Approximations of Stochastic Programs. Scenario Tree Reduction and Construction

Size: px
Start display at page:

Download "Approximations of Stochastic Programs. Scenario Tree Reduction and Construction"

Transcription

1 Approximations of Stochastic Programs. Scenario Tree Reduction and Construction W. Römisch Humboldt-University Berlin Institute of Mathematics Berlin, Germany (J. Dupačová, N. Gröwe-Kuska, H. Heitsch) GAMS Workshop, Heidelberg, Sept. 1-3,

2 1 Introduction Let {ξ t } T t=1 be a discrete-time stochastic data process defined on some probability space (Ω, F, P ) and with ξ 1 deterministic. The stochastic decision x t at period t is assumed to depend only on (ξ 1,..., ξ t ) (nonanticipativity). Typical financial and production planning model: min{ie[ T c t (ξ t, x t )] : x t X t, x t nonanticipative, t=1 A tt (ξ t )x t + A t,t 1 (ξ t )x t 1 g t (ξ t )} Alternative for the minimization of expected costs: Minimizing some risk measure IF of the stochastic cost process {c t (ξ t, x t )} T t=1 (risk management). First step of its numerical solution: Approximation of {ξ t } T t=1 by finitely many scenarios with certain probabilities. Nonanticipativity leads to a scenario tree structure of the approximation. 2

3 2 Data process approximation by scenario trees The data process ξ = {ξ t } T t=1 is approximated by a process forming a scenario tree which is based on a finite set N of nodes. n = 1 n n N T N + (n) t = 1 t 1 t(n) T Scenario tree with t 1 = 2, T = 5, N = 23 and 11 leaves The root node n = 1 stands for period t = 1. Every other node n has a unique predecessor n and a set N + (n) of successors. Let path(n) be the set {1,..., n, n} of nodes from the root to node n, t(n) := path(n) and N T := {n N : N + (n) = } the set of leaves. A scenario corresponds to path(n) for some n N T. With the given scenario probabilities {π n } n NT, we define recursively node probabilities π n := n + N + (n) π n +, n N. 3

4 3 Generation of scenario trees (i) Development of a stochastic model for the data process ξ (parametric [e.g. time series model], nonparametric [e.g. resampling]) Load Hours Scenarios for the weekly electrical load and generation of simulation scenarios; (ii) Construction of a scenario tree out of the stochastic model or of the simulation scenarios; (iii) optional scenario tree reduction. 4

5 Approaches for (ii): (1) Barycentric scenario trees (conditional expectations w.r.t. a decomposition of the support into simplices) (Frauendorfer 96,...); (2) Fitting of trees with prescribed structure to given moments (Hoyland/Wallace 01, Hoyland/Kaut/Wallace 03); (3) Conditional sampling by (Quasi) Monte Carlo methods (QMC means low discrepancy sequences) (Morton 03, Koivu/Pennanen 02, 03); (4) Clustering methods for bundling scenarios (Philpott/Craddock/Waterer 00); (5) Scenario tree construction based on optimal approximations w.r.t. certain probability metrics (Pflug 01, Hochreiter/Pflug 02, Gröwe-Kuska/Heitsch/Römisch 03). Recent reference: Kaut/Wallace 03 5

6 Example: (Hochreiter/Pflug 02) Let P denote the uniform distribution on [ 3, 3] and P be the distribution of Z := c 1 Z 1 + c 2 Z 2, where Z 1 is discrete with two equally probable scenarios 1 and 1, Z 2 is standard normal, i.e., Z 2 N(0, 1), and c 1 and c 2 are normalizing constants (c 1 := 4 3 5, c 3 2 := 1 5 ). Then the first four (central) moments coincide 9 IR ξi P (dξ) = IR ξi P (dξ) = 0, 1, 0,, i = 1, 2, 3, 4. 5 However, the densities of P and P have the following form and, thus, are quite different. 6

