A Structural Model for Interconnected Electricity Markets

Size: px
Start display at page:

Download "A Structural Model for Interconnected Electricity Markets"

Transcription

1 A Structural Model for Interconnected Electricity Markets Toronto, 2013 Michael M. Kustermann Chair for Energy Trading and Finance University of Duisburg-Essen

2 Seite 2/25 A Structural Model for Interconnected Electricity Markets Table of contents General Structural Model Motivation The Model Influence of Connected Markets Multi Market Structural Model Assumptions Basic Objects Electricity Spot Prices Derivatives

3 Seite 3/25 A Structural Model for Interconnected Electricity Markets General Structural Model The Merit Order From: Forschungsstelle fuer Energiewirtschaft e. V. (FfE) Not continuous, piecewise constant, differences in production technology.

4 Seite 4/25 A Structural Model for Interconnected Electricity Markets General Structural Model Simple Example of a Structural Model Barlow (2002) uses a simple parametrization of the merit order: dd t = κ(θ D t )dt + σdw t C t (P t ) = a 0 b 0 (1 + αp t ) β

5 Seite 5/25 A Structural Model for Interconnected Electricity Markets General Structural Model Typical Structural Model - One Market

6 Seite 6/25 A Structural Model for Interconnected Electricity Markets General Structural Model The European Electricity Market

7 Seite 7/25 A Structural Model for Interconnected Electricity Markets General Structural Model Interconnector Capacity - Germany Net transfer capacity (NTC) as reported by ENTSO-E during Winter 2010/11 for peak-hours (in MW). Country FR NL DK SE CH AT Total Import from Export to

8 Seite 8/25 A Structural Model for Interconnected Electricity Markets General Structural Model Price Variablility due to Interconnectors Figure: Shift in Offer due to Interconnectors

9 Seite 9/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Economic Assumptions 1. Marginal demand is normal but correlated over countries (as in Aid, Coulon, Barlow,...) 2. Heat rates are exponential in capacity used (as in Coulon, Elliot,...) 3. Market supply curve is piecewise (per fuel) affine-linear in fuels prices (generalization of Aid, Coulon,...)

10 Seite 10/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Mathematical Assumptions We assume a probability space (Ω, F, P) which supports our model. On this space, we have: Wt D = (Wt 1,..., W t n ) the brownian motion which is driving demand (generating F D = (Ft D ) t ). Wt S = (W S 1 t,..., W Sm t ) the brownian motion driving fuels prices (generating F S = (Ft S ) t ). F t = Ft D Ft S, F = (F t ) t the market filtration which consists of all information contained in fuels prices and demand.

11 Seite 11/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model The Model For the sake of simplicity, we assume that only one fuel is marginal per electricity market. We have country i, j {1,..., n} and a (common) market minimum price of c R. For each country i, we assume a market supply curve of the following form: Demand is given by C i (x, s) = se a i +b i x + c D i t = f i t + D i t, d D i t = k i (θ i D i t)dt + σ i dw i t, dw i t dw j t = ρ ij dt where f i t denotes the seasonal component. We have 1. D is independent from F S 2. D t F D s N(µ(s, t), Σ(s, t)) and we will omit the arguments of µ and Σ in the sequel.

12 Seite 12/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Cross Border physical Flows We denote the physical flow from country j to country i by E ij t E ij t, 1 i < j n. The maximum capacity is restricted and might depend on the direction of the flow: [ ] E ij min, E max ij, E ij min < 0, E max ij > 0.

13 Seite 13/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Cross Border physical Flows - two Market case Note that in the two market case (i.e. only Et 12 exists), if E min = E max = 0, markets are not connected and thus, pricing might be done independently. E max = E min, the interconnector is never congested and thus, one unique market price for both markets exists at all hours. For the rest of the talk, we will consider the two market case only.

