Implementing hybrid PDE solvers

Size: px
Start display at page:

Download "Implementing hybrid PDE solvers"

Transcription

1 Implementing hybrid PDE solvers George Sarailidis and Manolis Vavalis ECE Department, University of Thessaly November 14, 2015

2 Outline Objectives State-of-the-art Basic Implementations Experimentation Synopsis and prospects

3 Objectives Overall Objective Effectively combine conventional deterministic PDE solving methods and traditional probabilistic Monte Carlo approaches for solving linear Elliptic Partial Differential Equations.

4 Objectives Overall Objective Effectively combine conventional deterministic PDE solving methods and traditional probabilistic Monte Carlo approaches for solving linear Elliptic Partial Differential Equations. Short term goal Design, implement and evaluate a robust and easy to use prototype system that allows further experimentation in order to elucidate the capabilities and computational characteristics of the resulting PDE solvers.

5 Objectives Overall Objective Effectively combine conventional deterministic PDE solving methods and traditional probabilistic Monte Carlo approaches for solving linear Elliptic Partial Differential Equations. Short term goal Design, implement and evaluate a robust and easy to use prototype system that allows further experimentation in order to elucidate the capabilities and computational characteristics of the resulting PDE solvers. Long term goal Provide practical (production?) computational tools that add value to existing high performance PDE solvers.

6 Basic idea Stochastic pre-processing A Monte Carlo-based walk on spheres approach is utilized to decouple the original PDE problem into a set of independent PDE sub-problems. Deterministic solving Each of the resulting sub-problems is solved independently by an appropriately selected PDE solver.

7 Long and short term: PDE problems

8 Long and short term: PDE problems

9 Long and short term: PDE problems BEWARE:

10 Specific Algorithm (1/2) PDE Problem Lu(x) = f (x) x D R d, Bu(x) = g(x) x D,

11 Specific Algorithm (1/2) PDE Problem Lu(x) = f (x) x D R d, Bu(x) = g(x) x D, Subdomains and Interfaces D = N D µ=1 D µ I µ,ν = D µ ( D ν D ν ) R d 1, µ ν, µ, ν = 1,..., N D.

12 Specific Algorithm (2/2) Data: i 1, i 2,..., i N : subdomains we wish to compute the solution. Result: ũ µ, µ = i 1,..., i N : computed solutions in D µ

13 Specific Algorithm (2/2) Data: i 1, i 2,..., i N : subdomains we wish to compute the solution. Result: ũ µ, µ = i 1,..., i N : computed solutions in D µ // PHASE I: Estimate solution on interfaces while I µ,ν N j=1 D i j do Select control points x i I µ,ν, i = 1, 2,..., M µ,ν ; Estimate the solution u at x i by Monte Carlo; Calculate the interpolant uµ,ν I of u µ,ν using x i ; end

14 Specific Algorithm (2/2) Data: i 1, i 2,..., i N : subdomains we wish to compute the solution. Result: ũ µ, µ = i 1,..., i N : computed solutions in D µ // PHASE I: Estimate solution on interfaces while I µ,ν N j=1 D i j do Select control points x i I µ,ν, i = 1, 2,..., M µ,ν ; Estimate the solution u at x i by Monte Carlo; Calculate the interpolant uµ,ν I of u µ,ν using x i ; end // PHASE II: Compute solution in subdomains for j = 1, 2,..., N do Solve the PDE problem:; L ij u ij (x) = f ij (x) x D ij ; B ij u ij (x) = g ij (x) x D ij D ; L i j u ij (x) = h ij (x) x D ij end

15 State-of-the-art M. Muller, Some Continuous Monte Carlo Methods for the Dirichlet Problem, Annals Mathem Statistics, J. DeLaurentis and L. Romero, A Monte Carlo method for Poisson s equation, J. Comput. Phys., M. Mascagni, A. Karaivanova, and Y. Li, A quasi-monte Carlo method for elliptic PDEs. Monte Carlo Methods and Applications, R. Papancheva, I. Dimov, and T. Gurov. A new class of grid-free Monte Carlo algorithms for elliptic BVP, Numerical Methods and Applications, J. Acebron, M. Busico, P. Lanucara, and R. Spigler, Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and quasi-monte Carlo methods. SIAM Journal of Sci. Comp., PDD-HPC Research project (Acebron at al.)

