A Martingale Betting Strategy

Size: px
Start display at page:

Download "A Martingale Betting Strategy"

Transcription

1 MATH 529 A Martingale Betting Strategy The traditional martingale betting strategy calls for the bettor to double the wager after each loss until finally winning. This strategy ensures that, even with a 1:1 payoff, the bettor will come out ahead in the end. The problem with the strategy is that with the size of the bet growing exponentially in this manner, table limits may be exceeded and/or the bettor may run out of money before finally winning. Here we will show how to avoid these pitfalls while guaranteeing a high probability of making a profit. The key is that the bettor does not have to double the bets! We assume that we are playing a game of chance for which we have probability p > 0 of winning and probability q =1 p of losing. We make an initial bet of $ b, for which there is a payoff ratio of R :1. The scenario is best illustrated and best executed with Roulette. There are various bets that can be made, such as the following four types: Bet p q Payoff 1 37 Single Number 35 : Block 5 :1 Column 2 :1 Red 1: Step 1: We first determine our desired probability of winning w, where w is near 1. Here we will take w = Step 2: Determine the number of bets n needed to make the probability of winning within n bets to be at least w. Solution. In a sequence of independent bets, the probability of losing n times in a row is q n. Hence, the probability of at least one win in n bets is 1 q n. We simply solve for n in the inequality 1 q n ln(1 w) w to obtain n. Thus, the required number of bets is lnq ln(1 w) n =. lnq Example 1. With Column bets, if we want at least a 99% chance of winning within n bets, then we need to be able to make n = ln(0.01) =13 bets. And the actual ln(26 / probability of winning is 1 (26 / )

2 The initial bet is $ b. After each loss, we multiply the bet by a fixed constant C. So the bets amounts are $ b, $C b, $C 2 b,... Step 3. Given an initial bet of $ b, determine how much money we need in order to make n bets. Solution. The amount of money required is M = n 1 C i b 1 Cn = b 1 C. Example 2. Starting with a $10 bet. How much money do you need to make 13 bets when (i) doubling the bet after each loss, and (ii) multiplying the bet by 1.6 after each loss Solution. (i) With b = $10 and C = 2, we need M = =10 (213 1) = $81, 910. (ii) With b = $20 and C = 1.6, we only need M = = $15, Step 4: Given a fixed amount of cash M, determine the maximum size of the initial bet so that you can make n bets. 1 Cn Solution. We need b M, which gives b M 1 C C n 1. Example 3. Suppose you are ready to risk $25,000. What size initial bet can you make in order to be able to cover 13 bets while increasing bets by a factor of 1.6? Solution. We must have b $33.. So we can start with a $30 bet. 1 Note: The amount of the last possible bet will be C n 1 b, which cannot exceed the allowable maximum bet of the house. For roulette the standard table max is $10,000. In this case, the largest initial bet from Example 3 becomes b $

3 Step 5: Determine a lower bound for the betting factor C that ensures that the payoff from the eventual win is greater than the sum of all previous losses. Solution. The sum of the losses on the first k bets is b + Cb C k 1 b = b k 1 C i 1 Ck = b 1 C = b Ck 1. The next amount bet is C k b with a payoff of R :1. So winning this bet earns you $RC k b. Therefore we need b Ck 1 < RCk b, or Ck 1 < RCk. This inequality is also maintained with the less strict inequality Ck 1 < Ck RCk, which is easier to solve 1 for C : R, which gives 1 R, or finally C 1+ 1 R = R +1 R. Example 4. Using an R = 2 :1 payoff, we need C 1.5 to guarantee that we come out ahead when stopping on the first win. Suppose we start with a $20 bet. The following tables illustrate the profits upon the first win: (i) Using C =1.5 Bet # Cumulative Loss Amount Bet Payoff Net Gain (ii) Using C 1.6 Bet # Cumulative Loss Amount Bet Payoff Net Gain (ii) Using C = 2 Bet # Cumulative Loss Amount Bet Payoff Net Gain

