EE Large Scale Path Loss Log Normal Shadowing. The Flat Fading Channel

Size: px
Start display at page:

Download "EE Large Scale Path Loss Log Normal Shadowing. The Flat Fading Channel"

Transcription

1 EE447- Large Scale Path Loss Log Normal Shadowing The Flat Fading Channel The channel functions are random processes and hard to characterize We therefore use the channel correlation functions Now assume: The channel impulse response is a random variable We describe the channel at any time t using a pdf Consider a flat fading channel where the delay spread is small compared with the symbol duration.

2 The Flat Fading Channel FLAT FADING CHANNEL The delay spread does not effect the received signal The channel delay function is reduced to the mean delay τ δt-τ The channel ehibits a time-varying gain gt gt has a short term fading component Zt due to multipath. It is modeled statistically by a Rayleigh, Rician, or Nakagami disitribution and is independent of the distance between the transmitter and the receiver. gt also has a long-term path loss component that is the mean of gt 3 Large scale path loss 4

3 The Flat Fading Channel The dashed line is the mean m path loss. The variation about the mean is described by the Normal Distribution 5 Plane Earth Loss*-again Antennas and Propagation for Wireless Communication Systems by Saunders 6 3

4 Log-Distance PL with Shadowing mean path loss Lp d d d 0 k, for d d d Lp Lp d0 + 0kLog0 db, for d d d0 d 0 km for macrocells,m indoors 0 0 Typical Path Loss Eponents for Different Environments Environment Path loss Eponent, κ free space urban cellular radio.7 to 3.5 shadowed urban cellular radio 3 to 5 in building with LOS.6 to.8 obstructed in building 4 to 6 7 Log-Distance PL with Shadowing Statistical component to loss The total path loss L p d with shadowing is then: Statistical path loss component 8 4

5 Log-Distance PL with Shadowing The total path loss L p d with shadowing is then: L d L + ε ε L p db p is the statistical variation of the path loss p p L d 0 db db + 0kLog 0 d d 0 is the mean pathloss L d L p p ma for the TR link to perform correctly note that for L p, d 0 and k may be adjusted to model Friss loss, plane earth loss, or any of the other models for mean path loss at a given frequency. 9 Log-Distance PL with Shadowing Shadowing: When the line of site path is blocked by an obstruction such as a building or a hill that is much larger than the λ of the signal Long term fading is then a combination of the log-distance path loss and the log-normal shadowing -that is statistical. Let εdb be a zero-mean Gaussian distributed random variable d db with a standard deviation σ ε in db. The pdf of εdb is given as: 0/ ln 0 σε fε e πσε A variable transform of will give ε in a linear scale and is is sad to follow a log-normal distribution with pdf: f y ε 0log σ 0/ ln 0 ε e π yσ ε 0 y 0 5

6 Log Normal Shadowing* *Rappaport Log-Distance PL with Shadowing The statistical term is a log-normal distribution This distribution is fully defined by the mean, m0, and the standard deviation, σ ε in db What we want to determine is the Pε db >ε dbma f y ε 0log σ 0/ ln 0 ε e π yσ ε 0 y σ ε is approimately 8 to0 db outdoors, and 4 to 6 db in a typical room. refer to the class discussion for the calculation of σ ε from field data. 6

7 EE447 Propagation Small Scale Multipath Fading 3 Review: The Normal, Gaussian, Distribution PDF : f CDF : Φ Φ e πσ P X t m σ normalized, m 0, σ : X X X f X e π t dt dt 4 7

8 8 5 Review: The Normal Distribution < Φ > e Q or e Q Q Q Q Q Q X P X π Bounds : Upper The Q-function as the area under the tail of the Normal pdf 6 Review: The Normal or Gaussian Distribution > > σ π π m Q X P erf erfc Q Q d e erfc d e Q X P Q calulator function check your is the error where erf function: complementary error

