Factor Graphs, the Sum-Product Algorithm and TrueSkill TM

Size: px
Start display at page:

Download "Factor Graphs, the Sum-Product Algorithm and TrueSkill TM"

Transcription

1 Factor Graphs, the Sum-Product Algorithm and TrueSkill TM Kuhwan Jeong 1 1 Department of Statistics, Seoul National University, South Korea July, / 17

2 Introduction x i : a variable taking on values in some domain A i, i = 1,..., n g(x 1,..., x n) : a function of x 1,..., x n g i (x i ) : the marginal function w.r.t. x i g i (x i ) = g(x 1,..., x n) x 1 A 1 x n A n = x i g(x 1,..., x n) x i 1 A i 1 x i+1 A i+1 The sum-product algorithm is a efficient procedure for computing marginal functions that a) exploit the way in which the global function factors, and b) reuses intermediate values. It is a simple way to understand a large number of seemingly different algorithms that have been developed. 2 / 17

3 Factor Graphs Suppose that g(x 1,..., x n) factors into a product of several local functions, g(x 1,..., x n) = j J f j (X j ) where J is a discrete index set, X j is a subset of {x 1,..., x n}, and f j (X j ) is a function having the elements of X j as arguments. A factor graph is a bipartite graph that expresses the structure of the factorization. It has a variable node for each variable x i, a factor node for each local function f j, and an edge between a variable node x i and a factor node f j if and only if x i is an argument of f j. Example. g(x 1, x 2, x 3, x 4, x 5 ) = f A (x 1 )f B (x 2 )f C (x 1, x 2, x 3 )f D (x 3, x 4 )f E (x 3, x 5 ) 3 / 17

4 Computing a Single Marginal Function Example (continued). g(x 1, x 2, x 3, x 4, x 5 ) = f A (x 1 )f B (x 2 )f C (x 1, x 2, x 3 )f D (x 3, x 4 )f E (x 3, x 5 ) g 1 (x 1 ) = f A (x 1 ) f B (x 2 ) f C (x 1, x 2, x 3 ) f D (x 3, x 4 ) f E (x 3, x 5 ) x 2 x 3 x 4 x 5 = f A (x 1 ) f B(x 2 )f C (x 1, x 2, x 3 ) f D (x 3, x 4 ) f E (x 3, x 5 ) x 1 x 3 x 3 g 3 (x 3 ) = f A (x 1 )f B (x 2 )f C (x 1, x 2, x 3 ) f D (x 3, x 4 ) f E (x 3, x 5 ) x 3 x 3 x 3 4 / 17

5 Computing a Single Marginal Function Single-i Sum-Product algorithm. Take x i as the root vertex. Each leaf node sends a message to its parent. Each vertex waits for messages from all of its children before computing the message to be sent to its parent. A variable node simply sends the product of messages received from its children µ x f = h n(x)\f µ h x (x) where n(x) is the set of functions of which x is an argument. A factor node f with a parent x forms the product of f with the messages received from its children, and then operates the summation x on the result µ f x (x) = f (X) µ y f (y) x y n(f )\{x} where X = n(f ) is the set of arguments of f. g i (x i ) is obtained as the product of all messages received at x i. 5 / 17

6 Computing a Single Marginal Function Example (continued). µ x4 f D = µ x5 f E = 1, µ fd x 3 = f D (x 3, x 4 ), µ fe x 3 = f E (x 3, x 5 ), x 3 x 3 µ x3 f C = f D (x 3, x 4 ) f E (x 3, x 5 ), µ fb x 2 = µ x2 f C = f B (x 2 ), µ fc x 1 = f B(x 2 )f C (x 1, x 2, x 3 ) f D (x 3, x 4 ) f E (x 3, x 5 ), x 1 µ fa x 1 = f A (x 1 ), g 1 (x 1 ) = f A (x 1 ) f B(x 2 )f C (x 1, x 2, x 3 ) f D (x 3, x 4 ) f E (x 3, x 5 ). x 1 6 / 17

