Optimal Stopping for American Type Options

Size: px
Start display at page:

Download "Optimal Stopping for American Type Options"

Transcription

1 Optimal Stopping for Department of Mathematics Stockholm University Sweden ISI 2011, Dublin, August 2011

2 Outline of communication Multivariate Modulated Markov price processes and American type options Convergence of option rewards Applications of convergence results Reselling of European options Tree type approximations Transformation of the reselling model An approximation tree bivariate binomial-trinomial model Convergence of tree approximations Numerical examples

3 Multivariate modulated Markov price processes and American type options A multivariate Markov log-price process modulated by a stochastic index Y (ε) (t) = (Y (ε) 1 (ε) (t),..., Y (t)), t 0 is a vector càdlàg k log-price process and X (ε) (t), t 0 is a measurable index process such that Z (ε) (t) = ( Y (ε) (t), X (ε) (t)) is a Markov process with a phase space Z = R k X, an initial distribution P (ε) (A), and transition probabilities P (ε) (t, z, t + u, A). A multivariate price process modulated by a stochastic index S (ε) (t) = (S (ε) 1 where S (ε) i American type options (t),..., S(ε) (t)), t 0 is a vector price process, k (t) = exp{y (ε) i (t)}, i = 1,..., k, t 0. Φ (ε) = sup Eg(τ (ε), S (ε) (τ (ε) )). 0 τ (ε) T

4 Convergence of option rewards A: Not more than polynomial growth of partial derivatives of payoff function g(t, s) ( L 1 + L 2 s γ ). B: There exist measurable sets Z t Z, t [0, T] such that: (a) P (ε) (t, z ε, t + u, ) P (0) (t, z, t + u, ) as ε 0, for any z ε z Z t as ε 0, 0 t < t + u T; (b) P (0) (t, z, t + u, Z t+u ) = 1 for every z Z t, 0 t < t + u T. C: lim c 0 lim ε 0 sup 0 t t t+c T sup z Z E z,t (e β Y (ε) (t ) Y (ε) (t) 1) = 0 for some β > γ + 1. D: Z (ε) (0) = z 0 Z 0. Theorem 1: A D Φ (ε) Φ (0) as ε 0.

5 Convergence of option rewards Time skeleton approximations Φ (ε) (P(n)) = sup Eg(τ (ε), S (ε) (τ (ε) ))). τ (ε) P(n) where P(n) = < 0 = t n,0 < < t n,n = T > such that d n = max 1 k n (t n,k t n,k 1 ) 0 as n. sup Φ (ε) Φ (ε) (P(n)) (n) 0 as n. ε 0 Convergence of option rewards for discrete time models Φ (ε) (P(n)) Φ (0) (P(n)) as ε 0.

6 Applications of convergence results Types of price processes Price processes represented by exponential Markov and semi-markov chains; Gaussian Markov random walk type price processes; Exponential ARMA type price processes; General multivariate Markov price processes with Markov and semi-markov modulation; Exponential modulated Lévy type price processes; Exponential multivariate diffusion price process. Approximation models Space-time skeleton approximations; Tree approximation models (binomial, trinomial, etc.); Monte-Carlo type approximations. Types of options

7 Reselling of European options A reselling model d ln S(t) = µdt + σdw 1 (t), d ln σ(t) = α(ln σ(t) ln σ)dt + νdw 2 (t), t [0, T], where (a) µ R; α, ν, σ > 0; (b) S(0) = s 0 = const > 0; σ(0) = σ; (c) W(t) = (W1 (t), W 2 (t)), t 0 is a standard bivariate Brownian motion with EW 1 (1)W 2 (1) = ρ. Formulation of the reselling problem Φ (0) = sup Ee rτ C(τ, S(τ), σ(τ)), τ T where C(t, S, σ) = SF(d t ) Ke r(t t) F(d t σ T t), ln(s/k) + r(t t) d t = σ + σ T t, F(x) = 1 x e y2 /2 dy. T t 2 2π

8 Tree type approximations Approximation of the SDE by a stochastic difference equation ln S(t n ) = µ t n + σ W 1 (t n ), ln σ(t n ) = α(ln σ(t n 1 ) ln σ) t n + ν W 2 (t n ), n = 1,..., N, where f(t n ) = f(t n ) f(t n 1 ), t n = nt/n, n = 0, 1,..., N. Fitting of a bivariate binomial model EY in = E W i (t n ), W i (t n ) Y n,i EY in Y jn = E W i (t n ) W j (t n ), i, j = 1, 2, n = 1,..., N. A recombining condition Y n,i :?!