16 Nevertheless To the best of our knowledge No systematic experimentation as been performed. No state-of-the-art PDE solving modulus have been considered. No practical issues have been raised. No software components are readily available. No new computing paradigms have been explored.

17 Nevertheless To the best of our knowledge No systematic experimentation as been performed. No state-of-the-art PDE solving modulus have been considered. No practical issues have been raised. No software components are readily available. No new computing paradigms have been explored. Isolated and sporadic efforts.

18 Basic algorithms and software components Our QMC implementations based on known random walks on spheres algorithms. GRID FREE! Use of standard C++ library Common 2D and 3D user interface SINTEF s Multilevel B-splines library for interpolation State of the art PDE solvers from ( 2007 J. H. Wilkinson Prize for Numerical Software) State of the art graphics integration (TecPlot)

19 Selected experiments in 2D 2 u x u = f (x, y), (x, y) Ω [ 1, 1] [ 1, 1], y 2 u(±1, y) = cosh(±2) cos(2πy) (x, y) Ω. u(x, ±1) = sin(πx) sinh(±1) + cosh(2x), u(x, y) = sin(πx) sinh(y) + cosh(2x) cos(2πy).

20 Selected experiments in 2D 2 u x u = f (x, y), (x, y) Ω [ 1, 1] [ 1, 1], y 2 u(±1, y) = cosh(±2) cos(2πy) (x, y) Ω. u(x, ±1) = sin(πx) sinh(±1) + cosh(2x), u(x, y) = sin(πx) sinh(y) + cosh(2x) cos(2πy). 8 subdomains with interfaces at x 1 = 0, y 1 = 0.5, y 2 = 0 and y 3 = Seek the solution only in Ω 1,0, Ω 0,1 and Ω 2,1

21 Error reductions for various configurations

22 GPU experimentation Computing devices: CPU: Intel(R) Core(TM) i7 CPU 870 (2.93GHz) GPU: GeForce GTX 480 (1401MHz) Speedups CPU/GPU+CPU Maximum speedup of QMC: 13x Maximum overall speedup: 150x Trivial implementation!

23 Web Services experimentation Computing servers: Local PCs Tier 3 local computational servers Amazon virtual machines Low communication/computation ratio Trivial implementation!

24 Synopsis and Prospects Potential for Software reuse Hardware utilization Utilization of high performance PDE solvers and interpolants Further experimentation Huge speedups and practical use

25 Synopsis and Prospects Potential for Software reuse Hardware utilization Utilization of high performance PDE solvers and interpolants Further experimentation Huge speedups and practical use Questions need to be answered Error analysis Balance the errors involved (random walks, interpolation, PDE solving and roundoff) in practice Extent to more general problems...

26 Synopsis and Prospects Potential for Software reuse Hardware utilization Utilization of high performance PDE solvers and interpolants Further experimentation Huge speedups and practical use Questions need to be answered Error analysis Balance the errors involved (random walks, interpolation, PDE solving and roundoff) in practice Extent to more general problems... New line of reasoning that provides new intuition about the dynamics of PDE MC simulations.

