CVE SOME DISCRETE PROBABILITY DISTRIBUTIONS

Size: px
Start display at page:

Download "CVE SOME DISCRETE PROBABILITY DISTRIBUTIONS"

Transcription

1 CVE SOME DISCRETE PROBABILITY DISTRIBUTIONS Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus CVE 472 Statistical Techniques in Hydrology. 1/23

2 Outline Hypergeometric Distribution Binomial Distribution Geometric Distribution Negative Binomial Distribution Poisson Distribution CVE 472 Statistical Techniques in Hydrology. 2/23

3 Hypergeometric Distribution Drawing a random sample of size n (w/o replacement) from a finite population of size N with the elements of the population divided into two groups with k elements belonging to one group. Probability of success (X=x): f x ( x; N, n, k) = k N k x n x N n f x (x;n,n,k): the probability of obtaining X=x success in a sample of size n drawn from a population of size N containing k successes. CVE 472 Statistical Techniques in Hydrology. 3/23

4 Hypergeometric Distribution The mean of the hypergeometric distribution is µ = E(X) = nk N The standard deviation is σ = nk(n-k) 2 N N-n N -1 CVE 472 Statistical Techniques in Hydrology. 4/23

5 Hypergeometric Distribution Examples Solve MS EXCEL Function: =HYPGEOMDIST() Example 4.1 p.69, For a particular watershed, records from 10 rain gages are available. Records from 3 of the gages are known to be bed. If 4 records are selected at random from the 10 records, (a) What is the probability that 1 bad record will be selected? (b) What is the probability that 3 bad records will be selected? (c) What is the probability that at least 1 bad record will be selected? Example 4.2 p.69 CVE 472 Statistical Techniques in Hydrology. 5/23

6 Outline Hypergeometric Distribution Binomial Distribution Geometric Distribution Negative Binomial Distribution Poisson Distribution CVE 472 Statistical Techniques in Hydrology. 6/23

7 Binomial Distribution f x n! x = ( x; n, p) = p (1 p) x!( n x)! n x f x = probability of x successes in n trials, with probability of success p on each trial x = number of successes in sample, (x = 0, 1, 2,..., n) n = sample size (number of trials or observations) p = probability of success CVE 472 Statistical Techniques in Hydrology. 7/23

8 Binomial Distribution The shape of the binomial distribution depends on the values of p and n Mean Here, n = 5 and p = 0.1 Here, n = 5 and p = 0.5 P(X) X P(X) X CVE 472 Statistical Techniques in Hydrology. 8/23

9 Binomial Distribution Mean µ = E(x) = np Variance and Standard Deviation σ 2 = np(1- p) σ = np(1- p) Where n = sample size p = probability of success (1 p) = probability of failure CVE 472 Statistical Techniques in Hydrology. 9/23

10 Binomial Distribution Examples: Solve Example 4.4 (p.71) Example 4.5 (p.72) Example 4.6 (p.72) Example 4.7 (p.72) Example 4.8 (p.73) MS Excel Function =BINOMDIST() CVE 472 Statistical Techniques in Hydrology. 10/23

11 Outline Hypergeometric Distribution Binomial Distribution Geometric Distribution Negative Binomial Distribution Poisson Distribution CVE 472 Statistical Techniques in Hydrology. 11/23

12 Geometric Distribution The probability that the first exceedance (or success) occurs on the x th trial f x = ( x; p) = p (1 p) x 1 x = number of successes in sample, (x = 0, 1, 2,..., n) p = probability of success CVE 472 Statistical Techniques in Hydrology. 12/23

13 Geometric Distribution Mean µ = E(x) = 1/p Variance 2 σ = Var( X ) = (1- p)/p 2 Where p = probability of success (1 p) = probability of failure CVE 472 Statistical Techniques in Hydrology. 13/23

14 Geometric Distribution Examples: Solve Example 4.9 (p.74) Example 4.10 (p.75) CVE 472 Statistical Techniques in Hydrology. 14/23

15 Outline Hypergeometric Distribution Binomial Distribution Geometric Distribution Negative Binomial Distribution Poisson Distribution CVE 472 Statistical Techniques in Hydrology. 15/23

16 Negative Binomial Distribution The probability that the k th exceedance (or success) occurs on the x th trial (x k) f x ( x 1)! k = ( x; k, p) = p (1 p) ( k 1)!( x k)! x k x = number of successes in sample, (x = k, k+1,..., ) p = probability of success Example 4.11: What is the probability that the fourth occurrence of a 10-yr flood will be on the fortieth year? (x=40, k=4, p=1/10) CVE 472 Statistical Techniques in Hydrology. 16/23

17 Negative Binomial Distribution Mean µ = E(x) = k/p Variance σ 2 = Var( X ) = k(1- p)/p 2 Where p = probability of success (1 p) = probability of failure CVE 472 Statistical Techniques in Hydrology. 17/23