9 The Log Normal Distribution in path loss Given a Normal Distribution with meanm and standard deviation σ : m P X > Q σ m is the mean path loss as shown in previous slides σ ε is approimately 8 to0 db outdoors, and 4 to 6 db in a typical room. refer to the class discussion for the calculation of σ ε from field data. 7 Review - The Q function 8 9

10 Log-Normal PL with Shadowing-Eample Eample: It has been determined that a link will operate as long as the path lossdoes not eceed the mean path loss by more than 5 db. The standard deviation of the path loss variation has been determined to σ ε 5dB. f ε Ε What is the probability that the path loss will eceed Lmean+5 db? P L p > Lpma What is the probability that the path loss will eceed Lmean+0 db? Lp Lp ma L p + ε 9 Log-Distance PL with Shadowing-Eample Eample: It has been determined that a link will operate as long as the path loss does not eceed the mean path loss by more than 5 db. The standard deviation of the path loss variation has been determined to σ ε 5dB. What is the probability that the path loss will eceed Lp+5 db? What is the probability that the path loss will eceed Lp+0 db? P ε > 5dB ε ε 5 P ε > 5 Q Q 5 σ ε σ ε P ε > 5 Q from the Q table given σ 5dB is Q % ε P ε > 0dB given σ 5dB is ε ε 0 P ε > 0 Q Q 5 σε σ ε P ε > 0 Q from the Q table Q % This is why links are often designed so that the mean received power is about 0 db above the minimum power required for proper operation 0 ε 0

11 Multipath Propagation 3 Multipath Propagation 4

12 Multipath Propagation Amplitude and Phase of the Received Signal Vary 5 Multipath Propagation 6

13 Time-Variant Transfer Function Impulse Response Phase may change more rapidly than Amplitude 7 Time-Variant Transfer Function Impulse Response 8 3

14 Time-Variant Transfer Function Impulse Response 9 Small-Scale Multipath Fading 30 4

15 Small-Scale Multipath Fading Given a channel with N scatterers, each with gain α n t and delay τ n t Consider a digital transmission with carrier f c and a symbol interval >> Δτ the delay spread 3 Small-Scale Multipath Fading Let Zt Z c t jz s t 3 5

16 .5 Rayleigh Fading - NLOS 33 Rayleigh Fading - NLOS 34 6

17 Rician LOS Propagation 35 Rician LOS Propagation 36 7

18 Small-Scale Multipath Fading Rayleigh 37 EE447 Propagation LCR and AFD 38 8

19 Other Statistics The pdfs of the amplitude distortion f α and the phase distortion f θ eplain how the signal will behave at each instant in time. They do not tell us how they change with time. We need to know how fast the channel fading changes with time. LCR- The Level Crossing Rate AFD- The Average Fade Duration LCR and AFD describe the frequency of fading 39 LCR- Level Crossing Rate R is the chosen threshold The observation time is [0,T] The number of positive crossings is M T 5 N R M T /T # per second 40 9

20 LCR 4 LCR 4 0

21 LCR 43 LCR 44

22 LCR ma The maimum LCR is at ρ -3 db because the pdf of α is maimized at threshold 45 AFD- Average Fade Duration 46

23 AFD- Average Fade Duration 47 AFD- Average Fade Duration 48 3

24 AFD- Average Fade Duration χ R 49 AFD- Average Fade Duration 50 4

Indoor Propagation Models

Indoor Propagation Models Indoor Propagation Models Outdoor models are not accurate for indoor scenarios. Examples of indoor scenario: home, shopping mall, office building, factory. Ceiling structure, walls, furniture and people

More information

White Paper: Comparison of Narrowband and Ultra Wideband Channels. January 2008

White Paper: Comparison of Narrowband and Ultra Wideband Channels. January 2008 White Paper: Comparison of Narrowband and Ultra Wideband Channels January 28 DOCUMENT APPROVAL: Author signature: Satisfied that this document is fit for purpose, contains sufficient and correct detail