7 4 Distances of probability distributions Let P denote the probability distribution of the stochastic process {ξ t } T t=1 with ξ t in IR r, i.e., P has support Ξ IR rt = IR s. The Kantorovich functional or transportation metric takes the form µ c (P, Q) := inf{ c(ξ, ξ)η(dξ, d ξ) : π 1 η = P, π 2 η = Q}, Ξ Ξ where c : Ξ Ξ IR is a certain cost function and the minimum ist taken w.r.t. all probability measures η on Ξ Ξ having (fixed) marginals P and Q. Example: c p (ξ, ξ) := max{1, ξ ξ 0 p 1, ξ ξ 0 p 1 } ξ ξ (p 1, ξ 0 Ξ fixed) We consider the following convex stochastic program min{ f 0 (x, ξ)p (dξ) : x X} Ξ with a normal convex integrand f 0 and denote by v(p ) := inf f 0 (x, ξ)p (dξ) and S(P ) := arg min x X Ξ x X its optimal value and solution set, respectively. Ξ f 0 (x, ξ)p (dξ) 7

8 We choose c such that the property f 0 (x, ξ) f 0 (x, ξ) L( x )c(ξ, ξ), ξ, ξ Ξ, x X, holds with some function L( ) depending on x. This means that c plays the role of a continuity modulus of the function f 0 (x, ) from Ξ to IR (for each x X). Typically, f 0 is continuous and piecewise polynomial. Theorem: (Stability) Under weak conditions on the stochastic program the optimal values are Lipschitz continuous w.r.t. µ c, i.e., v(p ) v(q) ˆLµ c (P, Q), and the solution sets are upper semicontinuous. In particular, if S(P ) = { x} any element of the approximate solution set S(Q) is close to x if µ c (P, Q) is small. (Rachev/Römisch 02, Römisch 03) 8

9 Choice of p 1 in c = c p : two-stage with random right-hand side: p = 1. general two-stage with fixed recourse: p = 2. multi-stage with random right-hand side: p = 1. general multi-stage with T stages: p = T. ( present conjecture valid under appropriate assumptions on the dependence structure; not valid for mixed-integer models; in that case f 0 is piecewise continuous!) Approach: Select a probability metric a function c : Ξ Ξ IR such that the underlying stochastic optimization model is stable w.r.t. µ c. Given P and a tolerance ε > 0, determine a scenario tree such that its probability distribution P tr has the property µ c (P, P tr ) ε. 9

10 Distances of discrete distributions P : scenarios ξ i with probabilities p i, i = 1,..., N, Q: scenarios ξ j with probabilities q j, j = 1,..., M. Then N µ c (P, Q) = sup{ p i u i + i=1 M q j v j : u i + v j c(ξ i, ξ j ) i, j} j=1 = inf{ i,j η ij c(ξ i, ξ j ) : η ij 0, j η ij = p i, i η ij = q j } (optimal value of linear transportation problems) (a) Distances of distributions can be computed by solving specific linear programs. (b) The principle of optimal scenario generation can be formulated as a best approximation problem with respect to µ c. However, it is nonconvex and difficult to solve. (c) The best approximation problem simplifies considerably if the scenarios are taken from a specified finite set. 10

11 5 Scenario Reduction We consider discrete distributions P with scenarios ξ i and probabilities p i, i = 1,..., N, and Q having a subset of scenarios ξ j, j J {1,..., N}, of P, but different probabilities q j, j J. Optimal reduction of a given scenario set J: The best approximation of P with respect to µ c by such a distribution Q exists and is denoted by Q. It has the distance D J = µ c (P, Q) = p i min c(ξ i, ξ j ) j J i J and the probabilities q j = p j + p i, j J, where J j := i J j {i J : j = j(i)} and j(i) arg min c(ξ i, ξ j ), i j J J, i.e., the optimal redistribution consists in adding the deleted scenario weight to that of some of the closest scenarios. However, finding the optimal scenario set with a fixed number n of scenarios is a combinatorial optimization problem. 11

12 6 Fast reduction heuristics Starting point (n = N 1): min p l min c(ξ l, ξ j ) l {1,...,N} j l Algorithm 1: (Simultaneous backward reduction) Step [0]: Step [i]: Step [N-n+1]: Sorting of {c(ξ j, ξ k ) : j}, k, J [0] :=. l i arg min l J [i 1] k J [i 1] {l} J [i] := J [i 1] {l i }. Optimal redistribution. p k min c(ξ k, ξ j ). j J [i 1] {l} 12

13 Starting point (n = 1): min u {1,...,N} k=1 N p k c(ξ k, ξ u ) Algorithm 2: (Fast forward selection) Step [0]: Compute c(ξ k, ξ u ), k, u = 1,..., N, Step [i]: Step [n+1]: J [0] := {1,..., N}. u i arg min u J [i 1] J [i] := J [i 1] \ {u i }. k J [i 1] \{u} Optimal redistribution. p k min c(ξ k, ξ j ), j J [i 1] \{u} 13