4 Step 6: What safeguard does the casino use in order to curtail such profits by bettors employing this strategy? (i) They limit the size of bets. (ii) They forbid using martingale strategies. (iii) They choose a payoff ratio that guarantees an average profit on any single bet. With a payoff of $ a, the players average gain for a bet of $ b is ap bq. So the casino chooses a so that ap bq < 0. They simply choose a < q b. That is, they use a p payoff ratio of R :1, where R < q / p. A fair payoff ratio would be R :1 where R = q / p. Then using a = q b, we have p ap bq = 0. That is, on average bettors break even. Note: Suppose Cq 1. Then C 1+ 1 q 1=1+ 1 q q makes p q < 1 R ). But we want C Hence, we must have Cq >1. R =1+ p q <1+ 1 R (because R < q p, which Example 5. The roulette wheel has the numbers 1 36, 0, and 00; thus; the probabilities are out of. The actual payoffs are chosen by R =!q /!p, where!q and!p are out of 36. What are the fair payoffs and actual payoffs for a Block bet? Solution. For a Block, p = 6 / and q = 32 /. The fair payoff ratio is q : p = 32 : 6 = 5. 33: 1. But then!p = 6/36 and!q = 30/36, hence the actual payoff ratio is!q /!p = 30 : 6 = 5 : 1. (Note: Because the numerator of!q is always less than q, while the numerators of!p and p are always the same, we see that in Roulette the actual payoff ratio!q /!p is less than the fair payoff ratio q : p.) Step 7: We shall make a maximum of n bets while employing the strategy of increasing the bet by a factor of C after each loss, and stopping after the first win. Determine the average net gain. Solution. We let G k denote the gain after the k th bet, and let T count the number of bets need to obtain the first win. Then T ~ geo(p) but we may not actually get a win for we are stopping after a maximum of n bets. Thus we want E[G T n ], where T n is the minimum of T and n. To compute this average, we look at the range of possible winnings and losses and the probabilities of these events:

5 Bet # Cumul. Loss Bet Winnings Prob 1 0 b R b p 2 b C b R C b q p 3 b + C b C 2 b R C 2 b q 2 p 4 b + C b +C 2 b C 3 b R C 3 b q 3 p n 1 n n b(1+ C C n 3 ) C n 2 b R C n 2 b q n 2 p b(1+ C C n 2 ) C n 1 b R C n 1 b q n 1 p b(1+ C C n 2 ) C n 1 b C n 1 b q n We now let W denote the winnings and L denote the losses. E[G T n ] = E[W T n ] E[L T n ]. First, because Cq 1, we have E[W T n ] = Rb p n 1 (Cq) i 1 (Cq)n = Rb p 1 Cq = Rb p (Cq)n 1 Cq 1. Next, as in Step 5, the cumulative loss for losing k bets is Then we need b k 1 C i = b Ck 1. The probability of losing k bets is q k p for 1 k n 1, and q n for k = n. Thus, the average loss is E[L T n ] = bp n 1 (C k 1)q k + b(cn 1)q n = bp Cq (Cq) n q qn 1 Cq 1 q + b(cn 1)q n k =1 = bp Cq (Cq) n 1 Cq + b((cq)n q n ) b(q qn ) = b(1 q) = b Cq Cq 2 (Cq) n + q(cq) n + (Cq) n q (Cq) n+1 + Cq 2 1 Cq = b Cq + q(cq) n q (Cq) n+1 1 Cq = b (Cq q)(1 (Cq) n ) 1 Cq = bq (Cq)n 1 Cq 1. Therefore, the average gain is E[G T n ] = E[W T n ] E[L T n ] = (Rb p bq) (Cq)n 1 Cq 1. Cq (Cq) n 1 Cq + b((cq)n q)

6 Step 8: Verify that E[G T n ] < 0. Solution. Because R < q / p, then R p q < 0 ; thus, is Rb p bq = b(rp q) < 0. And we have seen above that we must have Cq >1. So (Cq) n >1 also. Hence, E[G T n ] < 0. Example 6. With Column bets at Roulette, where p =12 /, q = 26 /, and R = 2, if we use C =1.6, then we have 99.28% chance of winning within n =13 bets. But on the very few occasions when we lose 13 in a row, we lose a lot of money. Our average gain using an initial bet of b = $20 is E[G T n ] = (Rb p bq) (Cq)n 1 26 Cq 1 = ( / ) / Exercises 1. Derive the average number of plays made while using this martingale strategy. That is, derive E[T n] where T ~ geo(p). 2. Under the general conditions of this martingale strategy, with parameters p, q, C, and n, derive the average amount of the final bet. 3. In the traditional martingale strategy, we continue doubling the bet until the first win with no limit on how many bets we make. Derive the average amount of the final bet in this scenario.