14 Seite 14/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Cross Border physical Flows - two Market case II In interconnected markets, only the electricity which is not imported has to be produced. Thus, the electricity price is determined as P i t (D i t, E t, S t ) = C i (D i t E t, S t ). Here, E t is the imported amount and D i t E t is the residual demand which has to be satisfied by local production. Define: A 1 = {ω Ω : P 1 t (D 1 t, E max, S t ) P 2 t (D 2 t, E max, S t )} A 2 = {ω Ω : P 1 t (D 1 t, E min, S t ) P 2 t (D 2 t, E min, S t )} A 3 = Ω \ (A 1 A 2 ) Then, the cross border flow is E 12 t (ω) = E max, if ω A 1 E min, if ω A 2 a 1 a 2 b 1 +b 2 + b 1 b 1 +b 2 D 1 t (ω) b 2 b 1 +b 2 D 2 t (ω), if ω A 3

15 Seite 15/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Market Clearing Prices Given the cross border physical flow which minimizes price differences between countries, the resulting electricity price for country 1 may be stated as follows: P 1 t (ω) = P 1 t (D 1 t, E 12 t, S t ) = C 1 (Dt 1(ω) E max, S t (ω)), if ω A 1 C 1 (Dt 1(ω) E min, S t (ω)), if ω A 2 C m (Dt 1(ω) + D2 t (ω), S t(ω)), if ω A 3 with C m as specified on the next slide. Equivalent results hold for P 2 t in country 2.

16 Seite 16/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Supply curve in the case of market convergence In the case of market convergence, aggregated demand has to be met by the cheapest production units in both countries. For S t fixed, we thus define (C i ) 1 (y, S t ) = inf{x R : C i (x, S t ) y} and find the aggregated supply curve as C m (x, S t ) = inf{y R : (C 1 ) 1 (y, S t ) + (C 2 ) 1 (y, S t ) x} which has the form C m (x, s) = se am+bmx + c with a m = a 1b 2 +a 2 b 1 b 1 +b 2 and b m = b 1b 2 b 1 +b 2.

17 Seite 17/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Distribution of the market clearing price - limiting cases Assuming lognormal fuels prices, i.e. log(s t ) F S s N(µ S, σs 2 ), we define the generalized lognormal distribution logn(µ, σ 2, c) as the distribution of a absolutely continous random variable X with density f X (x) = 1 e 1 ln (x c) µ 2 ( σ ) 2, x (c, ) 2πσ(x c) then, it obviously holds that Pt i d Fs logn(µ S + a i + b i µ i, σs 2 + b2 i σi 2, c) as E max = E min 0 + Pt i d Fs logn(µ S + a m + b m (µ 1 + µ 2 ), σs 2 + b2 i (σ ρσ 1 σ 2 + σ2), 2 c) as E max = E min

18 Seite 18/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Distribution of the market clearing price In the case of known fuels prices (realistic over short time horizon), we calculate: F P 1 t Fs (x) = Q(P 1 t x F s ) = Q({P 1 t x} A 1 F s ) + Q({P 1 t x} A 2 F s ) + Q({P 1 t x} A 3 F s ). We are able to calculate above Probabilities. It turns out Q({Pt 1 x} A 1 Fs ) = ln(x c) a 1 Φ µ 2 b 1 + Emax 1 a 1 a 2 (b 1 + b 2 )Emax + b 2 µ 2 b 1 µ 1 [ ; σ 2 1 b 2 ρσ 1 σ 2 b 1 σ 1 2 b 2 ρσ 1 σ 2 b 1 σ 1 2 b 2 2 σ2 2 2b 1 b 2 ρσ 1 σ 2 + b2 1 σ2 1 ] and similar (i.e. the differences of bivariate normal expressions with constant covariance matrix evaluated at affine-linear transformations of a vector which depends on the shifted logarithm of x) for the other 2 terms.

19 Seite 19/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Distribution of the market clearing prices in GER and NL

20 Seite 20/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Futures prices in the structural model We first consider futures with immediate delivery. Denote by F i (s, t) the futures price of electricity in country i at time s for delivery in t. Under the risk-neutral measure we should have F 1 (s, t) = E Q s [Pt 1 ] = P t(ω)q(dω) Ω = P t(ω)q(dω) + A 1 P t(ω)q(dω) + A 2 P t(ω)q(dω) A 3 and again, assuming deterministic fuels prices, we find P t(ω)q(dω) = cφ a 1 a 2 E max(b 1 + b 2 ) + b 1 µ 1 b 2 µ 2 + A 1 b1 2σ2 1 2b 1b 2 ρσ 1 σ 2 + b2 2σ2 2 e a 1+b 1 (µ 1 E max )+ b 2 1 σ2 1 2 Φ a 1 a 2 E max(b 1 + b 2 ) + b 1 µ 1 b 2 µ 2 + b 2 1σ 2 1 b 1 b 2 ρσ 1 σ 2 b 2 1 σ2 1 2b 1b 2 ρσ 1 σ 2 + b 2 2 σ2 2