14 1000 Original load scenario tree Reduced load scenario tree / backward Reduced load scenario tree / forward

15 Binary test scenario tree Let a binary scenario tree have N := 2 T 1 scenarios ξ i = (ξi 1,..., ξt i ), i = 1,..., N, with equal probabilities p i = 1 N, i = 1,..., N, and ξ1 1 =... = ξn 1 as its root node. Such a scenario tree is called regular if, for each t {1,..., T }, δ1 t := δ t and δ2 t := δ t with δ t IR + and ξ t i = t δi τ τ (t {1,..., T }) τ=1 where to each index i = 1,..., N there corresponds a T - tupel of indices (i 1,..., i T ) {1, 2} T. Proposition: Let a regular binary scenario tree with N = 2 T 1 scenarios and T 4 be given. Let t 0 arg min 2 t T δ t, t 0 T 2 and max{δ t 0+1, δ t 0+2 } 2δ t 0. Then it holds for each n IN with N 4 n < N: D opt n := min{d J : #J = N n} = N n N 2δt 0. Here, c is defined by c(ξ, ξ) := ξ ξ (ξ, ξ Ξ). 15

16 Example: (regular binary scenario tree) T = 11, N = 2 10 = 1024, (δ 1,..., δ 11 ) = (0, 0.5, 0.6, 0.7, 0.9, 1.1, 1.3, 1.6, 1.9, 2.3, 2.7), D opt n = N n N for each N 4 n < N Relative accuracy: µ rel c (P, Q) := µ c(p, Q) µ c (P, δ ξl ) µ c (P, δ ξl ) = min{d J : #J = N 1} and c(, ) :=. 16

17 Number Backward of Simultaneous Fast Minimal n of Scenario Sets Backward Forward Distance Scenarios ζc rel Time ζc rel Time ζc rel Time % 2 s % 96 s % 2 s % % 2 s % 96 s % 2 s * % 2 s % 96 s % 2 s * % 2 s % 96 s % 3 s * % 2 s % 96 s % 3 s * % 2 s % 95 s % 4 s * % 2 s % 95 s % 7 s * % 2 s % 94 s % 10 s * % 2 s % 93 s % 15 s * % 2 s % 89 s % 27 s * % 2 s % 85 s % 38 s * % 2 s % 81 s % 48 s * % 2 s % 76 s % 56 s * % 2 s % 75 s % 58 s % % 2 s % 74 s % 60 s % % 2 s % 72 s % 61 s % % 2 s % 71 s % 63 s % % 2 s % 70 s % 64 s % % 2 s % 64 s % 71 s % % 2 s % 57 s % 76 s % % 2 s % 51 s % 81 s % % 2 s 9.67 % 45 s 9.63 % 85 s 9.63 % % 2 s 7.79 % 33 s 7.79 % 91 s 7.79 % % 2 s 5.95 % 22 s 5.95 % 95 s 5.95 % % 2 s 4.12 % 12 s 4.12 % 97 s 4.12 % Computational results for the binary scenario tree 17

18 7 Constructing scenario trees from data scenarios Let a fan of data scenarios ξ i = (ξ1, i..., ξt i ) with probabilities π i, i = 1,..., N, be given, i.e., all scenarios coincide at the starting point t = 1, i.e., ξ1 1 =... = ξ1 N =: ξ1. Hence, it has the form t = 1 may be regarded as the root node of the scenario tree consisting of N scenarios (leaves). Now, P is the (discrete) probability distribution of ξ. Let c be adapted to the underlying stochastic program containing P. We describe an algorithm that may produce, for each ε > 0, a scenario tree with distribution P ε, root node ξ 1, less nodes than P and µ c (P, P ε ) < ε. 18