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Large-Scale Signal Propagation Models 1 Propagation Models Basic Model is to determine the major path loss effects This can be refined to take into account

More information

Probability distributions relevant to radiowave propagation modelling

Probability distributions relevant to radiowave propagation modelling Rec. ITU-R P.57 RECOMMENDATION ITU-R P.57 PROBABILITY DISTRIBUTIONS RELEVANT TO RADIOWAVE PROPAGATION MODELLING (994) Rec. ITU-R P.57 The ITU Radiocommunication Assembly, considering a) that the propagation

More information

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (11) Mobile Radio Propagation: Large-Scale Path Loss Practical Link Budget Design using Path Loss Models Most radio propagation models are derived using

More information

The Impact of Fading on the Outage Probability in Cognitive Radio Networks

The Impact of Fading on the Outage Probability in Cognitive Radio Networks 1 The Impact of Fading on the Outage obability in Cognitive Radio Networks Yaobin Wen, Sergey Loyka and Abbas Yongacoglu Abstract This paper analyzes the outage probability in cognitive radio networks,

More information

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing

EE6604 Personal & Mobile Communications. Week 7. Path Loss Models. Shadowing EE6604 Personal & Mobile Communications Week 7 Path Loss Models Shadowing 1 Okumura-Hata Model L p = A+Blog 10 (d) A+Blog 10 (d) C A+Blog 10 (d) D for urban area for suburban area for open area where A

More information

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss

EELE 5414 Wireless Communications. Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss EELE 5414 Wireless Communications Chapter 4: Mobile Radio Propagation: Large-Scale Path Loss In the last lecture Outline Diffraction. Scattering. Practical link budget design. Log-distance model Log-normal

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 2 : Path Loss and Shadowing (Part Two) Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.2 Dr. Musbah Shaat 1 / 23 Outline 1 Empirical Path Loss Models

More information

Wireless Communications

Wireless Communications NETW701 Wireless Communications Dr. Wassim Alexan Winter 2018 Lecture 5 NETW705 Mobile Communication Networks Dr. Wassim Alexan Winter 2018 Lecture 5 Wassim Alexan 2 Outdoor Propagation Models Radio transmission

More information

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory 1 Table of Contents Estimating Path Loss Exponent and Application with Log Normal Shadowing...2 Abstract...3 1Path Loss Models...4 1.1Free Space Path Loss Model...4 1.1.1Free Space Path Loss Equation:...4

More information

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P

Pathloss and Link Budget From Physical Propagation to Multi-Path Fading Statistical Characterization of Channels. P r = P t Gr G t L P Path Loss I Path loss L P relates the received signal power P r to the transmitted signal power P t : P r = P t Gr G t L P, where G t and G r are antenna gains. I Path loss is very important for cell and

More information

Unit 1: The wireless channel

Unit 1: The wireless channel Unit 1: The wireless channel Wireless communications course Ronal D. Montoya M. http://tableroalparque.weebly.com/radiocomunicaciones.html ronalmontoya5310@correo.itm.edu.co August 23, 2017 1/26 Outline

More information

Radio Propagation Modelling

Radio Propagation Modelling Radio Propagation Modelling Ian Wassell and Yan Wu University of Cambridge Computer Laboratory Why is it needed? To predict coverage between nodes in a wireless network Path loss is different from environment

More information

Continuous Distributions

Continuous Distributions Quantitative Methods 2013 Continuous Distributions 1 The most important probability distribution in statistics is the normal distribution. Carl Friedrich Gauss (1777 1855) Normal curve A normal distribution

More information

EE6604 Personal & Mobile Communications. Week 9. Co-Channel Interference

EE6604 Personal & Mobile Communications. Week 9. Co-Channel Interference EE6604 Personal & Mobile Communications Week 9 Co-Channel Interference 1 Co-channel interference on the forward channel d 1 d 6 d 2 mobile subscriber d 0 d 5 d 3 d 4 The mobile station is being served

