Chapter 5 Present Worth Analysis

Size: px
Start display at page:

Download "Chapter 5 Present Worth Analysis"

Transcription

1 Chapter 5 Present Worth Analysis 1. Net Present Worth (NPW) Analysis NPW is a comparison of alternatives by determining at year 0 (i.e., the present time). At least one of the following three situations will characterize all NPW problems: a) all alternatives have, b) at least one alternative differs from the others in terms of useful life spans, c) there is an analysis period. The above situations determine the analysis period that you will use in each problem (i.e., over what period of time you will compare the alternatives). The cash flows for the analysis period are moved to year zero with an interest rate known as the Minimum Attractive Rate of Return (MARR). The term MARR was discussed earlier in the course. If the NPW equal $0, the alternative earns an interest rate equal to the. A positive NPW indicates that the alternative earns an interest rate that is than the MARR. A negative NPW indicates that the alternative earns an interest rate that is than the MARR. 2. NPW Analysis of Alternatives With Equal Life Spans For each alternative, simply move all associated cash flows (with the MARR) to year zero. 3. Choosing Between Alternatives The option must be considered if it is an option. If donothing is an option, it is chosen if none of the other alternatives have a NPW > 0. If do-nothing is an option and at least one of the remaining alternatives has a positive NPW, simply choose the alternative with the. If do-nothing is not an option, simple choose the alternative with the (whether negative or positive).

2 4. Example of Equal Life Spans Utilize NPW Analysis to decide which, if any, of the following alternatives should be accepted. MARR = 10%. TOPS Corp. Quality, LLC Initial Cost 10,000 $8,000 Benefits $4,000/yr $3,500 in year 1, growing by $500 each year after Costs $1,000/yr $1,500/yr Salvage $1,000 0 Life (yrs) 5 5 CFD for TOPS Corp. NPW = (P/A, 10%, 5) (P/A, 10%, 5) (P/F, 10%, 5) = (3.791) (3.791) (.6209) = $

3 CFD for Quality, LLC 5. NPW Analysis of Alternatives with Unequal Life Spans In order to compare alternatives with unequal lives, must be assumed. Identical replacement assumes that the current option will be replaced at the end of its life with an identical with identical. To compare the options, find the (LCM) of all the alternatives life spans. The LCM determines the number of times that you will need to identically replace each alternative in order to have a proper comparison. After determining the cash flows associated with each alternative (based on identical replacement and the LCM), simply move all cash flows (with the MARR) to year 0.

4 6. Choosing Between Alternatives The same rules discussed for choosing between alternatives with equal life spans also apply for choosing between alternatives with unequal life spans. That is, assuming the procedures described in note #5 are properly followed. 7. Example of Unequal Life Spans Given the following two alternatives and NPW Analysis, determine which, if any, should be chosen. MARR = 15% Alternative #1 Alternative #2 Initial Cost $50,000 $25,000 Benefits $10,000/yr $13,000 in year 1, decreasing by $2,000 each year after Costs $2,000/yr $2,000/yr Salvage $0 $2,000 Life (yrs) 10 5 CFD for Alternative #1 NPW = (P/A, 15%, 10) (P/A, 15%, 10) NPW = (5.019) (5.019) NPW = - $9,848.00

5 CFD for Alternative #2 8. Comparing Alternatives with an Infinite Analysis Period This type of application is often seen in governmental projects. According to page 166, In governmental analyses, a service or condition sometimes must be maintained for an infinite period (roads, dams, pipelines, etc.). Due to these type applications, Civil Engineers are highly likely to see these applications. is the present sum (i.e., the worth) of money that would need to be set aside now, at some interest rate, to yield the funds required to provide the service (or whatever) indefinitely. Formula: (P/A, i%, ) = 1/i thus P = A(1/i) = A/i A = (Equivalent) Uniform Payments that occur an infinite number of times P = (Note: When solving for P, P always lands one period prior to the first (equivalent) uniform payment. i = effective interest rate for the time period between each (equivalent) uniform payment

6 9. An Example of an Infinite Analysis Period Mr. I. B. Rich wants to donate to LaTech a lump sum of money today that will provide ten scholarships worth $4,000. The scholarships are to start one year from today and occur every year, forever. If LaTech can earn 5% per year, compounded annually on this investment, what amount must he donate today? 10. Another Infinite Series Example If the first scholarship in the previous problem did not occur until 5 years from today, how would the capitalized cost change?