19 Recursive reduction algorithm: Let ε t > 0, t = 1,..., T, be given such that T t=1 ε t ε, set t := T, I T +1 := {1,..., N}, πt i +1 := πi and P T +1 := P. For t = T,..., 2: Step t: Determine an index set I t I t+1 such that µ ct (P t, P t+1 ) < ε t, where {ξ i } i It is the support of P t and c t is defined by c t (ξ, ξ) := c((ξ 1,..., ξ t, 0,..., 0), ( ξ 1,..., ξ t, 0,..., 0)); (scenario reduction w.r.t. the time horizon [1, t]) Step 1: Determine a probability measure P ε such that its marginal distributions P ε Π 1 t are δ ξ 1 for t = 1 and P ε Π 1 t = πtδ i ξ i and π t t i := πt+1 i + π j t+1, i I t j J t,i where J t,i := {j I t+1 \ I t : i t (j) = i}, i t (j) arg min c t (ξ j, ξ i )} are the index sets according to the redistribution i I t rule. 19

20 Blue: compute c-distances of scenarios; delete the green scenario & add its weight to the red one 20

21 Application: ξ is the bivariate weekly data process having the components a) electrical load, b) hourly electricity spot prices (at EEX). Data scenarios are obtained from a stochastic model calibrated to the historical load data of a (small) German power utility and historical price data of the European Energy Exchange (EEX) at Leipzig. We choose N = 50, T = 7, ε = 0.05, ε t = ε T, and arrive at a tree with 4608 nodes (instead of 8400 nodes of the original fan). t hours I t

22 400 Scenario tree for the electrical load Load Hours 100 Scenario tree for hourly spot prices Spot price Hours 22

23 8 GAMS/SCENRED GAMS/SCENRED introduced to GAMS Distribution 20.6 (May 2002) SCENRED is a collection of C++ routines for the optimal reduction of scenarios or scenario trees GAMS/SCENRED provides the link from GAMS programs to the scenario reduction algorithms. The reduced problems can then be solved by a deterministic optimization algorithm provided by GAMS. SCENRED contains three reduction algorithms: - FAST BACKWARD method - Mix of FAST BACKWARD/FORWARD methods - Mix of FAST BACKWARD/BACKWARD methods Automatic selection (best expected performance w.r.t. running time) Details:

Scenario reduction and scenario tree construction for power management problems

Scenario reduction and scenario tree construction for power management problems Scenario reduction and scenario tree construction for power management problems N. Gröwe-Kuska, H. Heitsch and W. Römisch Humboldt-University Berlin Institute of Mathematics Page 1 of 20 IEEE Bologna POWER

More information

Scenario tree generation for stochastic programming models using GAMS/SCENRED

Scenario tree generation for stochastic programming models using GAMS/SCENRED Scenario tree generation for stochastic programming models using GAMS/SCENRED Holger Heitsch 1 and Steven Dirkse 2 1 Humboldt-University Berlin, Department of Mathematics, Germany 2 GAMS Development Corp.,

More information

Energy Systems under Uncertainty: Modeling and Computations

Energy Systems under Uncertainty: Modeling and Computations Energy Systems under Uncertainty: Modeling and Computations W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Systems Analysis 2015, November 11 13, IIASA (Laxenburg,

More information

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Anna Timonina University of Vienna, Abraham Wald PhD Program in Statistics and Operations

More information

Scenario Reduction and Scenario Tree Construction for Power Management Problems

Scenario Reduction and Scenario Tree Construction for Power Management Problems 1 Scenario Reduction and Scenario Tree Construction for Power Management Problems Nicole Gröwe-Kuska, Holger Heitsch and Werner Römisch Abstract Portfolio and risk management problems of power utilities

More information

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals A. Eichhorn and W. Römisch Humboldt-University Berlin, Department of Mathematics, Germany http://www.math.hu-berlin.de/~romisch

More information

Scenario Reduction and Scenario Tree Construction for Power Management Problems

Scenario Reduction and Scenario Tree Construction for Power Management Problems 1 Scenario Reduction Scenario Tree Construction for ower Management roblems Nicole Gröwe-Kuska Holger Heitsch Werner Römisch Abstract ortfolio risk management problems of power utilities may be modeled

More information

Scenario Generation for Stochastic Programming Introduction and selected methods

Scenario Generation for Stochastic Programming Introduction and selected methods Michal Kaut Scenario Generation for Stochastic Programming Introduction and selected methods SINTEF Technology and Society September 2011 Scenario Generation for Stochastic Programming 1 Outline Introduction

More information

Multistage risk-averse asset allocation with transaction costs

Multistage risk-averse asset allocation with transaction costs Multistage risk-averse asset allocation with transaction costs 1 Introduction Václav Kozmík 1 Abstract. This paper deals with asset allocation problems formulated as multistage stochastic programming models.