Monte Carlo Simulations in the Teaching Process

Monte Carlo Simulations in the Teaching Process Monte Carlo Simulations in the Teaching Process Blanka Šedivá Department of Mathematics, Faculty of Applied Sciences University of West Bohemia, Plzeň, Czech Republic CADGME 2018 Conference on Digital

More information

F1 Acceleration for Montecarlo: financial algorithms on FPGA

F1 Acceleration for Montecarlo: financial algorithms on FPGA F1 Acceleration for Montecarlo: financial algorithms on FPGA Presented By Liang Ma, Luciano Lavagno Dec 10 th 2018 Contents Financial problems and mathematical models High level synthesis Optimization

More information

Outline. GPU for Finance SciFinance SciFinance CUDA Risk Applications Testing. Conclusions. Monte Carlo PDE

Outline. GPU for Finance SciFinance SciFinance CUDA Risk Applications Testing. Conclusions. Monte Carlo PDE Outline GPU for Finance SciFinance SciFinance CUDA Risk Applications Testing Monte Carlo PDE Conclusions 2 Why GPU for Finance? Need for effective portfolio/risk management solutions Accurately measuring,

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

Barrier Option. 2 of 33 3/13/2014

Barrier Option. 2 of 33 3/13/2014 FPGA-based Reconfigurable Computing for Pricing Multi-Asset Barrier Options RAHUL SRIDHARAN, GEORGE COOKE, KENNETH HILL, HERMAN LAM, ALAN GEORGE, SAAHPC '12, PROCEEDINGS OF THE 2012 SYMPOSIUM ON APPLICATION

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Pricing Early-exercise options

Pricing Early-exercise options Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

More information

Financial Computing with Python

Financial Computing with Python Introduction to Financial Computing with Python Matthieu Mariapragassam Why coding seems so easy? But is actually not Sprezzatura : «It s an art that doesn t seem to be an art» - The Book of the Courtier

More information

Stochastic Grid Bundling Method

Stochastic Grid Bundling Method Stochastic Grid Bundling Method GPU Acceleration Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee London - December 17, 2015 A. Leitao &

More information

Pricing Asian Options

Pricing Asian Options Pricing Asian Options Maplesoft, a division of Waterloo Maple Inc., 24 Introduction his worksheet demonstrates the use of Maple for computing the price of an Asian option, a derivative security that has

More information

Introduction to Numerical PDEs

Introduction to Numerical PDEs Introduction to Numerical PDEs Varun Shankar February 16, 2016 1 Introduction In this chapter, we will introduce a general classification scheme for linear second-order PDEs, and discuss when they have

More information

Optimizing Modular Expansions in an Industrial Setting Using Real Options

Optimizing Modular Expansions in an Industrial Setting Using Real Options Optimizing Modular Expansions in an Industrial Setting Using Real Options Abstract Matt Davison Yuri Lawryshyn Biyun Zhang The optimization of a modular expansion strategy, while extremely relevant in

More information

Implementing Models in Quantitative Finance: Methods and Cases

Implementing Models in Quantitative Finance: Methods and Cases Gianluca Fusai Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases vl Springer Contents Introduction xv Parti Methods 1 Static Monte Carlo 3 1.1 Motivation and Issues 3 1.1.1

More information

Monte Carlo Methods in Structuring and Derivatives Pricing

Monte Carlo Methods in Structuring and Derivatives Pricing Monte Carlo Methods in Structuring and Derivatives Pricing Prof. Manuela Pedio (guest) 20263 Advanced Tools for Risk Management and Pricing Spring 2017 Outline and objectives The basic Monte Carlo algorithm

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Reconfigurable Acceleration for Monte Carlo based Financial Simulation

Reconfigurable Acceleration for Monte Carlo based Financial Simulation Reconfigurable Acceleration for Monte Carlo based Financial Simulation G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung*, D. Lee**, Ray C.C. Cheung*** and W. Luk*** The Chinese University of

More information

Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification

Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification Elisabeth Ullmann Lehrstuhl für Numerische Mathematik (M2) TU München Elisabeth Ullmann (TU München) Efficient Monte Carlo for UQ 1

More information

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

NAG for HPC in Finance

NAG for HPC in Finance NAG for HPC in Finance John Holden Jacques Du Toit 3 rd April 2014 Computation in Finance and Insurance, post Napier Experts in numerical algorithms and HPC services Agenda NAG and Financial Services Why