9 Transformation of the reselling model A solution for the system of SDE for the reselling model S(t) = s 0 e µt+σw1(t), σ(t) = σe νe αt t 0 eαs dw 2 (s), t [0, T]. Transformation of the reselling model where Φ (0) = sup Ee rτ C(τ, s 0 e µτ S 1 (τ), σ S 2 (τ) eα(t τ) ) τ T = sup Eg(τ, (S 1 (τ), S 2 (τ))), τ T S 1 (t) = e σw 1(t), S 2 (t) = e νe αt t 0 eαs dw 2 (s), t 0, g(t, (s 1, s 2 )) = e rt C(t, s 0 e µt s 1, σ s eα(t t) 2 ).

10 An approximation tree bivariate binomial-trinomial model A tree bivariate binomial-trinomial model Y n,1 : Y n,2 : ε = T/N Number of nodes = (N + 1)(2N + 1)! E k : ρ < e αt/k. In the case k = 1: u (ε) n,1 = σ ε, u (ε) n,2 = u ε, where u [ν, ν ρ 1 e αt ] p (ε) n,++ = p(ε) p (ε) n,+ = p(ε) p (ε) n,+ n, = ν2 e 2αT 4u 2 n, + = ν2 e 2αT 4u 2 = p (ε) n, n = 1,..., N. 2αnε 1 e 2αε e 2αε 2αnε 1 e 2αε e 2αε = 1 2 ν2 e 2αT 2αnε 1 e 2αε e 2u 2 2αε + ρνe αt 4u ρνe αt 4u, 1 e αε eαnε, αε 1 e αε eαnε, αε

11 Convergence of tree approximations A recurrence backward algorithm (1) : y n,l1,l 2 = ((2l 1 n)σ ε, l 2 u ε) l 1 = 0, 1,..., n, l 2 = 0, ±1,..., ±n, n = 0,..., N; (2) : w (ε) (t N, y N,l1,l 2 ) = g(t N, e y N,l 1,l 2 ), l 1 = 0, 1,..., N, l 2 = 0, ±1,..., ±N; (3) : w (ε) (t n, y n,l1,l 2 ) = g(t n, e y n,l 1,l 2 ) ( w (ε) (t n+1, y n+1,l1 +1,l 2 +1)p (ε) n,++ + w (ε) (t n+1, y n+1,l1 +1,l 2 )p (ε) n,+ + w(ε) (t n+1, y n+1,l1 +1,l 2 1)p (ε) n,+ + w (ε) (t n+1, y n+1,l1,l 2 +1)p (ε) n, + + w(ε) (t n+1, y n+1,l1,l 2 )p (ε) n, + w (ε) (t n+1, y n+1,l1,l 2 1)p (ε) n, ), l 1 = 0, 1,..., n, l 2 = 0, ±1,..., ±n, n = N 1,..., 0. Convergence of tree approximations Theorem 2: E 1 w (ε) (0, (0, 0)) Φ (0) as ε 0.

12 Numerical examples The optimal expected reselling rewards The optimal expected reselling rewards for the models with parameters r = 0.04; S(0) = 10, µ = 0.02, σ = 0.2, 0.12 < α < 2.4, 0.05 < ν < 1, ρ = 0.3; and K = 10, T = 0.5.

13 References 1 Silvestrov, D., Jönsson, H., Stenberg, F. (2007) Convergence of option rewards for Markov type price processes. Theory Stoch. Process., 13(29), no. 4, Lundgren, R., Silvestrov, D., Kukush, A., (2008) Reselling of options and convergence of option rewards. J. Numer. Appl. Math., 1(96), Silvestrov, D. Jönsson, H., Stenberg, F. (2008, 2009) Convergence of option rewards for Markov type price processes modulated by stochastic indices I, II. Theory Probab. Math. Statist., I 79, , II Lundgren, R., Silvestrov, D. (2009) Convergence and approximation of option rewards for multivariate price processes, Research Report , Department of Mathematics, Stockholm University University, 53 pages. 5 Silvestrov, D., Lundgren, R. (2010) Optimal stopping and reselling of European options, In: Rykov V., Balakrishnan, N., Nikulin M (eds.), Mathematical and Statistical Models and Methods in Reliability, Birkhäuser, Silvestrov, D., Lundgren, R. (2011) Convergence of option rewards for multivariate price processes (accepted in Theory Probab. Math. Statist., 84).