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3

GEK1544 The Mathematics of Games Suggested Solutions to Tutorial 3 GEK544 The Mathematics of Games Suggested Solutions to Tutorial 3. Consider a Las Vegas roulette wheel with a bet of $5 on black (payoff = : ) and a bet of $ on the specific group of 4 (e.g. 3, 4, 6, 7

More information

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is Geometric distribution The geometric distribution function is x f ( x) p(1 p) 1 x {1,2,3,...}, 0 p 1 It is the pdf of the random variable X, which equals the smallest positive integer x such that in a

More information

A GENERALIZED MARTINGALE BETTING STRATEGY

A GENERALIZED MARTINGALE BETTING STRATEGY DAVID K. NEAL AND MICHAEL D. RUSSELL Astract. A generalized martingale etting strategy is analyzed for which ets are increased y a factor of m 1 after each loss, ut return to the initial et amount after

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Their opponent will play intelligently and wishes to maximize their own payoff.

Their opponent will play intelligently and wishes to maximize their own payoff. Two Person Games (Strictly Determined Games) We have already considered how probability and expected value can be used as decision making tools for choosing a strategy. We include two examples below for

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Homework 9 (for lectures on 4/2)

Homework 9 (for lectures on 4/2) Spring 2015 MTH122 Survey of Calculus and its Applications II Homework 9 (for lectures on 4/2) Yin Su 2015.4. Problems: 1. Suppose X, Y are discrete random variables with the following distributions: X

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

Expectation Exercises.

Expectation Exercises. Expectation Exercises. Pages Problems 0 2,4,5,7 (you don t need to use trees, if you don t want to but they might help!), 9,-5 373 5 (you ll need to head to this page: http://phet.colorado.edu/sims/plinkoprobability/plinko-probability_en.html)

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

DCM 2004 How Do They Know My Opinion? Day 14 Page 1

DCM 2004 How Do They Know My Opinion? Day 14 Page 1 DCM 2004 How Do They Know My Opinion? Day 14 Page 1 Monday, January 26 Preparation Read Wade, Blaise Pascal: An Apologist for Our Time; and Pascal s Wager Do these problems on a separate sheet of paper.

More information

1. better to stick. 2. better to switch. 3. or does your second choice make no difference?

1. better to stick. 2. better to switch. 3. or does your second choice make no difference? The Monty Hall game Game show host Monty Hall asks you to choose one of three doors. Behind one of the doors is a new Porsche. Behind the other two doors there are goats. Monty knows what is behind each

More information

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION RAVI PHATARFOD *, Monash University Abstract We consider two aspects of gambling with the Kelly criterion. First, we show that for a wide range of final

More information

Cover Page Homework #8

Cover Page Homework #8 MODESTO JUNIOR COLLEGE Department of Mathematics MATH 134 Fall 2011 Problem 11.6 Cover Page Homework #8 (a) What does the population distribution describe? (b) What does the sampling distribution of x

More information

Why casino executives fight mathematical gambling systems. Casino Gambling Software: Baccarat, Blackjack, Roulette, Craps, Systems, Basic Strategy

Why casino executives fight mathematical gambling systems. Casino Gambling Software: Baccarat, Blackjack, Roulette, Craps, Systems, Basic Strategy Why casino executives fight mathematical gambling systems Casino Gambling Software: Baccarat, Blackjack, Roulette, Craps, Systems, Basic Strategy Software for Lottery, Lotto, Pick 3 4 Lotteries, Powerball,

More information

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable 6.1 Discrete and Continuous Random Variables 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable Random variable Takes numerical values that describe the outcomes of some

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin Arbitrage Pricing What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin March 27, 2010 Introduction What is Mathematical Finance?