More information

Session 174 PD, Nested Stochastic Modeling Research. Moderator: Anthony Dardis, FSA, CERA, FIA, MAAA. Presenters: Runhuan Feng, FSA, CERA

Session 174 PD, Nested Stochastic Modeling Research. Moderator: Anthony Dardis, FSA, CERA, FIA, MAAA. Presenters: Runhuan Feng, FSA, CERA Session 174 PD, Nested Stochastic Modeling Research Moderator: Anthony Dardis, FSA, CERA, FIA, MAAA Presenters: Anthony Dardis, FSA, CERA, FIA, MAAA Runhuan Feng, FSA, CERA SOA Antitrust Disclaimer SOA

More information

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016 Probabilistic Meshless Methods for Bayesian Inverse Problems Jon Cockayne July 8, 2016 1 Co-Authors Chris Oates Tim Sullivan Mark Girolami 2 What is PN? Many problems in mathematics have no analytical

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION J. KSIAM Vol.14, No.3, 175 187, 21 AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION DARAE JEONG, IN-SUK WEE, AND JUNSEOK KIM DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-71, KOREA E-mail

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Hedging Strategy Simulation and Backtesting with DSLs, GPUs and the Cloud

Hedging Strategy Simulation and Backtesting with DSLs, GPUs and the Cloud Hedging Strategy Simulation and Backtesting with DSLs, GPUs and the Cloud GPU Technology Conference 2013 Aon Benfield Securities, Inc. Annuity Solutions Group (ASG) This document is the confidential property

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations CS476/676 Mar 6, 2019 1 Today s Topics American Option: early exercise curve PDE overview Discretizations Finite difference approximations CS476/676 Mar 6, 2019 2 American Option American Option: PDE Complementarity

More information

CS 774 Project: Fall 2009 Version: November 27, 2009

CS 774 Project: Fall 2009 Version: November 27, 2009 CS 774 Project: Fall 2009 Version: November 27, 2009 Instructors: Peter Forsyth, paforsyt@uwaterloo.ca Office Hours: Tues: 4:00-5:00; Thurs: 11:00-12:00 Lectures:MWF 3:30-4:20 MC2036 Office: DC3631 CS

More information

Accelerated Variance Reduction Methods on GPU

Accelerated Variance Reduction Methods on GPU Accelerated Variance Reduction Methods on GPU Chuan-Hsiang Han Department of Quantitative Finance, ational Tsing-Hua University, Hsinchu, Taiwan, R.O.C. chhan@mx.nthu.edu.tw Yu-Tuan Lin Institute of Mathematics

More information

Option Pricing with the SABR Model on the GPU

Option Pricing with the SABR Model on the GPU Option Pricing with the SABR Model on the GPU Yu Tian, Zili Zhu, Fima C. Klebaner and Kais Hamza School of Mathematical Sciences, Monash University, Clayton, VIC3800, Australia Email: {yu.tian, fima.klebaner,

More information

Multi-Curve Pricing of Non-Standard Tenor Vanilla Options in QuantLib. Sebastian Schlenkrich QuantLib User Meeting, Düsseldorf, December 1, 2015

Multi-Curve Pricing of Non-Standard Tenor Vanilla Options in QuantLib. Sebastian Schlenkrich QuantLib User Meeting, Düsseldorf, December 1, 2015 Multi-Curve Pricing of Non-Standard Tenor Vanilla Options in QuantLib Sebastian Schlenkrich QuantLib User Meeting, Düsseldorf, December 1, 2015 d-fine d-fine All rights All rights reserved reserved 0 Swaption

More information

Domokos Vermes. Min Zhao

Domokos Vermes. Min Zhao Domokos Vermes and Min Zhao WPI Financial Mathematics Laboratory BSM Assumptions Gaussian returns Constant volatility Market Reality Non-zero skew Positive and negative surprises not equally likely Excess

More information

PRICING AMERICAN OPTIONS WITH LEAST SQUARES MONTE CARLO ON GPUS. Massimiliano Fatica, NVIDIA Corporation

PRICING AMERICAN OPTIONS WITH LEAST SQUARES MONTE CARLO ON GPUS. Massimiliano Fatica, NVIDIA Corporation PRICING AMERICAN OPTIONS WITH LEAST SQUARES MONTE CARLO ON GPUS Massimiliano Fatica, NVIDIA Corporation OUTLINE! Overview! Least Squares Monte Carlo! GPU implementation! Results! Conclusions OVERVIEW!