18 Outline Hypergeometric Distribution Binomial Distribution Geometric Distribution Negative Binomial Distribution Poisson Distribution CVE 472 Statistical Techniques in Hydrology. 18/23

19 Poisson Distribution Apply the Poisson distribution when you wish to count the number of times an event occurs in a given area of opportunity. f x ( x; λ) = e λ x! λ x where: x = number of events in an area of opportunity (x = 0, 1, 2, ) λ = expected number of events (λ > 0) e = base of the natural logarithm system ( ) CVE 472 Statistical Techniques in Hydrology. 19/23

20 Poisson Distribution Mean µ = λ = np Variance and Standard Deviation σ 2 = λ σ = λ where λ = expected number of events CVE 472 Statistical Techniques in Hydrology. 20/23

21 Poisson Distribution Poisson Distribution Shape The shape of the Poisson Distribution depends on the parameter λ : 0.70 λ = 0.50 λ = P(x) P(x) x x CVE 472 Statistical Techniques in Hydrology. 21/23

22 Poisson Distribution Solve the following examples given in the text book. MS Excel Function Example 4.12 (p.76) =POISSON() What is the probability that a storm with a return period of 20 years will occur in a 10-yr period? Example 4.13 (p.76) What is the probability of 5 occurrences of a 2-yr storm in a 10- year period? Example 4.14 (p.77) What is the probability of fewer than 5 occurrences of a 20-yr storm in a 100-yr period? CVE 472 Statistical Techniques in Hydrology. 22/23

23 Exercises Page 81-84: CVE 472 Statistical Techniques in Hydrology. 23/23

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Some Discrete Distribution Families

Some Discrete Distribution Families Some Discrete Distribution Families ST 370 Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications. In each family, we need a formula

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

Discrete Probability Distributions and application in Business

Discrete Probability Distributions and application in Business http://wiki.stat.ucla.edu/socr/index.php/socr_courses_2008_thomson_econ261 Discrete Probability Distributions and application in Business By Grace Thomson DISCRETE PROBALITY DISTRIBUTIONS Discrete Probabilities

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons Statistics for Business and Economics Discrete Probability Distribu0ons Learning Objec0ves In this lecture, you learn: The proper0es of a probability distribu0on To compute the expected value and variance

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

8.1 Binomial Distributions

8.1 Binomial Distributions 8.1 Binomial Distributions The Binomial Setting The 4 Conditions of a Binomial Setting: 1.Each observation falls into 1 of 2 categories ( success or fail ) 2 2.There is a fixed # n of observations. 3.All

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Sampling & populations

Sampling & populations Sampling & populations Sample proportions Sampling distribution - small populations Sampling distribution - large populations Sampling distribution - normal distribution approximation Mean & variance of

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

Objective: To understand similarities and differences between geometric and binomial scenarios and to solve problems related to these scenarios.

Objective: To understand similarities and differences between geometric and binomial scenarios and to solve problems related to these scenarios. AP Statistics: Geometric and Binomial Scenarios Objective: To understand similarities and differences between geometric and binomial scenarios and to solve problems related to these scenarios. Everything

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

CIVL Discrete Distributions

CIVL Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations II - Probability Counting Techniques three rules of counting 1multiplication rules 2permutations 3combinations Section 2 - Probability (1) II - Probability Counting Techniques 1multiplication rules In

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

2017 Fall QMS102 Tip Sheet 2

2017 Fall QMS102 Tip Sheet 2 Chapter 5: Basic Probability 2017 Fall QMS102 Tip Sheet 2 (Covering Chapters 5 to 8) EVENTS -- Each possible outcome of a variable is an event, including 3 types. 1. Simple event = Described by a single

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance

3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance 3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler 3.2 Hypergeometric Distribution Math 186 / Winter 2017 1 / 15 Sampling from an urn c() 0 10 20

More information

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc.

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc. 1 3.1 Describing Variation Stem-and-Leaf Display Easy to find percentiles of the data; see page 69 2 Plot of Data in Time Order Marginal plot produced by MINITAB Also called a run chart 3 Histograms Useful

More information

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Random Variables 6.1 6.2 6.3 Discrete and Continuous Random Variables Transforming and Combining

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS I. INTRODUCTION TO RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS A. Random Variables 1. A random variable x represents a value

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Discrete Probability Distribution Are used to model outcomes that only have a finite number of possible values. For example, the number of congenitally missing third

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5 H homework problems, C-copyright Joe Kahlig Chapter Solutions, Page Chapter Homework Solutions Compiled by Joe Kahlig. (a) finite discrete (b) infinite discrete (c) continuous (d) finite discrete (e) continuous.