More information

MATH20180: Foundations of Financial Mathematics

MATH20180: Foundations of Financial Mathematics MATH20180: Foundations of Financial Mathematics Vincent Astier email: vincent.astier@ucd.ie office: room S1.72 (Science South) Lecture 1 Vincent Astier MATH20180 1 / 35 Our goal: the Black-Scholes Formula

More information

Random Variables and Applications OPRE 6301

Random Variables and Applications OPRE 6301 Random Variables and Applications OPRE 6301 Random Variables... As noted earlier, variability is omnipresent in the business world. To model variability probabilistically, we need the concept of a random

More information

Maximizing Winnings on Final Jeopardy!

Maximizing Winnings on Final Jeopardy! Maximizing Winnings on Final Jeopardy! Jessica Abramson, Natalie Collina, and William Gasarch August 2017 1 Abstract Alice and Betty are going into the final round of Jeopardy. Alice knows how much money

More information

Math 152: Applicable Mathematics and Computing

Math 152: Applicable Mathematics and Computing Math 152: Applicable Mathematics and Computing May 22, 2017 May 22, 2017 1 / 19 Bertrand Duopoly: Undifferentiated Products Game (Bertrand) Firm and Firm produce identical products. Each firm simultaneously

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley.

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley. Appendix: Statistics in Action Part I Financial Time Series 1. These data show the effects of stock splits. If you investigate further, you ll find that most of these splits (such as in May 1970) are 3-for-1

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Zhen Sun, Milind Dawande, Ganesh Janakiraman, and Vijay Mookerjee

Zhen Sun, Milind Dawande, Ganesh Janakiraman, and Vijay Mookerjee RESEARCH ARTICLE THE MAKING OF A GOOD IMPRESSION: INFORMATION HIDING IN AD ECHANGES Zhen Sun, Milind Dawande, Ganesh Janakiraman, and Vijay Mookerjee Naveen Jindal School of Management, The University

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Chance/Rossman ISCAM II Chapter 0 Exercises Last updated August 28, 2014 ISCAM 2: CHAPTER 0 EXERCISES

Chance/Rossman ISCAM II Chapter 0 Exercises Last updated August 28, 2014 ISCAM 2: CHAPTER 0 EXERCISES ISCAM 2: CHAPTER 0 EXERCISES 1. Random Ice Cream Prices Suppose that an ice cream shop offers a special deal one day: The price of a small ice cream cone will be determined by rolling a pair of ordinary,

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

OCR Statistics 1. Discrete random variables. Section 2: The binomial and geometric distributions. When to use the binomial distribution

OCR Statistics 1. Discrete random variables. Section 2: The binomial and geometric distributions. When to use the binomial distribution Discrete random variables Section 2: The binomial and geometric distributions Notes and Examples These notes contain subsections on: When to use the binomial distribution Binomial coefficients Worked examples

More information

Maximizing Winnings on Final Jeopardy!

Maximizing Winnings on Final Jeopardy! Maximizing Winnings on Final Jeopardy! Jessica Abramson, Natalie Collina, and William Gasarch August 2017 1 Introduction Consider a final round of Jeopardy! with players Alice and Betty 1. We assume that

More information

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods. Introduction In ECON 50, we discussed the structure of two-period dynamic general equilibrium models, some solution methods, and their

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit.

STA 103: Final Exam. Print clearly on this exam. Only correct solutions that can be read will be given credit. STA 103: Final Exam June 26, 2008 Name: } {{ } by writing my name i swear by the honor code Read all of the following information before starting the exam: Print clearly on this exam. Only correct solutions

More information

Probability Notes: Binomial Probabilities

Probability Notes: Binomial Probabilities Probability Notes: Binomial Probabilities A Binomial Probability is a type of discrete probability with only two outcomes (tea or coffee, win or lose, have disease or don t have disease). The category

More information

MBAX Credit Default Swaps (CDS)

MBAX Credit Default Swaps (CDS) MBAX-6270 Credit Default Swaps Credit Default Swaps (CDS) CDS is a form of insurance against a firm defaulting on the bonds they issued CDS are used also as a way to express a bearish view on a company

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Receiver Guess Guess Forehand Backhand Server to Forehand Serve To Backhand 90 45

Receiver Guess Guess Forehand Backhand Server to Forehand Serve To Backhand 90 45 Homework 11, Math10170, Spring 2015 Question 1 Consider the following simplified model of a game of tennis, where the server must decide whether to serve to the receivers forehand(h) or backhand(b). The

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

Test 6A AP Statistics Name:

Test 6A AP Statistics Name: Test 6A AP Statistics Name: Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. A marketing survey compiled data on the number of personal computers in households. If X = the

More information

Math 135: Answers to Practice Problems

Math 135: Answers to Practice Problems Math 35: Answers to Practice Problems Answers to problems from the textbook: Many of the problems from the textbook have answers in the back of the book. Here are the answers to the problems that don t

More information

MATH/STAT 3360, Probability FALL 2012 Toby Kenney

MATH/STAT 3360, Probability FALL 2012 Toby Kenney MATH/STAT 3360, Probability FALL 2012 Toby Kenney In Class Examples () August 31, 2012 1 / 81 A statistics textbook has 8 chapters. Each chapter has 50 questions. How many questions are there in total

More information

Regret Minimization and Security Strategies

Regret Minimization and Security Strategies Chapter 5 Regret Minimization and Security Strategies Until now we implicitly adopted a view that a Nash equilibrium is a desirable outcome of a strategic game. In this chapter we consider two alternative

More information

Microeconomics II. CIDE, MsC Economics. List of Problems

Microeconomics II. CIDE, MsC Economics. List of Problems Microeconomics II CIDE, MsC Economics List of Problems 1. There are three people, Amy (A), Bart (B) and Chris (C): A and B have hats. These three people are arranged in a room so that B can see everything

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

Multinomial Coefficient : A Generalization of the Binomial Coefficient

Multinomial Coefficient : A Generalization of the Binomial Coefficient Multinomial Coefficient : A Generalization of the Binomial Coefficient Example: A team plays 16 games in a season. At the end of the season, the team has 8 wins, 3 ties and 5 losses. How many different

More information

Thursday, March 3

Thursday, March 3 5.53 Thursday, March 3 -person -sum (or constant sum) game theory -dimensional multi-dimensional Comments on first midterm: practice test will be on line coverage: every lecture prior to game theory quiz

More information

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours YORK UNIVERSITY Faculty of Graduate Studies Final Examination December 14, 2010 Economics 5010 AF3.0 : Applied Microeconomics S. Bucovetsky time=2.5 hours Do any 6 of the following 10 questions. All count

More information

MS-E2114 Investment Science Exercise 10/2016, Solutions

MS-E2114 Investment Science Exercise 10/2016, Solutions A simple and versatile model of asset dynamics is the binomial lattice. In this model, the asset price is multiplied by either factor u (up) or d (down) in each period, according to probabilities p and

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

MLLunsford 1. Activity: Mathematical Expectation

MLLunsford 1. Activity: Mathematical Expectation MLLunsford 1 Activity: Mathematical Expectation Concepts: Mathematical Expectation for discrete random variables. Includes expected value and variance. Prerequisites: The student should be familiar with

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 247 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action A will have possible outcome states Result

More information

Econ 172A, W2002: Final Examination, Solutions

Econ 172A, W2002: Final Examination, Solutions Econ 172A, W2002: Final Examination, Solutions Comments. Naturally, the answers to the first question were perfect. I was impressed. On the second question, people did well on the first part, but had trouble

More information

CUR 412: Game Theory and its Applications, Lecture 9

CUR 412: Game Theory and its Applications, Lecture 9 CUR 412: Game Theory and its Applications, Lecture 9 Prof. Ronaldo CARPIO May 22, 2015 Announcements HW #3 is due next week. Ch. 6.1: Ultimatum Game This is a simple game that can model a very simplified

More information

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance Normal Form Games & Dominance Let s play the quarters game again We each have a quarter. Let s put them down on the desk at the same time. If they show the same side (HH or TT), you take my quarter. If

More information

Static Games and Cournot. Competition

Static Games and Cournot. Competition Static Games and Cournot Introduction In the majority of markets firms interact with few competitors oligopoly market Each firm has to consider rival s actions strategic interaction in prices, outputs,

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2017 These notes have been used and commented on before. If you can still spot any errors or have any suggestions for improvement, please

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems.

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems. Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems. The following are marks from assignments and tests in a math class.