7 Computing a Single Marginal Function Example (continued). µ fa x 1 = µ x1 f C = f A (x 1 ), µ fb x 2 = µ x2 f C = f B (x 2 ), µ fc x 3 = f A (x 1 )f B (x 2 )f C (x 1, x 2, x 3 ), x 3 µ x4 f D = µ x5 f E = 1, µ fd x 3 = f D (x 3, x 4 ), µ fe x 3 = f E (x 3, x 5 ), x 3 x 3 g 3 (x 3 ) = f A (x 1 )f B (x 2 )f C (x 1, x 2, x 3 ) f D (x 3, x 4 ) f E (x 3, x 5 ). 7 / 17

8 Computing All Marginal Functions Sum-Product algorithm. As in the single-i algorithm, message passing is initiated at the leaves. Each vertex v remains idle until messages have arrived on all but one of the edges incident on v. 8 / 17

9 Example : TrueSkill TrueSkill ranking system is a skill based ranking system for Xbox Live developed at Microsoft Research. The purpose is to both identify and track the skills of gamers in order to be able to match them into competitive matches. TrueSkill ranking system only uses the final standings of all teams in a game in order to update the skill estimates of all gamers playing in this game. Ranking systems have been proposed for many sports but possibly the most prominent ranking system in use today is the Elo system. 9 / 17

10 Elo System In 1959, Arpad Elo developed a statistical rating system for Chess, which was adopted by the World Chess Federation FIDE in It models the probability of the possible game outcomes as a function of the two players skill ratings s 1 and s 2. In a game each player i exhibits performance p i N (s i, β 2 ). The probability that player 1 wins is given by ( s1 s 2 P(p 1 > p 2 s 1, s 2 ) = Φ ). 2β Let y = 1 if player 1 wins, y = 1 if player 2 wins and y = 0 if a draw occurs. After the game, the skill ratings s 1 and s 2 are updated by s 1 s 2 s 1 + y s 2 y where = αβ ( ( )) y + 1 s1 s 2 π Φ. 2 2β 10 / 17

11 TrueSkill Assume an independent normal prior p(s) = n i=1 N (s i; µ i, σ 2 i ). Each player i exhibits a performance p i N (p i ; s i, β 2 ). From among a population of n players {1,..., n} in a game let k teams compete a match. The team assignments are specified by k non-overlapping subsets A j {1,..., n}, A i A j = if i j. The performance t j of team j is modeled as the sum of the performances of its members t j = p i. i A j 11 / 17

12 TrueSkill The outcome r = (r 1,..., r k ) {1,..., k} k is specified by a rank r j for each team j. Disregarding draws, the probability of a game outcome r is modeled as P(r t 1,..., t k ) = P(t r(1) > t r(2) > > t r(k) ). If draws are permitted the wining outcome r (j) < r (j+1) requires t r(j) > t r(j+1) + ɛ and the draw outcome r (j) = r (j+1) requires t r(j) t r(j+1) ɛ, where ɛ is a draw margin. 12 / 17

13 TrueSkill Consider a game with 3 teams with A 1 = {1}, A 2 = {2, 3} and A 3 = 4. Assume that team 1 is the winner and that teams 2 and 3 draw, i.e., r = (1, 2, 2). The factor graph representing the joint distribution P(s, p, t r, A) is depicted. 13 / 17

14 TrueSkill The quantities of interest are the posterior distribution P(s i r, A). P(s i r, A) is calculated from the joint distribution integrating out the individual performances {p i } and the team performances {t i }, P(s i r, A) = P(s, p, t r, A)dpdt 14 / 17

15 Approximate Message Passing The message passing is characterized by the following equations: P(v k ) = µ f vk (v k ), f n(v k ) µ f vj (v j ) = f (v) µ vk f (v k ) = h n(v k )\{f } v i n(f )\{v j } µ h vk (v k ). m vi f (v i )dv j, The TrueSkill factor graph is acyclic and the majority of messages can be represented compactly as 1-dimensional Gaussians. However, messages from the comparison factors I( > ɛ) or I( ɛ) to the performance differences d i are non Gaussian. We approximate these messages by approximating the marginal P(d i ) via moment matching resulting in a Gaussian ˆP(d i ) with the same mean and variance as P(d i ). Then, we have ˆµ f di (d i ) = ˆP(d i ) µ di f (d i ). 15 / 17