More information

Robust Dual Dynamic Programming

Robust Dual Dynamic Programming 1 / 18 Robust Dual Dynamic Programming Angelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann American University of Beirut Olayan School of Business 31 May 217 2 / 18 Inspired by SDDP Stochastic optimization

More information

On Complexity of Multistage Stochastic Programs

On Complexity of Multistage Stochastic Programs On Complexity of Multistage Stochastic Programs Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA e-mail: ashapiro@isye.gatech.edu

More information

Dynamic Asset and Liability Management Models for Pension Systems

Dynamic Asset and Liability Management Models for Pension Systems Dynamic Asset and Liability Management Models for Pension Systems The Comparison between Multi-period Stochastic Programming Model and Stochastic Control Model Muneki Kawaguchi and Norio Hibiki June 1,

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

DASC: A DECOMPOSITION ALGORITHM FOR MULTISTAGE STOCHASTIC PROGRAMS WITH STRONGLY CONVEX COST FUNCTIONS

DASC: A DECOMPOSITION ALGORITHM FOR MULTISTAGE STOCHASTIC PROGRAMS WITH STRONGLY CONVEX COST FUNCTIONS DASC: A DECOMPOSITION ALGORITHM FOR MULTISTAGE STOCHASTIC PROGRAMS WITH STRONGLY CONVEX COST FUNCTIONS Vincent Guigues School of Applied Mathematics, FGV Praia de Botafogo, Rio de Janeiro, Brazil vguigues@fgv.br

More information

Risk aversion in multi-stage stochastic programming: a modeling and algorithmic perspective

Risk aversion in multi-stage stochastic programming: a modeling and algorithmic perspective Risk aversion in multi-stage stochastic programming: a modeling and algorithmic perspective Tito Homem-de-Mello School of Business Universidad Adolfo Ibañez, Santiago, Chile Joint work with Bernardo Pagnoncelli

More information

Assessing Policy Quality in Multi-stage Stochastic Programming

Assessing Policy Quality in Multi-stage Stochastic Programming Assessing Policy Quality in Multi-stage Stochastic Programming Anukal Chiralaksanakul and David P. Morton Graduate Program in Operations Research The University of Texas at Austin Austin, TX 78712 January

More information

Worst-case-expectation approach to optimization under uncertainty

Worst-case-expectation approach to optimization under uncertainty Worst-case-expectation approach to optimization under uncertainty Wajdi Tekaya Joint research with Alexander Shapiro, Murilo Pereira Soares and Joari Paulo da Costa : Cambridge Systems Associates; : Georgia

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion Planning

Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion Planning Industrial and Manufacturing Systems Engineering Publications Industrial and Manufacturing Systems Engineering 1-2013 Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

Multistage Stochastic Programs

Multistage Stochastic Programs Multistage Stochastic Programs Basic Formulations Multistage Stochastic Linear Program with Recourse: all functions are linear in decision variables Problem of Private Investor Revisited Horizon and Stages

More information

Optimal Security Liquidation Algorithms

Optimal Security Liquidation Algorithms Optimal Security Liquidation Algorithms Sergiy Butenko Department of Industrial Engineering, Texas A&M University, College Station, TX 77843-3131, USA Alexander Golodnikov Glushkov Institute of Cybernetics,

More information

VaR vs CVaR in Risk Management and Optimization

VaR vs CVaR in Risk Management and Optimization VaR vs CVaR in Risk Management and Optimization Stan Uryasev Joint presentation with Sergey Sarykalin, Gaia Serraino and Konstantin Kalinchenko Risk Management and Financial Engineering Lab, University

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Worst-Case Value-at-Risk of Non-Linear Portfolios

Worst-Case Value-at-Risk of Non-Linear Portfolios Worst-Case Value-at-Risk of Non-Linear Portfolios Steve Zymler Daniel Kuhn Berç Rustem Department of Computing Imperial College London Portfolio Optimization Consider a market consisting of m assets. Optimal

More information

Stochastic Dynamic Programming Using Optimal Quantizers

Stochastic Dynamic Programming Using Optimal Quantizers Annals of Operations Research 0 (2017)?? 1 Stochastic Dynamic Programming Using Optimal Quantizers Anna Timonina-Farkas École Polytechnique Fédérale de Lausanne, Risk, Analytics and Optimization Chair