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

CONVERGENCE OF OPTION REWARDS

CONVERGENCE OF OPTION REWARDS Mälardalen University Press Dissertations No. 89 CONVERGENCE OF OPTION REWARDS Robin Lundgren 2010 School of Education, Culture and Communication This work was funded by the Graduate School in Mathematics

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Continous time models and realized variance: Simulations

Continous time models and realized variance: Simulations Continous time models and realized variance: Simulations Asger Lunde Professor Department of Economics and Business Aarhus University September 26, 2016 Continuous-time Stochastic Process: SDEs Building

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Studies of Rate of Convergence for Approximations of American Type Options

Studies of Rate of Convergence for Approximations of American Type Options Studies of Rate of Convergence for Approximations of American Type Options Yanxiong Li Masteruppsats i matematisk statistik Master Thesis in Mathematical Statistics Å Ø ÖÙÔÔ Ø ¾¼½¾ ½ Å Ø Ñ Ø Ø Ø Ø ÖÙ Ö

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias José E. Figueroa-López 1 1 Department of Statistics Purdue University Computational Finance Seminar Purdue University

More information

Conditional Full Support and No Arbitrage

Conditional Full Support and No Arbitrage Gen. Math. Notes, Vol. 32, No. 2, February 216, pp.54-64 ISSN 2219-7184; Copyright c ICSRS Publication, 216 www.i-csrs.org Available free online at http://www.geman.in Conditional Full Support and No Arbitrage

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

VaR Estimation under Stochastic Volatility Models

VaR Estimation under Stochastic Volatility Models VaR Estimation under Stochastic Volatility Models Chuan-Hsiang Han Dept. of Quantitative Finance Natl. Tsing-Hua University TMS Meeting, Chia-Yi (Joint work with Wei-Han Liu) December 5, 2009 Outline Risk

More information

Ornstein-Uhlenbeck Theory

Ornstein-Uhlenbeck Theory Beatrice Byukusenge Department of Technomathematics Lappeenranta University of technology January 31, 2012 Definition of a stochastic process Let (Ω,F,P) be a probability space. A stochastic process is

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints Zongxia Liang Department of Mathematical Sciences Tsinghua University, Beijing 100084, China zliang@math.tsinghua.edu.cn Joint

More information

Evaluating the Longstaff-Schwartz method for pricing of American options

Evaluating the Longstaff-Schwartz method for pricing of American options U.U.D.M. Project Report 2015:13 Evaluating the Longstaff-Schwartz method for pricing of American options William Gustafsson Examensarbete i matematik, 15 hp Handledare: Josef Höök, Institutionen för informationsteknologi

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Applications of short-time asymptotics to the statistical estimation and option pricing of Lévy-driven models

Applications of short-time asymptotics to the statistical estimation and option pricing of Lévy-driven models Applications of short-time asymptotics to the statistical estimation and option pricing of Lévy-driven models José Enrique Figueroa-López 1 1 Department of Statistics Purdue University CIMAT and Universidad

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Recent Advances in Fractional Stochastic Volatility Models

Recent Advances in Fractional Stochastic Volatility Models Recent Advances in Fractional Stochastic Volatility Models Alexandra Chronopoulou Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign IPAM National Meeting of Women in

More information

Optimal Selling Strategy With Piecewise Linear Drift Function

Optimal Selling Strategy With Piecewise Linear Drift Function Optimal Selling Strategy With Piecewise Linear Drift Function Yan Jiang July 3, 2009 Abstract In this paper the optimal decision to sell a stock in a given time is investigated when the drift term in Black

More information

Asymptotic Method for Singularity in Path-Dependent Option Pricing

Asymptotic Method for Singularity in Path-Dependent Option Pricing Asymptotic Method for Singularity in Path-Dependent Option Pricing Sang-Hyeon Park, Jeong-Hoon Kim Dept. Math. Yonsei University June 2010 Singularity in Path-Dependent June 2010 Option Pricing 1 / 21

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

is a standard Brownian motion.

is a standard Brownian motion. Stochastic Calculus Final Examination Solutions June 7, 25 There are 2 problems and points each.. (Property of Brownian Bridge) Let Bt = {B t, t B = } be a Brownian bridge, and define dx t = Xt dt + db

More information

STOCHASTIC VOLATILITY AND OPTION PRICING

STOCHASTIC VOLATILITY AND OPTION PRICING STOCHASTIC VOLATILITY AND OPTION PRICING Daniel Dufresne Centre for Actuarial Studies University of Melbourne November 29 (To appear in Risks and Rewards, the Society of Actuaries Investment Section Newsletter)

More information

Introduction to Affine Processes. Applications to Mathematical Finance

Introduction to Affine Processes. Applications to Mathematical Finance and Its Applications to Mathematical Finance Department of Mathematical Science, KAIST Workshop for Young Mathematicians in Korea, 2010 Outline Motivation 1 Motivation 2 Preliminary : Stochastic Calculus

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial

More information

Lattice Approximation Methods for American Type Options

Lattice Approximation Methods for American Type Options Mathematical Statistics Stockholm University Lattice Approximation Methods for American Type Options Dmitrii Silvestrov and Yanxiong Li Research Report 2013:2 ISSN 1650-0377 Postal address: Mathematical

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LÉVY MODELS

SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LÉVY MODELS SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LÉVY MODELS ERIK EKSTRÖM1 AND BING LU Abstract. We show that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps

Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps, Senior Quantitative Analyst Motivation: Swing Options An electricity or gas SUPPLIER needs to be capable,

More information

Comprehensive Exam. August 19, 2013

Comprehensive Exam. August 19, 2013 Comprehensive Exam August 19, 2013 You have a total of 180 minutes to complete the exam. If a question seems ambiguous, state why, sharpen it up and answer the sharpened-up question. Good luck! 1 1 Menu

More information

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as:

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as: Continuous Time Finance Notes, Spring 2004 Section 1. 1/21/04 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connection with the NYU course Continuous Time Finance. This

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus.