16 Approximate Message Passing Since the messages 2 and 5 are approximate, iterate over all messages that are on the shortest path between any two approximate marginals ˆP(d i ) until the convergence of marginals. 16 / 17

17 References Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on information theory, 47(2), Herbrich, R., Minka, T., & Graepel, T. (2007). TrueSkill TM : a Bayesian skill rating system. In Advances in neural information processing systems (pp ). 17 / 17

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Game Theory: Normal Form Games

Game Theory: Normal Form Games Game Theory: Normal Form Games Michael Levet June 23, 2016 1 Introduction Game Theory is a mathematical field that studies how rational agents make decisions in both competitive and cooperative situations.

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Factor Graphs. Seungjin Choi

Factor Graphs. Seungjin Choi Factor Graphs Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 17 Tanner Graphs

More information

On Existence of Equilibria. Bayesian Allocation-Mechanisms

On Existence of Equilibria. Bayesian Allocation-Mechanisms On Existence of Equilibria in Bayesian Allocation Mechanisms Northwestern University April 23, 2014 Bayesian Allocation Mechanisms In allocation mechanisms, agents choose messages. The messages determine

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics ECON5200 - Fall 2014 Introduction What you have done: - consumers maximize their utility subject to budget constraints and firms maximize their profits given technology and market

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

A Polynomial-Time Algorithm for Action-Graph Games

A Polynomial-Time Algorithm for Action-Graph Games A Polynomial-Time Algorithm for Action-Graph Games Albert Xin Jiang Computer Science, University of British Columbia Based on joint work with Kevin Leyton-Brown Computation-Friendly Game Representations

More information

CS 798: Homework Assignment 4 (Game Theory)

CS 798: Homework Assignment 4 (Game Theory) 0 5 CS 798: Homework Assignment 4 (Game Theory) 1.0 Preferences Assigned: October 28, 2009 Suppose that you equally like a banana and a lottery that gives you an apple 30% of the time and a carrot 70%

More information

CSV 886 Social Economic and Information Networks. Lecture 4: Auctions, Matching Markets. R Ravi

CSV 886 Social Economic and Information Networks. Lecture 4: Auctions, Matching Markets. R Ravi CSV 886 Social Economic and Information Networks Lecture 4: Auctions, Matching Markets R Ravi ravi+iitd@andrew.cmu.edu Schedule 2 Auctions 3 Simple Models of Trade Decentralized Buyers and sellers have

More information

Economi Capital. Tiziano Bellini. Università di Bologna. November 29, 2013

Economi Capital. Tiziano Bellini. Università di Bologna. November 29, 2013 Economi Capital Tiziano Bellini Università di Bologna November 29, 2013 Tiziano Bellini (Università di Bologna) Economi Capital November 29, 2013 1 / 16 Outline Framework Economic Capital Structural approach

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani All single-node marginals If we need the full set of marginals, repeating

More information

Sum-Product: Message Passing Belief Propagation

Sum-Product: Message Passing Belief Propagation Sum-Product: Message Passing Belief Propagation 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 All single-node marginals If we need the

More information

COSC 311: ALGORITHMS HW4: NETWORK FLOW

COSC 311: ALGORITHMS HW4: NETWORK FLOW COSC 311: ALGORITHMS HW4: NETWORK FLOW Solutions 1 Warmup 1) Finding max flows and min cuts. Here is a graph (the numbers in boxes represent the amount of flow along an edge, and the unadorned numbers

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Strategy -1- Strategic equilibrium in auctions

Strategy -1- Strategic equilibrium in auctions Strategy -- Strategic equilibrium in auctions A. Sealed high-bid auction 2 B. Sealed high-bid auction: a general approach 6 C. Other auctions: revenue equivalence theorem 27 D. Reserve price in the sealed

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS November 17, 2016. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question.

