www.nijotech.com CHARACTERIZATION OF PROPAGATION

More information

Okumura-Hata Propagation Model Tuning Through Composite Function of Prediction Residual

Okumura-Hata Propagation Model Tuning Through Composite Function of Prediction Residual Mathematical and Software Engineering, Vol. 2, No. 2 (2016), 93-104. Varεpsilon Ltd, http://varepsilon.com Okumura-Hata Propagation Model Tuning Through Composite Function of Prediction Residual Kufre

More information

CDMA2000 Network Planning. cdma university. Student Guide X3

CDMA2000 Network Planning. cdma university. Student Guide X3 cdma university CDMA2000 CDMA2000 Student Guide Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law prohibited. Material Use Restrictions These written

More information

37th Telecommunications Policy Research Conference, Sept. 2009

37th Telecommunications Policy Research Conference, Sept. 2009 37th Telecommunications Policy Research Conference, Sept. 2009 The Business Case of a Nationwide Wireless Network that Serves both Public Safety and Commercial Subscribers * Ryan Hallahan and Jon M. Peha

More information

arxiv: v2 [cs.it] 22 Feb 2016

arxiv: v2 [cs.it] 22 Feb 2016 G. R. MacCartney, Jr., S. Deng, and T. S. Rappaport, Indoor Office Plan Environment and Layout-Based MmWave Path Loss Models for 28 GHz and 73 GHz, to be published in 2016 IEEE 83rd Vehicular Technology

More information

S Sw ARUP, V KUMAR & A AHMAD Himalayan Radio Propagation Unit, Dehra Dun Received 5 April 1975; revised received 4 November 1975

S Sw ARUP, V KUMAR & A AHMAD Himalayan Radio Propagation Unit, Dehra Dun Received 5 April 1975; revised received 4 November 1975 Indian Journal of Radio & Space Physics Vol. 5, June 1976, pp. 188-192 Tropospheric Radiowave Propagation over Diffraction Paths* S Sw ARUP, V KUMAR & A AHMAD Himalayan Radio Propagation Unit, Dehra Dun

More information

Westfield Boulevard Alternative

Westfield Boulevard Alternative Westfield Boulevard Alternative Supplemental Concept-Level Economic Analysis 1 - Introduction and Alternative Description This document presents results of a concept-level 1 incremental analysis of the

More information