More information

Implementing Models in Quantitative Finance: Methods and Cases

Implementing Models in Quantitative Finance: Methods and Cases Gianluca Fusai Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases vl Springer Contents Introduction xv Parti Methods 1 Static Monte Carlo 3 1.1 Motivation and Issues 3 1.1.1

More information

Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming 1 / 43 Stochastic Dual Dynamic Programming Operations Research Anthony Papavasiliou 2 / 43 Contents [ 10.4 of BL], [Pereira, 1991] 1 Recalling the Nested L-Shaped Decomposition 2 Drawbacks of Nested Decomposition

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

Optimal Order Placement

Optimal Order Placement Optimal Order Placement Peter Bank joint work with Antje Fruth OMI Colloquium Oxford-Man-Institute, October 16, 2012 Optimal order execution Broker is asked to do a transaction of a significant fraction

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Progressive Hedging for Multi-stage Stochastic Optimization Problems

Progressive Hedging for Multi-stage Stochastic Optimization Problems Progressive Hedging for Multi-stage Stochastic Optimization Problems David L. Woodruff Jean-Paul Watson Graduate School of Management University of California, Davis Davis, CA 95616, USA dlwoodruff@ucdavis.edu

More information

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming Stochastic Dual Dynamic Programg Algorithm for Multistage Stochastic Programg Final presentation ISyE 8813 Fall 2011 Guido Lagos Wajdi Tekaya Georgia Institute of Technology November 30, 2011 Multistage

More information

Optimal construction of a fund of funds

Optimal construction of a fund of funds Optimal construction of a fund of funds Petri Hilli, Matti Koivu and Teemu Pennanen January 28, 29 Introduction We study the problem of diversifying a given initial capital over a finite number of investment

More information

A Multi-Stage Stochastic Programming Model for Managing Risk-Optimal Electricity Portfolios. Stochastic Programming and Electricity Risk Management

A Multi-Stage Stochastic Programming Model for Managing Risk-Optimal Electricity Portfolios. Stochastic Programming and Electricity Risk Management A Multi-Stage Stochastic Programming Model for Managing Risk-Optimal Electricity Portfolios SLIDE 1 Outline Multi-stage stochastic programming modeling Setting - Electricity portfolio management Electricity

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Order book resilience, price manipulations, and the positive portfolio problem

Order book resilience, price manipulations, and the positive portfolio problem Order book resilience, price manipulations, and the positive portfolio problem Alexander Schied Mannheim University PRisMa Workshop Vienna, September 28, 2009 Joint work with Aurélien Alfonsi and Alla

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach

Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach Alexander Shapiro and Wajdi Tekaya School of Industrial and

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Multistage Stochastic Programming

Multistage Stochastic Programming IE 495 Lecture 21 Multistage Stochastic Programming Prof. Jeff Linderoth April 16, 2003 April 16, 2002 Stochastic Programming Lecture 21 Slide 1 Outline HW Fixes Multistage Stochastic Programming Modeling

More information

Electricity Swing Options: Behavioral Models and Pricing

Electricity Swing Options: Behavioral Models and Pricing Electricity Swing Options: Behavioral Models and Pricing Georg C.Pflug University of Vienna, georg.pflug@univie.ac.at Nikola Broussev University of Vienna, nikola.broussev@univie.ac.at ABSTRACT. Electricity

More information

Forecast Horizons for Production Planning with Stochastic Demand

Forecast Horizons for Production Planning with Stochastic Demand Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Department of Industrial and Operations Engineering Universityof Michigan, Ann Arbor MI 48109 December

More information

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

Valuing American Options by Simulation

Valuing American Options by Simulation Valuing American Options by Simulation Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Valuing American Options Course material Slides Longstaff, F. A. and Schwartz,

More information

Stochastic Programming in Gas Storage and Gas Portfolio Management. ÖGOR-Workshop, September 23rd, 2010 Dr. Georg Ostermaier

Stochastic Programming in Gas Storage and Gas Portfolio Management. ÖGOR-Workshop, September 23rd, 2010 Dr. Georg Ostermaier Stochastic Programming in Gas Storage and Gas Portfolio Management ÖGOR-Workshop, September 23rd, 2010 Dr. Georg Ostermaier Agenda Optimization tasks in gas storage and gas portfolio management Scenario

More information

Multistage Stochastic Mixed-Integer Programs for Optimizing Gas Contract and Scheduling Maintenance