More information

Accelerating Financial Computation

Accelerating Financial Computation Accelerating Financial Computation Wayne Luk Department of Computing Imperial College London HPC Finance Conference and Training Event Computational Methods and Technologies for Finance 13 May 2013 1 Accelerated

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Program Advisor: Howard Elman Department of Computer Science May 5, 2016 Tengfei

More information

Chapter 3. Dynamic discrete games and auctions: an introduction

Chapter 3. Dynamic discrete games and auctions: an introduction Chapter 3. Dynamic discrete games and auctions: an introduction Joan Llull Structural Micro. IDEA PhD Program I. Dynamic Discrete Games with Imperfect Information A. Motivating example: firm entry and

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb. 2006 p.1/17 Lecture 2, Part 2: Mean Exit Times

More information

Stochastic Local Volatility: Excursions in Finite Differences

Stochastic Local Volatility: Excursions in Finite Differences Stochastic Local Volatility: Excursions in Finite Differences ICBI Global Derivatives Paris April 0 Jesper Andreasen Danske Markets, Copenhagen kwant.daddy@danskebank.dk Outline Motivation: Part A & B.

More information

We are not saying it s easy, we are just trying to make it simpler than before. An Online Platform for backtesting quantitative trading strategies.

We are not saying it s easy, we are just trying to make it simpler than before. An Online Platform for backtesting quantitative trading strategies. We are not saying it s easy, we are just trying to make it simpler than before. An Online Platform for backtesting quantitative trading strategies. Visit www.kuants.in to get your free access to Stock

More information

Geometric tools for the valuation of performance-dependent options

Geometric tools for the valuation of performance-dependent options Computational Finance and its Applications II 161 Geometric tools for the valuation of performance-dependent options T. Gerstner & M. Holtz Institut für Numerische Simulation, Universität Bonn, Germany

More information

Machine Learning-based Elastic Cloud Resource Provisioning in the Solvency II Framework

Machine Learning-based Elastic Cloud Resource Provisioning in the Solvency II Framework Machine Learning-based Elastic Cloud Resource Provisioning in the Solvency II Framework Andrea La Rizza 1,2 Giuseppe Casarano 2 Gilberto Castellani 1,2 Bruno Ciciani 1 Luca Passalacqua 1 Alessandro Pellegrini

More information

for Finance Python Yves Hilpisch Koln Sebastopol Tokyo O'REILLY Farnham Cambridge Beijing

for Finance Python Yves Hilpisch Koln Sebastopol Tokyo O'REILLY Farnham Cambridge Beijing Python for Finance Yves Hilpisch Beijing Cambridge Farnham Koln Sebastopol Tokyo O'REILLY Table of Contents Preface xi Part I. Python and Finance 1. Why Python for Finance? 3 What Is Python? 3 Brief History

More information

Analytics in 10 Micro-Seconds Using FPGAs. David B. Thomas Imperial College London

Analytics in 10 Micro-Seconds Using FPGAs. David B. Thomas Imperial College London Analytics in 10 Micro-Seconds Using FPGAs David B. Thomas dt10@imperial.ac.uk Imperial College London Overview 1. The case for low-latency computation 2. Quasi-Random Monte-Carlo in 10us 3. Binomial Trees

More information

Numerical software & tools for the actuarial community

Numerical software & tools for the actuarial community Numerical software & tools for the actuarial community John Holden john.holden@nag.co.uk 20 th March 203 The Actuarial Profession Staple Inn Hall Experts in numerical algorithms and HPC services Agenda