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

(Practice Version) Midterm Exam 1

(Practice Version) Midterm Exam 1 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 19, 2014 (Practice Version) Midterm Exam 1 Last name First name SID Rules. DO NOT open

More information

Problem Set 3: Suggested Solutions

Problem Set 3: Suggested Solutions Microeconomics: Pricing 3E00 Fall 06. True or false: Problem Set 3: Suggested Solutions (a) Since a durable goods monopolist prices at the monopoly price in her last period of operation, the prices must

More information

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I CS221 / Spring 2018 / Sadigh Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Notes on the EM Algorithm Michael Collins, September 24th 2005

Notes on the EM Algorithm Michael Collins, September 24th 2005 Notes on the EM Algorithm Michael Collins, September 24th 2005 1 Hidden Markov Models A hidden Markov model (N, Σ, Θ) consists of the following elements: N is a positive integer specifying the number of

More information

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs STA561: Probabilistic machine learning Exact Inference (9/30/13) Lecturer: Barbara Engelhardt Scribes: Jiawei Liang, He Jiang, Brittany Cohen 1 Validation for Clustering If we have two centroids, η 1 and

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Lecture 9: Games I. Course plan. A simple game. Roadmap. Machine learning. Example: game 1

Lecture 9: Games I. Course plan. A simple game. Roadmap. Machine learning. Example: game 1 Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic Low-level intelligence Machine

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information Algorithmic Game Theory and Applications Lecture 11: Games of Perfect Information Kousha Etessami finite games of perfect information Recall, a perfect information (PI) game has only 1 node per information

More information

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016 Probabilistic Meshless Methods for Bayesian Inverse Problems Jon Cockayne July 8, 2016 1 Co-Authors Chris Oates Tim Sullivan Mark Girolami 2 What is PN? Many problems in mathematics have no analytical

More information

Algorithmic Game Theory (a primer) Depth Qualifying Exam for Ashish Rastogi (Ph.D. candidate)

Algorithmic Game Theory (a primer) Depth Qualifying Exam for Ashish Rastogi (Ph.D. candidate) Algorithmic Game Theory (a primer) Depth Qualifying Exam for Ashish Rastogi (Ph.D. candidate) 1 Game Theory Theory of strategic behavior among rational players. Typical game has several players. Each player

More information

Probabilistic Graphical Models

Probabilistic Graphical Models CS420, Machine Learning, Lecture 8 Probabilistic Graphical Models Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Content of This Lecture Introduction

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (30 pts) Answer briefly the following questions. 1. Suppose that

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC

Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC Pablo M. Olmos, Fernando Pérez-Cruz Departamento de Teoría de la Señal y Comunicaciones. Universidad Carlos III in Madrid. email:

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

Lecture l(x) 1. (1) x X

Lecture l(x) 1. (1) x X Lecture 14 Agenda for the lecture Kraft s inequality Shannon codes The relation H(X) L u (X) = L p (X) H(X) + 1 14.1 Kraft s inequality While the definition of prefix-free codes is intuitively clear, we

More information

2 Comparison Between Truthful and Nash Auction Games

2 Comparison Between Truthful and Nash Auction Games CS 684 Algorithmic Game Theory December 5, 2005 Instructor: Éva Tardos Scribe: Sameer Pai 1 Current Class Events Problem Set 3 solutions are available on CMS as of today. The class is almost completely

More information

Backward induction. Chapter Tony s Accident

Backward induction. Chapter Tony s Accident Chapter 1 Backward induction This chapter deals with situations in which two or more opponents take actions one after the other. If you are involved in such a situation, you can try to think ahead to how

More information

ECN101: Intermediate Macroeconomic Theory TA Section

ECN101: Intermediate Macroeconomic Theory TA Section ECN101: Intermediate Macroeconomic Theory TA Section (jwjung@ucdavis.edu) Department of Economics, UC Davis November 4, 2014 Slides revised: November 4, 2014 Outline 1 2 Fall 2012 Winter 2012 Midterm:

More information

Microeconomics Comprehensive Exam

Microeconomics Comprehensive Exam Microeconomics Comprehensive Exam June 2009 Instructions: (1) Please answer each of the four questions on separate pieces of paper. (2) When finished, please arrange your answers alphabetically (in the