Multistage Stochastic Mixed-Integer Programs for Optimizing Gas Contract and Scheduling Maintenance Multistage Stochastic Mixed-Integer Programs for Optimizing Gas Contract and Scheduling Maintenance Zhe Liu Siqian Shen September 2, 2012 Abstract In this paper, we present multistage stochastic mixed-integer

More information

Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques

Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques 1 Introduction Martin Branda 1 Abstract. We deal with real-life portfolio problem with Value at Risk, transaction

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming

Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming Downloaded from orbit.dtu.dk on: Aug 19, 2018 Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming Rasmussen, Kourosh Marjani; Clausen, Jens Published in: Journal of Economic Dynamics

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Quality Evaluation of Scenario-Tree Generation Methods for Solving Stochastic Programming Problem

Quality Evaluation of Scenario-Tree Generation Methods for Solving Stochastic Programming Problem Quality Evaluation of Scenario-Tree Generation Methods for Solving Stochastic Programming Problem Julien Keutchayan Michel Gendreau Antoine Saucier March 2017 Quality Evaluation of Scenario-Tree Generation

More information

Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market

Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market Mahbubeh Habibian Anthony Downward Golbon Zakeri Abstract In this

More information

MULTI-STAGE STOCHASTIC ELECTRICITY PORTFOLIO OPTIMIZATION IN LIBERALIZED ENERGY MARKETS

MULTI-STAGE STOCHASTIC ELECTRICITY PORTFOLIO OPTIMIZATION IN LIBERALIZED ENERGY MARKETS MULTI-STAGE STOCHASTIC ELECTRICITY PORTFOLIO OPTIMIZATION IN LIBERALIZED ENERGY MARKETS R. ~ochreiter,' G. Ch. pflug,' and D. ~ozabal' Department ofstatistics and Decision Support Systems, Universizy of

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

Asset-Liability Management

Asset-Liability Management Asset-Liability Management John Birge University of Chicago Booth School of Business JRBirge INFORMS San Francisco, Nov. 2014 1 Overview Portfolio optimization involves: Modeling Optimization Estimation

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

Is intertemporal choice theory testable?

Is intertemporal choice theory testable? Journal of Mathematical Economics 40 (2004) 177 189 Is intertemporal choice theory testable? Felix Kubler Department of Economics, Stanford University, Stanford, CA 94305-6072, USA Received 14 May 2001;

More information

Investigation of the and minimum storage energy target levels approach. Final Report

Investigation of the and minimum storage energy target levels approach. Final Report Investigation of the AV@R and minimum storage energy target levels approach Final Report First activity of the technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/27/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Risk Management for Chemical Supply Chain Planning under Uncertainty

Risk Management for Chemical Supply Chain Planning under Uncertainty for Chemical Supply Chain Planning under Uncertainty Fengqi You and Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University John M. Wassick The Dow Chemical Company Introduction

More information

Credit Risk Models with Filtered Market Information

Credit Risk Models with Filtered Market Information Credit Risk Models with Filtered Market Information Rüdiger Frey Universität Leipzig Bressanone, July 2007 ruediger.frey@math.uni-leipzig.de www.math.uni-leipzig.de/~frey joint with Abdel Gabih and Thorsten

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

A Structural Model for Carbon Cap-and-Trade Schemes

A Structural Model for Carbon Cap-and-Trade Schemes A Structural Model for Carbon Cap-and-Trade Schemes Sam Howison and Daniel Schwarz University of Oxford, Oxford-Man Institute The New Commodity Markets Oxford-Man Institute, 15 June 2011 Introduction The

More information

Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives

Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives Finance Winterschool 2007, Lunteren NL Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives Pricing complex structured products Mohrenstr 39 10117 Berlin schoenma@wias-berlin.de

More information

Dynamic Appointment Scheduling in Healthcare

Dynamic Appointment Scheduling in Healthcare Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-12-05 Dynamic Appointment Scheduling in Healthcare McKay N. Heasley Brigham Young University - Provo Follow this and additional

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class Homework #4 CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts

More information

An effective perfect-set theorem

An effective perfect-set theorem An effective perfect-set theorem David Belanger, joint with Keng Meng (Selwyn) Ng CTFM 2016 at Waseda University, Tokyo Institute for Mathematical Sciences National University of Singapore The perfect