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Distribution of state of nature: Main problem

Distribution of state of nature: Main problem State of nature concept Monte Carlo Simulation II Advanced Herd Management Anders Ringgaard Kristensen The hyper distribution: An infinite population of flocks each having its own state of nature defining

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

Computational Methods in Finance

Computational Methods in Finance Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES Computational Methods in Finance AM Hirsa Ltfi) CRC Press VV^ J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor &

More information

SPEED UP OF NUMERIC CALCULATIONS USING A GRAPHICS PROCESSING UNIT (GPU)

SPEED UP OF NUMERIC CALCULATIONS USING A GRAPHICS PROCESSING UNIT (GPU) SPEED UP OF NUMERIC CALCULATIONS USING A GRAPHICS PROCESSING UNIT (GPU) NIKOLA VASILEV, DR. ANATOLIY ANTONOV Eurorisk Systems Ltd. 31, General Kiselov str. BG-9002 Varna, Bulgaria Phone +359 52 612 367

More information

A local RBF method based on a finite collocation approach

A local RBF method based on a finite collocation approach Boundary Elements and Other Mesh Reduction Methods XXXVIII 73 A local RBF method based on a finite collocation approach D. Stevens & H. Power Department of Mechanical Materials and Manufacturing Engineering,

More information

Algorithmic Differentiation of a GPU Accelerated Application

Algorithmic Differentiation of a GPU Accelerated Application of a GPU Accelerated Application Numerical Algorithms Group 1/31 Disclaimer This is not a speedup talk There won t be any speed or hardware comparisons here This is about what is possible and how to do

More information

Introducing LIST. Riccardo Bernini Head of Financial Engineering Enrico Melchioni Head of International Sales. March 2018

Introducing LIST. Riccardo Bernini Head of Financial Engineering Enrico Melchioni Head of International Sales. March 2018 Introducing LIST Riccardo Bernini Head of Financial Engineering Enrico Melchioni Head of International Sales March 2018 LIST in a Nutshell LIST is a privately owned company founded in Pisa in 1985 LIST

More information

New GPU Pricing Library

New GPU Pricing Library New GPU Pricing Library! Client project for Bank Sarasin! Highly regarded sustainable Swiss private bank! Founded 1841! Core business! Asset management! Investment advisory! Investment funds! Structured

More information

Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model Heston Stochastic Local Volatility Model Klaus Spanderen 1 R/Finance 2016 University of Illinois, Chicago May 20-21, 2016 1 Joint work with Johannes Göttker-Schnetmann Klaus Spanderen Heston Stochastic

More information

Operational Risk Quantification System

Operational Risk Quantification System N O R T H E R N T R U S T Operational Risk Quantification System Northern Trust Corporation May 2012 Achieving High-Performing, Simulation-Based Operational Risk Measurement with R and RevoScaleR Presented

More information

Discussion of: Optimal policy computation with Dynare by Michel Juillard

Discussion of: Optimal policy computation with Dynare by Michel Juillard Discussion of: Optimal policy computation with Dynare by Michel Juillard Bo Yang University of Surrey and London Metropolitan University March 12, 2010 MONFISPOL workshop, Stresa page 1 of 8 Summary of

More information

Applications of Dataflow Computing to Finance. Florian Widmann

Applications of Dataflow Computing to Finance. Florian Widmann Applications of Dataflow Computing to Finance Florian Widmann Overview 1. Requirement Shifts in the Financial World 2. Case 1: Real Time Margin 3. Case 2: FX Option Monitor 4. Conclusions Market Context

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

In physics and engineering education, Fermi problems

In physics and engineering education, Fermi problems A THOUGHT ON FERMI PROBLEMS FOR ACTUARIES By Runhuan Feng In physics and engineering education, Fermi problems are named after the physicist Enrico Fermi who was known for his ability to make good approximate