More information

18.05 Problem Set 3, Spring 2014 Solutions

18.05 Problem Set 3, Spring 2014 Solutions 8.05 Problem Set 3, Spring 04 Solutions Problem. (0 pts.) (a) We have P (A) = P (B) = P (C) =/. Writing the outcome of die first, we can easily list all outcomes in the following intersections. A B = {(,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning MDP March May, 2013 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Feb. 4 Math 2335 sec 001 Spring 2014

Feb. 4 Math 2335 sec 001 Spring 2014 Feb. 4 Math 2335 sec 001 Spring 2014 Propagated Error in Function Evaluation Let f (x) be some differentiable function. Suppose x A is an approximation to x T, and we wish to determine the function value

More information

Problem Set 2. Theory of Banking - Academic Year Maria Bachelet March 2, 2017

Problem Set 2. Theory of Banking - Academic Year Maria Bachelet March 2, 2017 Problem Set Theory of Banking - Academic Year 06-7 Maria Bachelet maria.jua.bachelet@gmai.com March, 07 Exercise Consider an agency relationship in which the principal contracts the agent, whose effort

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

Top-down particle filtering for Bayesian decision trees

Top-down particle filtering for Bayesian decision trees Top-down particle filtering for Bayesian decision trees Balaji Lakshminarayanan 1, Daniel M. Roy 2 and Yee Whye Teh 3 1. Gatsby Unit, UCL, 2. University of Cambridge and 3. University of Oxford Outline

More information

Reasoning About Others: Representing and Processing Infinite Belief Hierarchies

Reasoning About Others: Representing and Processing Infinite Belief Hierarchies Reasoning About Others: Representing and Processing Infinite Belief Hierarchies Sviatoslav Brainov and Tuomas Sandholm Department of Computer Science Washington University St Louis, MO 63130 {brainov,

More information

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts 6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts Asu Ozdaglar MIT February 9, 2010 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

The Stackelberg Minimum Spanning Tree Game

The Stackelberg Minimum Spanning Tree Game The Stackelberg Minimum Spanning Tree Game J. Cardinal, E. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, O. Weimann, The Stackelberg Minimum Spanning Tree Game, WADS 07 Stackelberg Game 2 players:

More information

A relation on 132-avoiding permutation patterns

A relation on 132-avoiding permutation patterns Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL, 205, 285 302 A relation on 32-avoiding permutation patterns Natalie Aisbett School of Mathematics and Statistics, University of Sydney,

More information

Path Auction Games When an Agent Can Own Multiple Edges

Path Auction Games When an Agent Can Own Multiple Edges Path Auction Games When an Agent Can Own Multiple Edges Ye Du Rahul Sami Yaoyun Shi Department of Electrical Engineering and Computer Science, University of Michigan 2260 Hayward Ave, Ann Arbor, MI 48109-2121,

More information

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice.

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice. Methods of Inference Toss coin 6 times and get Heads twice. p is probability of getting H. Probability of getting exactly 2 heads is 15p 2 (1 p) 4 This function of p, is likelihood function. Definition:

More information

Heap Building Bounds

Heap Building Bounds Heap Building Bounds Zhentao Li 1 and Bruce A. Reed 2 1 School of Computer Science, McGill University zhentao.li@mail.mcgill.ca 2 School of Computer Science, McGill University breed@cs.mcgill.ca Abstract.

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

1 R. 2 l r 1 1 l2 r 2

1 R. 2 l r 1 1 l2 r 2 4. Game Theory Midterm I Instructions. This is an open book exam; you can use any written material. You have one hour and 0 minutes. Each question is 35 points. Good luck!. Consider the following game

More information

Solution to Assignment 3

Solution to Assignment 3 Solution to Assignment 3 0/03 Semester I MA6 Game Theory Tutor: Xiang Sun October 5, 0. Question 5, in Tutorial set 5;. Question, in Tutorial set 6; 3. Question, in Tutorial set 7. Solution for Question

More information

EC476 Contracts and Organizations, Part III: Lecture 3

EC476 Contracts and Organizations, Part III: Lecture 3 EC476 Contracts and Organizations, Part III: Lecture 3 Leonardo Felli 32L.G.06 26 January 2015 Failure of the Coase Theorem Recall that the Coase Theorem implies that two parties, when faced with a potential