More information

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA

PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA PROPAGATION PATH LOSS IN URBAN AND SUBURBAN AREA Divyanshi Singh 1, Dimple 2 UG Student 1,2, Department of Electronics &Communication Engineering Raj Kumar Goel Institute of Technology for Women, Ghaziabad

More information

The Wireless Communication Channel. Objectives

The Wireless Communication Channel. Objectives The Wireless Communication Channel muse Objectives Understand fundamentals associated with free space propagation. Define key sources of propagation effects both at the large and small scales Understand

More information

Indoor Measurement And Propagation Prediction Of WLAN At

Indoor Measurement And Propagation Prediction Of WLAN At Indoor Measurement And Propagation Prediction Of WLAN At.4GHz Oguejiofor O. S, Aniedu A. N, Ejiofor H. C, Oechuwu G. N Department of Electronic and Computer Engineering, Nnamdi Aziiwe University, Awa Abstract

More information

AN021: RF MODULES RANGE CALCULATIONS AND TEST

AN021: RF MODULES RANGE CALCULATIONS AND TEST AN021: RF MODULES RANGE CALCULATIONS AND TEST We Make Embedded Wireless Easy to Use RF Modules Range Calculation and Test By T.A.Lunder and P.M.Evjen Keywords Definition of Link Budget, Link Margin, Antenna

More information

2.1 Properties of PDFs

2.1 Properties of PDFs 2.1 Properties of PDFs mode median epectation values moments mean variance skewness kurtosis 2.1: 1/13 Mode The mode is the most probable outcome. It is often given the symbol, µ ma. For a continuous random

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer The Distribution of Path Losses for Uniformly Distributed Nodes in a Circle Citation for published version: Bharucha, Z & Haas, H 2008, 'The Distribution of Path Losses for

More information

Lecture Stat 302 Introduction to Probability - Slides 15

Lecture Stat 302 Introduction to Probability - Slides 15 Lecture Stat 30 Introduction to Probability - Slides 15 AD March 010 AD () March 010 1 / 18 Continuous Random Variable Let X a (real-valued) continuous r.v.. It is characterized by its pdf f : R! [0, )

More information

Path Loss Models and Link Budget

Path Loss Models and Link Budget Path Loss Models and Link Budget A universal path loss model P r dbm = P t dbm + db Gains db Losses Gains: the antenna gains compared to isotropic antennas Transmitter antenna gain Receiver antenna gain

More information

Path Loss Prediction in Wireless Communication System using Fuzzy Logic

Path Loss Prediction in Wireless Communication System using Fuzzy Logic Indian Journal of Science and Technology, Vol 7(5), 64 647, May 014 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Path Loss Prediction in Wireless Communication System using Fuzzy Logic Sanu Mathew

More information

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz

Performance of Path Loss Model in 4G Wimax Wireless Communication System in 2390 MHz 2011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Performance of Path Loss Model in 4G Wimax Wireless Communication System

More information

Review of Comparative Analysis of Empirical Propagation model for WiMAX

Review of Comparative Analysis of Empirical Propagation model for WiMAX Review of Comparative Analysis of Empirical Propagation model for WiMAX Sachin S. Kale 1 A.N. Jadhav 2 Abstract The propagation models for path loss may give different results if they are used in different

More information

Seasonal Pathloss Modeling at 900MHz for OMAN

Seasonal Pathloss Modeling at 900MHz for OMAN 2011 International Conference on Telecommunication Technology and Applications Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Seasonal Pathloss Modeling at 900MHz for OMAN Zia Nadir + Electrical

More information

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling

An Investigation on the Use of ITU-R P in IEEE N Path Loss Modelling Progress In Electromagnetics Research Letters, Vol. 50, 91 98, 2014 An Investigation on the Use of ITU-R P.1411-7 in IEEE 802.11N Path Loss Modelling Thiagarajah Siva Priya, Shamini P. N. Pillay *, Manogaran