More information

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Ch 8 The Binomial and Geometric Distributions Ch 8.1 The Binomial Distributions The Binomial Setting A situation where these four conditions are satisfied is called a binomial setting. 1. Each observation falls into one of just two categories, which

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 The Poisson Distribution

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Discrete Probability Distribution

Discrete Probability Distribution 1 Discrete Probability Distribution Key Definitions Discrete Random Variable: Has a countable number of values. This means that each data point is distinct and separate. Continuous Random Variable: Has

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes Model Paper Statistics Objective Intermediate Part I (11 th Class) Examination Session 2012-2013 and onward Total marks: 17 Paper Code Time Allowed: 20 minutes Note:- You have four choices for each objective

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient Statistics & Flood Frequency Chapter 3 Dr. Philip B. Bedient Predicting FLOODS Flood Frequency Analysis n Statistical Methods to evaluate probability exceeding a particular outcome - P (X >20,000 cfs)

More information

Discrete Random Variables and Their Probability Distributions

Discrete Random Variables and Their Probability Distributions Chapter 5 Discrete Random Variables and Their Probability Distributions Mean and Standard Deviation of a Discrete Random Variable Computing the mean and standard deviation of a discrete random variable

More information

S = 1,2,3, 4,5,6 occurs

S = 1,2,3, 4,5,6 occurs Chapter 5 Discrete Probability Distributions The observations generated by different statistical experiments have the same general type of behavior. Discrete random variables associated with these experiments

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

CD Appendix F Hypergeometric Distribution

CD Appendix F Hypergeometric Distribution D Appendix F Hypergeometric Distribution A hypergeometric experiment is an experiment where a sample of n items is taen without replacement from a finite population of items, each of which is classified

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

CIVL Learning Objectives. Definitions. Discrete Distributions

CIVL Learning Objectives. Definitions. Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

Discrete Probability Distributions

Discrete Probability Distributions Page 1 of 6 Discrete Probability Distributions In order to study inferential statistics, we need to combine the concepts from descriptive statistics and probability. This combination makes up the basics

More information

The binomial distribution p314

The binomial distribution p314 The binomial distribution p314 Example: A biased coin (P(H) = p = 0.6) ) is tossed 5 times. Let X be the number of H s. Fine P(X = 2). This X is a binomial r. v. The binomial setting p314 1. There are

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

The Binomial Distribution

The Binomial Distribution MATH 382 The Binomial Distribution Dr. Neal, WKU Suppose there is a fixed probability p of having an occurrence (or success ) on any single attempt, and a sequence of n independent attempts is made. Then

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Chapter 14 - Random Variables

Chapter 14 - Random Variables Chapter 14 - Random Variables October 29, 2014 There are many scenarios where probabilities are used to determine risk factors. Examples include Insurance, Casino, Lottery, Business, Medical, and other

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Chapter 9. Sampling Distributions. A sampling distribution is created by, as the name suggests, sampling.

Chapter 9. Sampling Distributions. A sampling distribution is created by, as the name suggests, sampling. Chapter 9 Sampling Distributions 9.1 Sampling Distributions A sampling distribution is created by, as the name suggests, sampling. The method we will employ on the rules of probability and the laws of

More information

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1

Chapter 5. Discrete Probability Distributions. McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Discrete Probability Distributions McGraw-Hill, Bluman, 7 th ed, Chapter 5 1 Chapter 5 Overview Introduction 5-1 Probability Distributions 5-2 Mean, Variance, Standard Deviation, and Expectation

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

Lean Six Sigma: Training/Certification Books and Resources

Lean Six Sigma: Training/Certification Books and Resources Lean Si Sigma Training/Certification Books and Resources Samples from MINITAB BOOK Quality and Si Sigma Tools using MINITAB Statistical Software A complete Guide to Si Sigma DMAIC Tools using MINITAB Prof.

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Binomal and Geometric Distributions

Binomal and Geometric Distributions Binomal and Geometric Distributions Sections 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 7-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution)

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) I. Concept Questions 1. Give an example of a random variable in the context of Drawing a card from a deck of cards.

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

2) There is a fixed number of observations n. 3) The n observations are all independent

2) There is a fixed number of observations n. 3) The n observations are all independent Chapter 8 Binomial and Geometric Distributions The binomial setting consists of the following 4 characteristics: 1) Each observation falls into one of two categories success or failure 2) There is a fixed

More information

AP Statistics Test 5

AP Statistics Test 5 AP Statistics Test 5 Name: Date: Period: ffl If X is a discrete random variable, the the mean of X and the variance of X are given by μ = E(X) = X xp (X = x); Var(X) = X (x μ) 2 P (X = x): ffl If X is

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributions Probability distributions Discrete random variables Expected values (mean) Variance Linear functions - mean & standard deviation Standard deviation 1 Probability distributions

More information

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions UNIVERSITY OF VICTORIA Midterm June 04 Solutions NAME: STUDENT NUMBER: V00 Course Name & No. Inferential Statistics Economics 46 Section(s) A0 CRN: 375 Instructor: Betty Johnson Duration: hour 50 minutes

More information