More information

Towards efficient option pricing in incomplete markets

Towards efficient option pricing in incomplete markets Towards efficient option pricing in incomplete markets GPU TECHNOLOGY CONFERENCE 2016 Shih-Hau Tan 1 2 1 Marie Curie Research Project STRIKE 2 University of Greenwich Apr. 6, 2016 (University of Greenwich)

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm Sanja Lazarova-Molnar, Graham Horton Otto-von-Guericke-Universität Magdeburg Abstract The paradigm of the proxel ("probability

More information

GPU-Accelerated Quant Finance: The Way Forward

GPU-Accelerated Quant Finance: The Way Forward GPU-Accelerated Quant Finance: The Way Forward NVIDIA GTC Express Webinar Gerald A. Hanweck, Jr., PhD CEO, Hanweck Associates, LLC Hanweck Associates, LLC 30 Broad St., 42nd Floor New York, NY 10004 www.hanweckassoc.com

More information

CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM

CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM 6.1 Introduction Project Management is the process of planning, controlling and monitoring the activities

More information

ARM. A commodity risk management system.

ARM. A commodity risk management system. ARM A commodity risk management system. 1. ARM: A commodity risk management system. ARM is a complete suite allowing the management of market risk and operational risk for commodities derivatives. 4 main

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

Mean GMM. Standard error

Mean GMM. Standard error Table 1 Simple Wavelet Analysis for stocks in the S&P 500 Index as of December 31 st 1998 ^ Shapiro- GMM Normality 6 0.9664 0.00281 11.36 4.14 55 7 0.9790 0.00300 56.58 31.69 45 8 0.9689 0.00319 403.49

More information

Hardware Accelerators for Financial Mathematics - Methodology, Results and Benchmarking

Hardware Accelerators for Financial Mathematics - Methodology, Results and Benchmarking Hardware Accelerators for Financial Mathematics - Methodology, Results and Benchmarking Christian de Schryver #, Henning Marxen, Daniel Schmidt # # Micrelectronic Systems Design Department, University

More information

About the Risk Quantification of Technical Systems

About the Risk Quantification of Technical Systems About the Risk Quantification of Technical Systems Magda Schiegl ASTIN Colloquium 2013, The Hague Outline Introduction / Overview Fault Tree Analysis (FTA) Method of quantitative risk analysis Results

More information

A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL

A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) Vol. 33 (2013) 103-115 A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL Md. Kazi Salah Uddin 1*, Mostak Ahmed 2 and Samir Kumar Bhowmik 1,3 1

More information

Remarks on stochastic automatic adjoint differentiation and financial models calibration

Remarks on stochastic automatic adjoint differentiation and financial models calibration arxiv:1901.04200v1 [q-fin.cp] 14 Jan 2019 Remarks on stochastic automatic adjoint differentiation and financial models calibration Dmitri Goloubentcev, Evgeny Lakshtanov Abstract In this work, we discuss

More information

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA Rajesh Bordawekar and Daniel Beece IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Energy Systems under Uncertainty: Modeling and Computations

Energy Systems under Uncertainty: Modeling and Computations Energy Systems under Uncertainty: Modeling and Computations W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Systems Analysis 2015, November 11 13, IIASA (Laxenburg,

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Accelerated Option Pricing Multiple Scenarios

Accelerated Option Pricing Multiple Scenarios Accelerated Option Pricing in Multiple Scenarios 04.07.2008 Stefan Dirnstorfer (stefan@thetaris.com) Andreas J. Grau (grau@thetaris.com) 1 Abstract This paper covers a massive acceleration of Monte-Carlo

More information

Darae Jeong, Junseok Kim, and In-Suk Wee

Darae Jeong, Junseok Kim, and In-Suk Wee Commun. Korean Math. Soc. 4 (009), No. 4, pp. 617 68 DOI 10.4134/CKMS.009.4.4.617 AN ACCURATE AND EFFICIENT NUMERICAL METHOD FOR BLACK-SCHOLES EQUATIONS Darae Jeong, Junseo Kim, and In-Su Wee Abstract.