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

A New Scenario-Tree Generation Approach for Multistage Stochastic Programming Problems Based on a Demerit Criterion

A New Scenario-Tree Generation Approach for Multistage Stochastic Programming Problems Based on a Demerit Criterion A New Scenario-Tree Generation Approach for Multistage Stochastic Programming Problems Based on a Demerit Criterion Julien Keutchayan David Munger Michel Gendreau Fabian Bastin December 2017 A New Scenario-Tree

More information

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints Zongxia Liang Department of Mathematical Sciences Tsinghua University, Beijing 100084, China zliang@math.tsinghua.edu.cn Joint

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

IMPLEMENTING THE SPECTRAL CALIBRATION OF EXPONENTIAL LÉVY MODELS

IMPLEMENTING THE SPECTRAL CALIBRATION OF EXPONENTIAL LÉVY MODELS IMPLEMENTING THE SPECTRAL CALIBRATION OF EXPONENTIAL LÉVY MODELS DENIS BELOMESTNY AND MARKUS REISS 1. Introduction The aim of this report is to describe more precisely how the spectral calibration method

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

BAYESIAN NONPARAMETRIC ANALYSIS OF SINGLE ITEM PREVENTIVE MAINTENANCE STRATEGIES

BAYESIAN NONPARAMETRIC ANALYSIS OF SINGLE ITEM PREVENTIVE MAINTENANCE STRATEGIES Proceedings of 17th International Conference on Nuclear Engineering ICONE17 July 1-16, 9, Brussels, Belgium ICONE17-765 BAYESIAN NONPARAMETRIC ANALYSIS OF SINGLE ITEM PREVENTIVE MAINTENANCE STRATEGIES

More information

Interest-Sensitive Financial Instruments

Interest-Sensitive Financial Instruments Interest-Sensitive Financial Instruments Valuing fixed cash flows Two basic rules: - Value additivity: Find the portfolio of zero-coupon bonds which replicates the cash flows of the security, the price

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 1.1287/opre.11.864ec e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 21 INFORMS Electronic Companion Risk Analysis of Collateralized Debt Obligations by Kay Giesecke and Baeho

More information

Market Design for Emission Trading Schemes

Market Design for Emission Trading Schemes Market Design for Emission Trading Schemes Juri Hinz 1 1 parts are based on joint work with R. Carmona, M. Fehr, A. Pourchet QF Conference, 23/02/09 Singapore Greenhouse gas effect SIX MAIN GREENHOUSE

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Vladimir Spokoiny (joint with J.Polzehl) Varying coefficient GARCH versus local constant volatility modeling.

Vladimir Spokoiny (joint with J.Polzehl) Varying coefficient GARCH versus local constant volatility modeling. W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly sis u n d S to c h a stik STATDEP 2005 Vladimir Spokoiny (joint with J.Polzehl) Varying coefficient GARCH versus local constant volatility modeling.

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

Introduction to modeling using stochastic programming. Andy Philpott The University of Auckland

Introduction to modeling using stochastic programming. Andy Philpott The University of Auckland Introduction to modeling using stochastic programming Andy Philpott The University of Auckland Tutorial presentation at SPX, Tuscon, October 9th, 2004 Summary Introduction to basic concepts Risk Multi-stage

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

The Stigler-Luckock model with market makers

The Stigler-Luckock model with market makers Prague, January 7th, 2017. Order book Nowadays, demand and supply is often realized by electronic trading systems storing the information in databases. Traders with access to these databases quote their

More information

Discrete time interest rate models

Discrete time interest rate models slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part II József Gáll University of Debrecen, Faculty of Economics Nov. 2012 Jan. 2013, Ljubljana Introduction to discrete

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Contagion models with interacting default intensity processes

Contagion models with interacting default intensity processes Contagion models with interacting default intensity processes Yue Kuen KWOK Hong Kong University of Science and Technology This is a joint work with Kwai Sun Leung. 1 Empirical facts Default of one firm

More information

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based Search Reinforcement Learning and Simulation-Based Search David Silver Outline 1 Reinforcement Learning 2 3 Planning Under Uncertainty Reinforcement Learning Markov Decision Process Definition A Markov Decision

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen Parametric Inference and Dynamic State Recovery from Option Panels Torben G. Andersen Joint work with Nicola Fusari and Viktor Todorov The Third International Conference High-Frequency Data Analysis in

More information