More information

February 2 Math 2335 sec 51 Spring 2016

February 2 Math 2335 sec 51 Spring 2016 February 2 Math 2335 sec 51 Spring 2016 Section 3.1: Root Finding, Bisection Method Many problems in the sciences, business, manufacturing, etc. can be framed in the form: Given a function f (x), find

More information

Business Statistics 41000: Homework # 2

Business Statistics 41000: Homework # 2 Business Statistics 41000: Homework # 2 Drew Creal Due date: At the beginning of lecture # 5 Remarks: These questions cover Lectures #3 and #4. Question # 1. Discrete Random Variables and Their Distributions

More information

Utility and Choice Under Uncertainty

Utility and Choice Under Uncertainty Introduction to Microeconomics Utility and Choice Under Uncertainty The Five Axioms of Choice Under Uncertainty We can use the axioms of preference to show how preferences can be mapped into measurable

More information

Introduction to Game Theory

Introduction to Game Theory Chapter G Notes 1 Epstein, 2013 Introduction to Game Theory G.1 Decision Making Game theory is a mathematical model that provides a atic way to deal with decisions under circumstances where the alternatives

More information

This Chief Counsel Advice responds to your request for assistance about a

This Chief Counsel Advice responds to your request for assistance about a CLICK HERE to return to the home page Office of Chief Counsel Internal Revenue Service Memorandum Release Number: AM2008-011 Release Date: 12/12/08 CC:ITA:B01 POSTN-138904-08 Third Party Communication:

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

Online Shopping Intermediaries: The Strategic Design of Search Environments

Online Shopping Intermediaries: The Strategic Design of Search Environments Online Supplemental Appendix to Online Shopping Intermediaries: The Strategic Design of Search Environments Anthony Dukes University of Southern California Lin Liu University of Central Florida February

More information

expected value of X, and describes the long-run average outcome. It is a weighted average.

expected value of X, and describes the long-run average outcome. It is a weighted average. X The mean of a set of observations is their ordinary average, whereas the mean of a random variable X is an average of the possible values of X The mean of a random variable X is often called the expected

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Two Equivalent Conditions

Two Equivalent Conditions Two Equivalent Conditions The traditional theory of present value puts forward two equivalent conditions for asset-market equilibrium: Rate of Return The expected rate of return on an asset equals the

More information

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves University of Illinois Spring 01 ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves Due: Reading: Thursday, April 11 at beginning of class

More information

Analysis of Keno Bonus Wheels June 20, 2017

Analysis of Keno Bonus Wheels June 20, 2017 Analysis of Keno Bonus Wheels June 20, 2017 Prepared For John Feola New Vision Gaming 5 Samuel Phelps Way North Reading, MA 01864 Office: 978 664-1515 Fax: 978-664 - 5117 www.newvisiongaming.com Prepared

More information

CS 798: Homework Assignment 4 (Game Theory)

CS 798: Homework Assignment 4 (Game Theory) 0 5 CS 798: Homework Assignment 4 (Game Theory) 1.0 Preferences Assigned: October 28, 2009 Suppose that you equally like a banana and a lottery that gives you an apple 30% of the time and a carrot 70%

More information

Section Strictly Determined Games, Dominated Rows, Saddle Points

Section Strictly Determined Games, Dominated Rows, Saddle Points Finite Math B Chapter 11 Practice Questions Game Theory Section 11.1 - Strictly Determined Games, Dominated Rows, Saddle Points MULTIPLE CHOICE. Choose the one alternative that best completes the statement

More information

Game Theory Tutorial 3 Answers

Game Theory Tutorial 3 Answers Game Theory Tutorial 3 Answers Exercise 1 (Duality Theory) Find the dual problem of the following L.P. problem: max x 0 = 3x 1 + 2x 2 s.t. 5x 1 + 2x 2 10 4x 1 + 6x 2 24 x 1 + x 2 1 (1) x 1 + 3x 2 = 9 x

More information

Strategy -1- Strategy

Strategy -1- Strategy Strategy -- Strategy A Duopoly, Cournot equilibrium 2 B Mixed strategies: Rock, Scissors, Paper, Nash equilibrium 5 C Games with private information 8 D Additional exercises 24 25 pages Strategy -2- A

More information

Bayesian Nash Equilibrium

Bayesian Nash Equilibrium Bayesian Nash Equilibrium We have already seen that a strategy for a player in a game of incomplete information is a function that specifies what action or actions to take in the game, for every possibletypeofthatplayer.