More information

The Forward Kolmogorov Equation for Two Dimensional Options

The Forward Kolmogorov Equation for Two Dimensional Options The Forward Kolmogorov Equation for Two Dimensional Options Antoine Conze (Nexgenfs bank), Nicolas Lantos (Nexgenfs bank and UPMC), Olivier Pironneau (LJLL, University of Paris VI) March, 04 Abstract Pricing

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty

An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty Computational Optimization and Applications, 26, 219 230, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Valuing Early Stage Investments with Market Related Timing Risk

Valuing Early Stage Investments with Market Related Timing Risk Valuing Early Stage Investments with Market Related Timing Risk Matt Davison and Yuri Lawryshyn February 12, 216 Abstract In this work, we build on a previous real options approach that utilizes managerial

More information

Boundary conditions for options

Boundary conditions for options Boundary conditions for options Boundary conditions for options can refer to the non-arbitrage conditions that option prices has to satisfy. If these conditions are broken, arbitrage can exist. to the

More information

A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS. Burhaneddin İZGİ

A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS. Burhaneddin İZGİ A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS Burhaneddin İZGİ Department of Mathematics, Istanbul Technical University, Istanbul, Turkey

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA

Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA Chalermpol Saiprasert, Christos-Savvas Bouganis and George A. Constantinides Department of Electrical

More information

Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model

Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model asymptotic approximation formula for the vanilla European call option price. A class of multi-factor volatility models has been introduced

More information

Section 8.2: Monte Carlo Estimation

Section 8.2: Monte Carlo Estimation Section 8.2: Monte Carlo Estimation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 1/ 19

More information

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning)

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) 1 / 24 Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) Julie Nutini MLRG - Winter Term 2 January 24 th, 2017 2 / 24 Monte Carlo Methods Monte Carlo (MC) methods are learning methods, used

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information

Implementing the HJM model by Monte Carlo Simulation

Implementing the HJM model by Monte Carlo Simulation Implementing the HJM model by Monte Carlo Simulation A CQF Project - 2010 June Cohort Bob Flagg Email: bob@calcworks.net January 14, 2011 Abstract We discuss an implementation of the Heath-Jarrow-Morton

More information

arxiv: v1 [math.pr] 15 Dec 2011

arxiv: v1 [math.pr] 15 Dec 2011 Parameter Estimation of Fiber Lay down in Nonwoven Production An Occupation Time Approach Wolfgang Bock, Thomas Götz, Uditha Prabhath Liyanage arxiv:2.355v [math.pr] 5 Dec 2 Dept. of Mathematics, University

More information

Curve fitting for calculating SCR under Solvency II

Curve fitting for calculating SCR under Solvency II Curve fitting for calculating SCR under Solvency II Practical insights and best practices from leading European Insurers Leading up to the go live date for Solvency II, insurers in Europe are in search

More information

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions Pierre Henry-Labordère 1 1 Global markets Quantitative Research, SOCIÉTÉ GÉNÉRALE Outline 1 Introduction 2 Semi-linear PDEs 3

More information

New Developments in MATLAB for Computational Finance Kevin Shea, CFA Principal Software Developer MathWorks

New Developments in MATLAB for Computational Finance Kevin Shea, CFA Principal Software Developer MathWorks New Developments in MATLAB for Computational Finance Kevin Shea, CFA Principal Software Developer MathWorks 2014 The MathWorks, Inc. 1 Who uses MATLAB in Financial Services? The top 15 assetmanagement

More information

Approximations of Stochastic Programs. Scenario Tree Reduction and Construction

Approximations of Stochastic Programs. Scenario Tree Reduction and Construction Approximations of Stochastic Programs. Scenario Tree Reduction and Construction W. Römisch Humboldt-University Berlin Institute of Mathematics 10099 Berlin, Germany www.mathematik.hu-berlin.de/~romisch

More information