21 Seite 21/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Futures prices depending on Interconnector capacity

22 Seite 22/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Thank you for your attention...

23 Seite 23/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model References EPEX SPOT SE Data Download Center, Rouquia Djabali, Joel Hoeksema, Yves Langer COSMOS description - CWE Market Coupling algorithm, APX Endex, Rene Carmona, Michael Coulon, Daniel Schwarz Electricity Price Modeling and Asset Valuation: A Multi-Fuel Structural Approach Rene Carmona, Michael Coulon A Survey of Commodity Markets and Structural Models for Electricity Prices

24 Seite 24/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Appendix

25 Seite 25/25 A Structural Model for Interconnected Electricity Markets Multi Market Structural Model Price Convergence FR - GER (hourly basis)

Commodity and Energy Markets

Commodity and Energy Markets Lecture 3 - Spread Options p. 1/19 Commodity and Energy Markets (Princeton RTG summer school in financial mathematics) Lecture 3 - Spread Option Pricing Michael Coulon and Glen Swindle June 17th - 28th,

More information

Stochastic Finance 2010 Summer School Ulm Lecture 1: Energy Derivatives

Stochastic Finance 2010 Summer School Ulm Lecture 1: Energy Derivatives Stochastic Finance 2010 Summer School Ulm Lecture 1: Energy Derivatives Professor Dr. Rüdiger Kiesel 21. September 2010 1 / 62 1 Energy Markets Spot Market Futures Market 2 Typical models Schwartz Model

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

(A note) on co-integration in commodity markets

(A note) on co-integration in commodity markets (A note) on co-integration in commodity markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway In collaboration with Steen Koekebakker (Agder) Energy & Finance

More information

A STRUCTURAL MODEL FOR ELECTRICITY PRICES

A STRUCTURAL MODEL FOR ELECTRICITY PRICES A STRUCTURAL MODEL FOR ELECTRICITY PRICES RENE CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ Abstract. In this paper we propose a new and highly tractable structural approach to spot price modeling and derivative

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Effectiveness of CPPI Strategies under Discrete Time Trading

Effectiveness of CPPI Strategies under Discrete Time Trading Effectiveness of CPPI Strategies under Discrete Time Trading S. Balder, M. Brandl 1, Antje Mahayni 2 1 Department of Banking and Finance, University of Bonn 2 Department of Accounting and Finance, Mercator

More information

Interest Rate Curves Calibration with Monte-Carlo Simulatio

Interest Rate Curves Calibration with Monte-Carlo Simulatio Interest Rate Curves Calibration with Monte-Carlo Simulation 24 june 2008 Participants A. Baena (UCM) Y. Borhani (Univ. of Oxford) E. Leoncini (Univ. of Florence) R. Minguez (UCM) J.M. Nkhaso (UCM) A.

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Gary Schurman MB, CFA August, 2012 The Capital Asset Pricing Model CAPM is used to estimate the required rate of return

More information

A Hybrid Commodity and Interest Rate Market Model

A Hybrid Commodity and Interest Rate Market Model A Hybrid Commodity and Interest Rate Market Model University of Technology, Sydney June 1 Literature A Hybrid Market Model Recall: The basic LIBOR Market Model The cross currency LIBOR Market Model LIBOR

More information

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall 2014 Reduce the risk, one asset Let us warm up by doing an exercise. We consider an investment with σ 1 =

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS In all of these X(t is Brownian motion. 1. By considering X (t, show that X(τdX(τ = 1 X (t 1 t. We use Itô s Lemma for a function F(X(t: Note that df = df dx dx

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Steve Dunbar No Due Date: Practice Only. Find the mode (the value of the independent variable with the

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Liuren Wu, Baruch College Joint work with Peter Carr and Xavier Gabaix at New York University Board of