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Honors Statistics. Daily Agenda

Honors Statistics. Daily Agenda Honors Statistics Aug 23-8:26 PM Daily Agenda 1. Review OTL C6#4 Chapter 6.2 rules for means and variances Aug 23-8:31 PM 1 Nov 21-8:16 PM Working out Choose a person aged 19 to 25 years at random and

More information

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General

More information

Static Games and Cournot. Competition

Static Games and Cournot. Competition Static Games and Cournot Competition Lecture 3: Static Games and Cournot Competition 1 Introduction In the majority of markets firms interact with few competitors oligopoly market Each firm has to consider

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 253 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action a will have possible outcome states Result(a)

More information

Applying Risk Theory to Game Theory Tristan Barnett. Abstract

Applying Risk Theory to Game Theory Tristan Barnett. Abstract Applying Risk Theory to Game Theory Tristan Barnett Abstract The Minimax Theorem is the most recognized theorem for determining strategies in a two person zerosum game. Other common strategies exist such

More information

Lecture 6 Dynamic games with imperfect information

Lecture 6 Dynamic games with imperfect information Lecture 6 Dynamic games with imperfect information Backward Induction in dynamic games of imperfect information We start at the end of the trees first find the Nash equilibrium (NE) of the last subgame

More information

Chapter 15 Trade-offs Involving Time and Risk. Outline. Modeling Time and Risk. The Time Value of Money. Time Preferences. Probability and Risk

Chapter 15 Trade-offs Involving Time and Risk. Outline. Modeling Time and Risk. The Time Value of Money. Time Preferences. Probability and Risk Involving Modeling The Value Part VII: Equilibrium in the Macroeconomy 23. Employment and Unemployment 15. Involving Web 1. Financial Decision Making 24. Credit Markets 25. The Monetary System 1 / 36 Involving

More information

Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition

Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition Kai Hao Yang /2/207 In this lecture, we will apply the concepts in game theory to study oligopoly. In short, unlike

More information

EconS 424 Strategy and Game Theory. Homework #5 Answer Key

EconS 424 Strategy and Game Theory. Homework #5 Answer Key EconS 44 Strategy and Game Theory Homework #5 Answer Key Exercise #1 Collusion among N doctors Consider an infinitely repeated game, in which there are nn 3 doctors, who have created a partnership. In

More information

Chapter 2 Questions Sample Comparing Options

Chapter 2 Questions Sample Comparing Options Chapter 2 Questions Sample Comparing Options Questions 2.16 through 2.21 from Chapter 2 are provided below as a Sample of our Questions, followed by the corresponding full Solutions. At the beginning of

More information

7. Infinite Games. II 1

7. Infinite Games. II 1 7. Infinite Games. In this Chapter, we treat infinite two-person, zero-sum games. These are games (X, Y, A), in which at least one of the strategy sets, X and Y, is an infinite set. The famous example

More information

Strategy -1- Strategic equilibrium in auctions

Strategy -1- Strategic equilibrium in auctions Strategy -- Strategic equilibrium in auctions A. Sealed high-bid auction 2 B. Sealed high-bid auction: a general approach 6 C. Other auctions: revenue equivalence theorem 27 D. Reserve price in the sealed

More information

OPTIMAL BLUFFING FREQUENCIES

OPTIMAL BLUFFING FREQUENCIES OPTIMAL BLUFFING FREQUENCIES RICHARD YEUNG Abstract. We will be investigating a game similar to poker, modeled after a simple game called La Relance. Our analysis will center around finding a strategic

More information

ECO 203: Worksheet 4. Question 1. Question 2. (6 marks)

ECO 203: Worksheet 4. Question 1. Question 2. (6 marks) ECO 203: Worksheet 4 Question 1 (6 marks) Russel and Ahmed decide to play a simple game. Russel has to flip a fair coin: if he gets a head Ahmed will pay him Tk. 10, if he gets a tail he will have to pay

More information

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts 6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts Asu Ozdaglar MIT February 9, 2010 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria

More information

Microeconomics Comprehensive Exam

Microeconomics Comprehensive Exam Microeconomics Comprehensive Exam June 2009 Instructions: (1) Please answer each of the four questions on separate pieces of paper. (2) When finished, please arrange your answers alphabetically (in the

More information