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Link Budgeting. Lecture 7. Today: (1) Link Budgeting

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Link Budgeting. Lecture 7. Today: (1) Link Budgeting ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall 2011 Lecture 7 Today: (1) Link Budgeting Reading Today: Haykin/Moher 2.9-2.10 (WebCT). Thu: Rap 4.7, 4.8. 6325 note: 6325-only assignment

More information

A Model of Coverage Probability under Shadow Fading

A Model of Coverage Probability under Shadow Fading A Model of Coverage Probability under Shadow Fading Kenneth L. Clarkson John D. Hobby August 25, 23 Abstract We give a simple analytic model of coverage probability for CDMA cellular phone systems under

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group

Radio Path Loss and Penetration Loss. Measurements in and around Homes. and Trees at 5.85 GHz. Mobile and Portable Radio Research Group 1 Radio Path Loss and Penetration Loss Measurements in and around Homes and Trees at 5.85 GHz Greg Durgin, Theodore S. Rappaport, Hao Xu Mobile and Portable Radio Research Group Bradley Department of Electrical

More information

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz

Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz Suburban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 2375MHz A.N. Jadhav 1, Sachin S. Kale 2 Department of Electronics & Telecommunication Engineering, D.Y. Patil College

More information

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India)

Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Enhance Study on Indoor RF Models: based on Two Residential Areas Er. Neha Sharma and Dr. G.C.Lall HCTM, Kaithal(affiliated to KUK, Haryana, India) Abstract Indoor Propagation modeling is demanded for

More information

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions

Empirical Path Loss Models for n Wireless networks at 2.4Ghz in rural regions Empirical Path Loss Models for 802.11n Wireless networks at 2.4Ghz in rural regions Jean Louis Fendji Kedieng Ebongue, Mafai Nelson, and Jean Michel Nlong University of Ngaoundéré, Computer Science, P.O.

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Channel Model for Intra-Device Communications Date Submitted: 15 January 2016 Source: Alexander Fricke, Thomas Kürner,

More information

Coverage Planning for LTE system Case Study

Coverage Planning for LTE system Case Study Coverage Planning for LTE system Case Study Amer M. Daeri 1, Amer R. Zerek 2 and Mohammed M. Efeturi 3 1 Zawia University. Faculty of Engineering, Computer Engineering Department Zawia Libya Email: amer.daeri@

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2013 Lecture 5 Today: (1) Path Loss Models (revisited), (2) Link Budgeting Reading Today: Haykin/Moher handout (2.9-2.10) (on Canvas),

More information

Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications

Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications 374 PIERS Proceedings, Stockholm, Sweden, Aug. 12 15, 2013 Statistical Analysis of On-body Radio Propagation Channel for Body-centric Wireless Communications H. A. Rahim 1, F. Malek 1, N. Hisham 1, and

More information

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements

Analysis of kurtosis-based LOS/NLOS Identification based on indoor MIMO Channel Measurements Post-print of: Zhang, J., Salmi, J. and Lohan, E-S. Analysis of kurtosis-based LOS/NLOS identification using indoor MIMMO channel measurement in IEEE transactions on vehicular technology, vol. 62, no.