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

Bayesian Finance. Christa Cuchiero, Irene Klein, Josef Teichmann. Obergurgl 2017

Bayesian Finance. Christa Cuchiero, Irene Klein, Josef Teichmann. Obergurgl 2017 Bayesian Finance Christa Cuchiero, Irene Klein, Josef Teichmann Obergurgl 2017 C. Cuchiero, I. Klein, and J. Teichmann Bayesian Finance Obergurgl 2017 1 / 23 1 Calibrating a Bayesian model: a first trial

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

Interest rate models and Solvency II

Interest rate models and Solvency II www.nr.no Outline Desired properties of interest rate models in a Solvency II setting. A review of three well-known interest rate models A real example from a Norwegian insurance company 2 Interest rate

More information

Evaluating Electricity Generation, Energy Options, and Complex Networks

Evaluating Electricity Generation, Energy Options, and Complex Networks Evaluating Electricity Generation, Energy Options, and Complex Networks John Birge The University of Chicago Graduate School of Business and Quantstar 1 Outline Derivatives Real options and electricity

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

Limits to Arbitrage. George Pennacchi. Finance 591 Asset Pricing Theory

Limits to Arbitrage. George Pennacchi. Finance 591 Asset Pricing Theory Limits to Arbitrage George Pennacchi Finance 591 Asset Pricing Theory I.Example: CARA Utility and Normal Asset Returns I Several single-period portfolio choice models assume constant absolute risk-aversion

More information

Valuing the Probability. of Generating Negative Interest Rates. under the Vasicek One-Factor Model

Valuing the Probability. of Generating Negative Interest Rates. under the Vasicek One-Factor Model Communications in Mathematical Finance, vol.4, no.2, 2015, 1-47 ISSN: 2241-1968 print), 2241-195X online) Scienpress Ltd, 2015 Valuing the Probability of Generating Negative Interest Rates under the Vasicek

More information

Financial Giffen Goods: Examples and Counterexamples

Financial Giffen Goods: Examples and Counterexamples Financial Giffen Goods: Examples and Counterexamples RolfPoulsen and Kourosh Marjani Rasmussen Abstract In the basic Markowitz and Merton models, a stock s weight in efficient portfolios goes up if its

More information

PAPER 211 ADVANCED FINANCIAL MODELS

PAPER 211 ADVANCED FINANCIAL MODELS MATHEMATICAL TRIPOS Part III Friday, 27 May, 2016 1:30 pm to 4:30 pm PAPER 211 ADVANCED FINANCIAL MODELS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal

More information

ARCH and GARCH models

ARCH and GARCH models ARCH and GARCH models Fulvio Corsi SNS Pisa 5 Dic 2011 Fulvio Corsi ARCH and () GARCH models SNS Pisa 5 Dic 2011 1 / 21 Asset prices S&P 500 index from 1982 to 2009 1600 1400 1200 1000 800 600 400 200

More information

Modeling the dependence between a Poisson process and a continuous semimartingale

Modeling the dependence between a Poisson process and a continuous semimartingale 1 / 28 Modeling the dependence between a Poisson process and a continuous semimartingale Application to electricity spot prices and wind production modeling Thomas Deschatre 1,2 1 CEREMADE, University

More information

Optimal Stopping for American Type Options

Optimal Stopping for American Type Options Optimal Stopping for Department of Mathematics Stockholm University Sweden E-mail: silvestrov@math.su.se ISI 2011, Dublin, 21-26 August 2011 Outline of communication Multivariate Modulated Markov price

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

Fast narrow bounds on the value of Asian options

Fast narrow bounds on the value of Asian options Fast narrow bounds on the value of Asian options G. W. P. Thompson Centre for Financial Research, Judge Institute of Management, University of Cambridge Abstract We consider the problem of finding bounds

More information

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices Bachelier Finance Society Meeting Toronto 2010 Henley Business School at Reading Contact Author : d.ledermann@icmacentre.ac.uk Alexander

More information

Modeling spark spread option and power plant evaluation

Modeling spark spread option and power plant evaluation Computational Finance and its Applications III 169 Modeling spark spread option and power plant evaluation Z. Li Global Commoditie s, Bank of Amer ic a, New York, USA Abstract Spark spread is an important