More information

Fixed-Income Options

Fixed-Income Options Fixed-Income Options Consider a two-year 99 European call on the three-year, 5% Treasury. Assume the Treasury pays annual interest. From p. 852 the three-year Treasury s price minus the $5 interest could

More information

Plan Repair in Conflict-Free Routing

Plan Repair in Conflict-Free Routing Plan Repair in Conflict-Free Routing Adriaan ter Mors 1 and Cees Witteveen 2 1 Almende BV, Rotterdam, The Netherlands, adriaan@almende.org 2 Delft University of Technology, The Netherlands, c.witteveen@tudelft.nl

More information

Strategy -1- Strategy

Strategy -1- Strategy Strategy -- Strategy A Duopoly, Cournot equilibrium 2 B Mixed strategies: Rock, Scissors, Paper, Nash equilibrium 5 C Games with private information 8 D Additional exercises 24 25 pages Strategy -2- A

More information

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES WIKTOR JAKUBIUK, KESHAV PURANMALKA 1. Introduction Dijkstra s algorithm solves the single-sourced shorest path problem on a

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 4: Game Trees http://www.wiley.com/go/smed Game types perfect information games no hidden information two-player, perfect information games Noughts

More information

Lecture Stat 302 Introduction to Probability - Slides 15

Lecture Stat 302 Introduction to Probability - Slides 15 Lecture Stat 30 Introduction to Probability - Slides 15 AD March 010 AD () March 010 1 / 18 Continuous Random Variable Let X a (real-valued) continuous r.v.. It is characterized by its pdf f : R! [0, )

More information

February 2 Math 2335 sec 51 Spring 2016

February 2 Math 2335 sec 51 Spring 2016 February 2 Math 2335 sec 51 Spring 2016 Section 3.1: Root Finding, Bisection Method Many problems in the sciences, business, manufacturing, etc. can be framed in the form: Given a function f (x), find

More information

1 Roy model: Chiswick (1978) and Borjas (1987)

1 Roy model: Chiswick (1978) and Borjas (1987) 14.662, Spring 2015: Problem Set 3 Due Wednesday 22 April (before class) Heidi L. Williams TA: Peter Hull 1 Roy model: Chiswick (1978) and Borjas (1987) Chiswick (1978) is interested in estimating regressions

More information

Beliefs and Sequential Rationality

Beliefs and Sequential Rationality Beliefs and Sequential Rationality A system of beliefs µ in extensive form game Γ E is a specification of a probability µ(x) [0,1] for each decision node x in Γ E such that x H µ(x) = 1 for all information

More information

Single-Parameter Mechanisms

Single-Parameter Mechanisms Algorithmic Game Theory, Summer 25 Single-Parameter Mechanisms Lecture 9 (6 pages) Instructor: Xiaohui Bei In the previous lecture, we learned basic concepts about mechanism design. The goal in this area

More information

Evaluating Strategic Forecasters. Rahul Deb with Mallesh Pai (Rice) and Maher Said (NYU Stern) Becker Friedman Theory Conference III July 22, 2017

Evaluating Strategic Forecasters. Rahul Deb with Mallesh Pai (Rice) and Maher Said (NYU Stern) Becker Friedman Theory Conference III July 22, 2017 Evaluating Strategic Forecasters Rahul Deb with Mallesh Pai (Rice) and Maher Said (NYU Stern) Becker Friedman Theory Conference III July 22, 2017 Motivation Forecasters are sought after in a variety of

More information

Statistics and Their Distributions

Statistics and Their Distributions Statistics and Their Distributions Deriving Sampling Distributions Example A certain system consists of two identical components. The life time of each component is supposed to have an expentional distribution

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 Daron Acemoglu and Asu Ozdaglar MIT October 14, 2009 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria Mixed Strategies

More information

PROBABILITY AND STATISTICS

PROBABILITY AND STATISTICS Monday, January 12, 2015 1 PROBABILITY AND STATISTICS Zhenyu Ye January 12, 2015 Monday, January 12, 2015 2 References Ch10 of Experiments in Modern Physics by Melissinos. Particle Physics Data Group Review