More information

Integrated structural approach to Counterparty Credit Risk with dependent jumps

Integrated structural approach to Counterparty Credit Risk with dependent jumps 1/29 Integrated structural approach to Counterparty Credit Risk with dependent jumps, Gianluca Fusai, Daniele Marazzina Cass Business School, Università Piemonte Orientale, Politecnico Milano September

More information

arxiv: v2 [cs.it] 22 Feb 2016

arxiv: v2 [cs.it] 22 Feb 2016 G. R. MacCartney, Jr., S. Deng, and T. S. Rappaport, Indoor Office Plan Environment and Layout-Based MmWave Path Loss Models for 28 GHz and 73 GHz, to be published in 2016 IEEE 83rd Vehicular Technology

More information

LTE RF Planning Training LTE RF Planning, Design, Optimization Training

LTE RF Planning Training LTE RF Planning, Design, Optimization Training LTE RF Planning Training LTE RF Planning, Design, Optimization Training Why should you choose LTE RF Planning Training? LTE RF Planning Training is focused on carrying out RF planning and Design and capacity

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Lecture 3. Interference and Shadow Margins, Handoff Gain, Coverage

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Lecture 3. Interference and Shadow Margins, Handoff Gain, Coverage ECE6604 PERSONAL & MOBILE COMMUNICATIONS Lecture 3 Interference and Shadow Margins, Handoff Gain, Coverage 1 Interference Margin As the subscriber load increases, additional interference is generated from

More information

Proposed Propagation Model for Dehradun Region

Proposed Propagation Model for Dehradun Region Proposed Propagation Model for Dehradun Region Pranjali Raturi, Vishal Gupta, Samreen Eram Abstract This paper presents a review of the outdoor propagation prediction models for GSM 1800 MHz in which propagation

More information

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment

Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Empirical Characterization of Propagation Path Loss and Performance Evaluation for Co-Site Urban Environment Okorogu V.N Onyishi D.U Nwalozie G.C Utebor N.N Department of Electronic & Computer Department

More information

Parameter Estimation II

Parameter Estimation II Parameter Estimation II ELEC 41 PROF. SIRIPONG POTISUK Estimating μ With Unnown σ This is often true in practice. When the sample is large and σ is unnown, the sampling distribution is approimately normal

More information

Lecture 2: Wireless Propagation Channels

Lecture 2: Wireless Propagation Channels Lecture 2: Wireless Propagation Channels RezaMohammadkhani, UniversityofKurdistan WirelessCommunications,2015 eng.uok.ac.ir/mohammadkhani 1 2 Outline Wireless Propagation Multipath Propagation Large scale

More information

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method On Predicting Large Scale Fading Characteristics with the MR-FDPF Method Meiling Luo, Nikolai Lebedev, Guillaume Villemaud, Guillaume De La Roche, Jie Zhang, Jean-Marie Gorce To cite this version: Meiling

More information

Value at Risk Ch.12. PAK Study Manual

Value at Risk Ch.12. PAK Study Manual Value at Risk Ch.12 Related Learning Objectives 3a) Apply and construct risk metrics to quantify major types of risk exposure such as market risk, credit risk, liquidity risk, regulatory risk etc., and

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116

ISSN: [Chinedu, Nkwachukwu, Cosmas* et al., 6(5): May, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DEVELOPMENT OF A PATHLOSS MODEL FOR 3G NETWORKS AT 1.857 GHz IN PORT HARCOURT NIGERIA Anyanwu Chinedu *, Chukwuchekwa Nkwachukwu

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PATH LOSS PROPAGATION MODEL PREDICTION FOR GSM MOBILE NETWORK PLANNING IN KADUNA TOWN Dominic S. Nyitamen*, Musa Ahmed, Tonga

More information

Information Processing and Limited Liability

Information Processing and Limited Liability Information Processing and Limited Liability Bartosz Maćkowiak European Central Bank and CEPR Mirko Wiederholt Northwestern University January 2012 Abstract Decision-makers often face limited liability

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

Linear Dispersion Over Time and Frequency

Linear Dispersion Over Time and Frequency Linear Dispersion Over Time and Frequency Jinsong Wu and Steven D Blostein Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario, Canada, K7L3N6 Email: {jwu, sdb@eequeensuca

More information

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro

Link Budget Calculation. Ermanno Pietrosemoli Marco Zennaro Link Budget Calculation Ermanno Pietrosemoli Marco Zennaro Goals To be able to calculate how far we can go with the equipment we have To understand why we need high masts for long links To learn about