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus. Itô s Calculus Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 21, 2016 Christopher Ting QF 101 Week 10 October

More information

Time-Consistent and Market-Consistent Actuarial Valuations

Time-Consistent and Market-Consistent Actuarial Valuations Time-Consistent and Market-Consistent Actuarial Valuations Antoon Pelsser 1 Mitja Stadje 2 1 Maastricht University & Kleynen Consultants & Netspar Email: a.pelsser@maastrichtuniversity.nl 2 Tilburg University

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Stochastic Processes and Brownian Motion

Stochastic Processes and Brownian Motion A stochastic process Stochastic Processes X = { X(t) } Stochastic Processes and Brownian Motion is a time series of random variables. X(t) (or X t ) is a random variable for each time t and is usually

More information

Basic Stochastic Processes

Basic Stochastic Processes Basic Stochastic Processes Series Editor Jacques Janssen Basic Stochastic Processes Pierre Devolder Jacques Janssen Raimondo Manca First published 015 in Great Britain and the United States by ISTE Ltd

More information

Pricing of some exotic options with N IG-Lévy input

Pricing of some exotic options with N IG-Lévy input Pricing of some exotic options with N IG-Lévy input Sebastian Rasmus, Søren Asmussen 2 and Magnus Wiktorsson Center for Mathematical Sciences, University of Lund, Box 8, 22 00 Lund, Sweden {rasmus,magnusw}@maths.lth.se

More information

Math Computational Finance Option pricing using Brownian bridge and Stratified samlping

Math Computational Finance Option pricing using Brownian bridge and Stratified samlping . Math 623 - Computational Finance Option pricing using Brownian bridge and Stratified samlping Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,

More information

Fast and accurate pricing of discretely monitored barrier options by numerical path integration

Fast and accurate pricing of discretely monitored barrier options by numerical path integration Comput Econ (27 3:143 151 DOI 1.17/s1614-7-991-5 Fast and accurate pricing of discretely monitored barrier options by numerical path integration Christian Skaug Arvid Naess Received: 23 December 25 / Accepted:

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Anna Timonina University of Vienna, Abraham Wald PhD Program in Statistics and Operations

More information

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL Stephen Chin and Daniel Dufresne Centre for Actuarial Studies University of Melbourne Paper: http://mercury.ecom.unimelb.edu.au/site/actwww/wps2009/no181.pdf

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Credit Risk in Lévy Libor Modeling: Rating Based Approach

Credit Risk in Lévy Libor Modeling: Rating Based Approach Credit Risk in Lévy Libor Modeling: Rating Based Approach Zorana Grbac Department of Math. Stochastics, University of Freiburg Joint work with Ernst Eberlein Croatian Quants Day University of Zagreb, 9th

More information

A study of the absence of arbitrage opportunities without calculating the risk-neutral probability

A study of the absence of arbitrage opportunities without calculating the risk-neutral probability Acta Univ. Sapientiae, Mathematica, 8, 2 (216) 26 221 DOI: 1.1515/ausm-216-13 A study of the absence of arbitrage opportunities without calculating the risk-neutral probability S. Dani Laboratory of Stochastic

More information

Near-expiration behavior of implied volatility for exponential Lévy models

Near-expiration behavior of implied volatility for exponential Lévy models Near-expiration behavior of implied volatility for exponential Lévy models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Mathematics Seminar The Stevanovich Center for

More information

The Valuation of Bermudan Guaranteed Return Contracts

The Valuation of Bermudan Guaranteed Return Contracts The Valuation of Bermudan Guaranteed Return Contracts Steven Simon 1 November 2003 1 K.U.Leuven and Ente Luigi Einaudi Abstract A guaranteed or minimum return can be found in different financial products,

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

Pricing Early-exercise options

Pricing Early-exercise options Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

More information

Stochastic Modelling Unit 3: Brownian Motion and Diffusions

Stochastic Modelling Unit 3: Brownian Motion and Diffusions Stochastic Modelling Unit 3: Brownian Motion and Diffusions Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 3 1 Introduction 2 Brownian Motion

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Theoretical Problems in Credit Portfolio Modeling 2

Theoretical Problems in Credit Portfolio Modeling 2 Theoretical Problems in Credit Portfolio Modeling 2 David X. Li Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiaotong University(SJTU) November 3, 2017 Presented at the University of South California

More information