More information

INTELLECTUAL SUPPORT OF INVESTMENT DECISIONS BASED ON A CLUSTERING OF THE CORRELATION GRAPH OF SECURITIES

INTELLECTUAL SUPPORT OF INVESTMENT DECISIONS BASED ON A CLUSTERING OF THE CORRELATION GRAPH OF SECURITIES INTELLECTUAL SUPPORT OF INVESTMENT DECISIONS BASED ON A CLUSTERING OF THE CORRELATION GRAPH OF SECURITIES Izabella V. Lokshina Division of Economics and Business State University of New York Ravine Parkway

More information

Tug of War Game. William Gasarch and Nick Sovich and Paul Zimand. October 6, Abstract

Tug of War Game. William Gasarch and Nick Sovich and Paul Zimand. October 6, Abstract Tug of War Game William Gasarch and ick Sovich and Paul Zimand October 6, 2009 To be written later Abstract Introduction Combinatorial games under auction play, introduced by Lazarus, Loeb, Propp, Stromquist,

More information

CTL Model Checking. Goal Method for proving M sat σ, where M is a Kripke structure and σ is a CTL formula. Approach Model checking!

CTL Model Checking. Goal Method for proving M sat σ, where M is a Kripke structure and σ is a CTL formula. Approach Model checking! CMSC 630 March 13, 2007 1 CTL Model Checking Goal Method for proving M sat σ, where M is a Kripke structure and σ is a CTL formula. Approach Model checking! Mathematically, M is a model of σ if s I = M

More information

S 2,2-1, x c C x r, 1 0,0

S 2,2-1, x c C x r, 1 0,0 Problem Set 5 1. There are two players facing each other in the following random prisoners dilemma: S C S, -1, x c C x r, 1 0,0 With probability p, x c = y, and with probability 1 p, x c = 0. With probability

More information

Monetary Economics Final Exam

Monetary Economics Final Exam 316-466 Monetary Economics Final Exam 1. Flexible-price monetary economics (90 marks). Consider a stochastic flexibleprice money in the utility function model. Time is discrete and denoted t =0, 1,...

More information

Machine Learning. Graphical Models. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Graphical Models. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Graphical Models Marc Toussaint University of Stuttgart Summer 2015 Outline A. Introduction Motivation and definition of Bayes Nets Conditional independence in Bayes Nets Examples B. Inference

More information

Node betweenness centrality: the definition.

Node betweenness centrality: the definition. Brandes algorithm These notes supplement the notes and slides for Task 11. They do not add any new material, but may be helpful in understanding the Brandes algorithm for calculating node betweenness centrality.

More information

Algebraic Problems in Graphical Modeling

Algebraic Problems in Graphical Modeling Algebraic Problems in Graphical Modeling Mathias Drton Department of Statistics University of Chicago Outline 1 What (roughly) are graphical models? a.k.a. Markov random fields, Bayesian networks,... 2

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify CSE 3500 Algorithms and Complexity Fall 2016 Lecture 17: October 25, 2016 Dijkstra s Algorithm Dijkstra s algorithm for the SSSP problem generates the shortest paths in nondecreasing order of the shortest

More information

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory Strategies and Nash Equilibrium A Whirlwind Tour of Game Theory (Mostly from Fudenberg & Tirole) Players choose actions, receive rewards based on their own actions and those of the other players. Example,

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Competing Mechanisms with Limited Commitment

Competing Mechanisms with Limited Commitment Competing Mechanisms with Limited Commitment Suehyun Kwon CESIFO WORKING PAPER NO. 6280 CATEGORY 12: EMPIRICAL AND THEORETICAL METHODS DECEMBER 2016 An electronic version of the paper may be downloaded

More information

MA200.2 Game Theory II, LSE

MA200.2 Game Theory II, LSE MA200.2 Game Theory II, LSE Answers to Problem Set [] In part (i), proceed as follows. Suppose that we are doing 2 s best response to. Let p be probability that player plays U. Now if player 2 chooses

More information

Answer Key: Problem Set 4

Answer Key: Problem Set 4 Answer Key: Problem Set 4 Econ 409 018 Fall A reminder: An equilibrium is characterized by a set of strategies. As emphasized in the class, a strategy is a complete contingency plan (for every hypothetical

More information