More information

Efficient and Consistent Path loss Model for Mobile Network Simulation

Efficient and Consistent Path loss Model for Mobile Network Simulation IEEE/ACM TRANSACTIONS ON NETWORKS, VOL. XXX, NO. YYY, JAN. 2X Efficient and Consistent Path loss Model for Mobile Network Simulation Seon Yeong Han, Member, IEEE, Nael B. Abu-Ghazaleh, Senior Member, IEEE,

More information

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area

A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area A Measurement-Based Model For The Analysis Of Pathloss In A Given Geographical Area Nwaokoro A. A. Department of Electrical and Electronic Engineering Federal University of Technology Owerri, Nigeria Emerole

More information

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia

Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Bulg. J. Phys. 44 (2017) 145 154 Optimization of Path Loss Models Based on Signal Level Measurements in 4G LTE Network in Sofia Ph. Atanasov, Zh. Kiss ovski Faculty of Physics, University of Sofia, 5 James

More information

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network

Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Wireless Pers Commun (2013) 69:793 803 DOI 10.1007/s11277-012-0612-8 Path Loss Modeling Based on Field Measurements Using Deployed 3.5 GHz WiMAX Network Yazan A. Alqudah Published online: 8 April 2012

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

Optimizing the Existing Indoor Propagation Prediction Models

Optimizing the Existing Indoor Propagation Prediction Models 2012 International Conference on Wireless Networks (ICWN 2012) IPCSIT vol. 49 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V49.37 Optimizing the Existing Indoor Propagation Prediction

More information

Online Appendix Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared. A. Proofs

Online Appendix Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared. A. Proofs Online Appendi Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared A. Proofs Proof of Proposition 1 The necessity of these conditions is proved in the tet. To prove sufficiency,

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (30 pts) Answer briefly the following questions. 1. Suppose that

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA

PATH LOSS PREDICTION FOR GSM MOBILE NETWORKS FOR URBAN REGION OF ABA, SOUTH-EAST NIGERIA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue., February 014,

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Deriving the Black-Scholes Equation and Basic Mathematical Finance

Deriving the Black-Scholes Equation and Basic Mathematical Finance Deriving the Black-Scholes Equation and Basic Mathematical Finance Nikita Filippov June, 7 Introduction In the 97 s Fischer Black and Myron Scholes published a model which would attempt to tackle the issue

More information

Basic notions of probability theory: continuous probability distributions. Piero Baraldi

Basic notions of probability theory: continuous probability distributions. Piero Baraldi Basic notions of probability theory: continuous probability distributions Piero Baraldi Probability distributions for reliability, safety and risk analysis: discrete probability distributions continuous

More information

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment

Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment Path Loss Measurements for a Non-Line-of-Sight Mobile-to-Mobile Environment J. Turkka, M. Renfors Abstract This paper shows results of narrowband path loss measurements in a typical urban and suburban

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Examples M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India

Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India Realistic Indoor Path Loss Modeling for Regular WiFi Operations in India Hemant Kumar Rath 1, Sumanth Timmadasari 2, Bighnaraj Panigrahi 1, and Anantha Simha 1 1 TCS Research & Innovation, India, Email:{hemant.rath,

More information

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application Prof. Ms. S. M. Patil Prof. A. R. Nigvekar Prof. P B. Ghewari Assistant Professor Associate Professor Associate professor

More information

Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz

Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz 19th International Conference on Telecommunications (ICT 212) Attenuation over distance and excess path loss for a large-area indoor commercial topology at 2.4 GHz Theofilos Chrysikos, Stavros Kotsopoulos

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS

COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obot a, O. Simeon b, J. Afolayan c Department of Electrical/Electronics & Computer Engineering, University of