More information

Quasi-Convex Stochastic Dynamic Programming

Quasi-Convex Stochastic Dynamic Programming Quasi-Convex Stochastic Dynamic Programming John R. Birge University of Chicago Booth School of Business JRBirge SIAM FM12, MSP, 10 July 2012 1 General Theme Many dynamic optimization problems dealing

More information

What drives the price differential between peak and base electricity prices? An empirical investigation for European market regions

What drives the price differential between peak and base electricity prices? An empirical investigation for European market regions What drives the price differential between peak and base electricity prices? An empirical investigation for European market regions Enerday 2010, TU Dresden Dr. Hans-Günter Schwarz, RWE AG* Dr. Jochen

More information

Modelling Returns: the CER and the CAPM

Modelling Returns: the CER and the CAPM Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20 Econometric Modelling of Financial Returns Financial data are mostly observational data: they

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

THE MULTIVARIATE BLACK & SCHOLES MARKET: CONDITIONS FOR COMPLETENESS AND NO-ARBITRAGE

THE MULTIVARIATE BLACK & SCHOLES MARKET: CONDITIONS FOR COMPLETENESS AND NO-ARBITRAGE THE MULTIVARIATE BLACK & SCHOLES MARKET: CONDITIONS FOR COMPLETENESS AND NO-ARBITRAGE JAN DHAENE, ALEXANDER KUKUSH, AND DANIËL LINDERS. Анотацiя. In order to price multivariate derivatives, there is need

More information

Model Risk for Energy Markets

Model Risk for Energy Markets Seite 1 Model Risk for Energy Markets Rüdiger Kiesel, Karl Bannör, Anna Nazarova, Matthias Scherer R. Kiesel Centre of Mathematics for Applications, Oslo University Chair for Energy Trading, University

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Worst-Case Value-at-Risk of Non-Linear Portfolios

Worst-Case Value-at-Risk of Non-Linear Portfolios Worst-Case Value-at-Risk of Non-Linear Portfolios Steve Zymler Daniel Kuhn Berç Rustem Department of Computing Imperial College London Portfolio Optimization Consider a market consisting of m assets. Optimal

More information

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

A Two-Factor Model for the Electricity Forward Market

A Two-Factor Model for the Electricity Forward Market A Two-Factor Model for the Electricity Forward Market Ruediger Kiesel (University of Ulm) Gero Schindlmayr (EnBW Trading GmbH) Reik H. Boerger (University of Ulm, Speaker) December 8, 2005 1 A Two-Factor

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

P VaR0.01 (X) > 2 VaR 0.01 (X). (10 p) Problem 4

P VaR0.01 (X) > 2 VaR 0.01 (X). (10 p) Problem 4 KTH Mathematics Examination in SF2980 Risk Management, December 13, 2012, 8:00 13:00. Examiner : Filip indskog, tel. 790 7217, e-mail: lindskog@kth.se Allowed technical aids and literature : a calculator,

More information

Investment strategies and risk management for participating life insurance contracts

Investment strategies and risk management for participating life insurance contracts 1/20 Investment strategies and risk for participating life insurance contracts and Steven Haberman Cass Business School AFIR Colloquium Munich, September 2009 2/20 & Motivation Motivation New supervisory

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Continous time models and realized variance: Simulations

Continous time models and realized variance: Simulations Continous time models and realized variance: Simulations Asger Lunde Professor Department of Economics and Business Aarhus University September 26, 2016 Continuous-time Stochastic Process: SDEs Building

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples.

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples. for for January 25, 2016 1 / 26 Outline for 1 2 3 4 2 / 26 Put Option for A put option is the right to sell an asset at an established price at a certain time. The established price is the strike price,

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a Trinomial Tree Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a The three stock prices at time t are S, Su, and Sd, where ud = 1. Impose the matching of mean and

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén PORTFOLIO THEORY Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Portfolio Theory Investments 1 / 60 Outline 1 Modern Portfolio Theory Introduction Mean-Variance

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

Calculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the

Calculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the VaR Pro and Contra Pro: Easy to calculate and to understand. It is a common language of communication within the organizations as well as outside (e.g. regulators, auditors, shareholders). It is not really

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information