More information

Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on

Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on Mobile and Wireless Compu2ng CITS4419 Week 2: Wireless Communica2on Rachel Cardell- Oliver School of Computer Science & So8ware Engineering semester- 2 2018 MoBvaBon (for CS students to study radio propagabon)

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Dokumentnamn. Document - Ref PTS-ER-2004:32

Dokumentnamn. Document - Ref PTS-ER-2004:32 1 (18) 1 SUMMARY The purpose of this report is to find out how the signal requirement matches the service requirement in a UMTS network, and to comment on some of the specific issues raised by the Swedish

More information

Millimeter Wave Wireless Communications: New Results for Rural Connectivity

Millimeter Wave Wireless Communications: New Results for Rural Connectivity Millimeter Wave Wireless Communications: New Results for Rural Connectivity George R. MacCartney, Jr., Shu Sun, Theodore S. Rappaport, Yunchou Xing, Hangsong Yan, Jeton Koka, Ruichen Wang, and Dian Yu

More information

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa

Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 2530MHz Band in Sub- Saharan Africa Investigating the Best Radio Propagation Model for 4G - WiMAX Networks Deployment in 530MHz Band in Sub- Saharan Africa Awal Halifa Dep t of Electrical Engineering Kwame Nkrumah Univ. of Science and Technology

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Research Article BEP/SEP and Outage Performance Analysis of L-Branch Maximal-Ratio Combiner for κ-μ Fading

Research Article BEP/SEP and Outage Performance Analysis of L-Branch Maximal-Ratio Combiner for κ-μ Fading Hindawi Publishing Corporation International Journal of Digital Multimedia Broadcasting Volume 29, Article ID 57344, 8 pages doi:.55/29/57344 Research Article BEP/ and Outage Performance Analysis of L-Branch

More information

I. INTRODUCTION II. COVERAGE AREA

I. INTRODUCTION II. COVERAGE AREA Analysis of Large Scale Propagation Models & RF Coverage Estimation Purnima K. Sharma Doctoral candidate UTU, Dehradun (India) R.K.Singh Professor (OSD) UTU, Dehradun (India) Abstract The main task in

More information

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785

[Ekeocha*, 5(5): May, 2016] ISSN: Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY OPTIMIZATION OF COST 231 MODEL FOR 3G WIRELESS COMMUNICATION SIGNAL IN SUBURBAN AREA OF PORT HARCOURT, NIGERIA Akujobi Ekeocha

More information

Optimization of Empirical Pathloss Models of WiMax at 4.5 GHz Frequency Band

Optimization of Empirical Pathloss Models of WiMax at 4.5 GHz Frequency Band IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. II (Jan. 2014), PP 01-08 Optimization of Empirical Pathloss Models of

More information

Approximation Methods in Derivatives Pricing

Approximation Methods in Derivatives Pricing Approximation Methods in Derivatives Pricing Minqiang Li Bloomberg LP September 24, 2013 1 / 27 Outline of the talk A brief overview of approximation methods Timer option price approximation Perpetual

More information

A Sum-Product Model as a Physical Basis for Shadow Fading

A Sum-Product Model as a Physical Basis for Shadow Fading 1 A Sum-Product Model as a Physical Basis for Shadow Fading Jari Salo arxiv:cs/0702098v1 [cs.oh] 18 Feb 2007 Abstract Shadow fading (slow fading) effects play a central role in mobile communication system

More information

Discounting a mean reverting cash flow

Discounting a mean reverting cash flow Discounting a mean reverting cash flow Marius Holtan Onward Inc. 6/26/2002 1 Introduction Cash flows such as those derived from the ongoing sales of particular products are often fluctuating in a random

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

7 pages 1. Premia 14

7 pages 1. Premia 14 7 pages 1 Premia 14 Calibration of Stochastic Volatility model with Jumps A. Ben Haj Yedder March 1, 1 The evolution process of the Heston model, for the stochastic volatility, and Merton model, for the

More information