7 11. Another Infinite Series Problem Mr. I. B. Rich donates $50,000 to LaTech and desires that the money provide a scholarship once every 4 years, forever. If LaTech can earn 10% on the investment, what amount will be available for the scholarship that occurs every 4 years, forever? 12. Bond Problems When dealing with bond problems, you will notice that two interest rates are given. One will refer to the periodic dividend that will be paid to the bond holder. The other will refer to the interest rate or MARR.

8 13. An Example of a Bond Problem You are interested in a particular bond that has the following characteristics: Face Value = $10,000 Maturity date is in 5 years. Pays dividends at a rate of 6% (paid equally over semi-annual periods) If you desire 8%, compounded semi-annually on any investment you make, what is the most you should pay for the bond?

9 14. More Examples You have been asked to perform an economic analysis on two different investment opportunities. The first alternative considered has an expected lifespan of two (2) years. The second is expected to last for three (3) years. In making your analysis, you have been asked to use Net Present Worth Analysis. The NPW of alternative one has already been calculated for you, and it was found that the NPW = $22,500 (Please note that this NPW has taken into account any necessary information relative to alternative two.). Given this and the following cash flows for alternative two, make the necessary calculations for the second alternative to compare it to the first alternative. Given your calculations, which of the two (if any) should be chosen? Interest is 10%. Alternative #2 Initial Cost $30,000 Benefits $10,000 the first year and growing by $10,000 each year after O&M Costs $2,000 per year Life (in years) 3

10 You are trying to decide whether or not you want to purchase a corporate bond that will mature in 20 years. The face value of the bond is $15,000. The bond will pay equal quarterly payments based on a yearly rate of 6% of the face value. If you want to earn an interest rate of at least 8%, compounded quarterly, what is the most you should pay for the bond?

11 You have been asked to perform an economic analysis on two different possible courses of action (shown below). Using Present Worth Analysis and an interest rate of 7%, determine which course of action should be chosen. Do-nothing is not an option. *Fortunately, the NPW for alternative 1 (over the given life) has already be calculated. It was found that the NPW = $25,333. Alternative #1 Alternative #2 Initial Investment $200,000 $100,000 Benefits $20,000 annually $4,000 the first year and growing by $4,000 each year until it reaches $20,000. After reaching $20,000, it remains the same for the rest of the expected life. O&M Costs $2,000 annually $1,000 annually Salvage $15,000 $0 Expected Life (in years) 30 15

12 Your goal is to have $5,000 available every two (2) years, forever. The first $5,000 is to be available ten years from now (i.e., in year 10). To do this, you are going to invest over the next 8 years. In the first four (4) years, you will invest an increasing amount. The investments are $1,000 for year 1; $2,000 for year 2; $3,000 for year 3; and $4,000 for year 4. Over the remaining four years, you plan on investing a uniform amount per year. Based on your goal of $5,000 every two years, beginning in year 10, what equivalent uniform amount must you invest over years five (5) through eight (8). Interest is 10%.

Multiple Choice: 5 points each

Multiple Choice: 5 points each Carefully read each problem before answering. Please write clearly, and show and label all factors used in any problem requiring mathematical calculations. SHOW ALL WORK. Multiple Choice: 5 points each

More information

Carefully read all directions given in a problem. Please show all work for all problems, and clearly label all formulas.

Carefully read all directions given in a problem. Please show all work for all problems, and clearly label all formulas. Carefully read all directions given in a problem. Please show all work for all problems, and clearly label all formulas. 1. You have been asked to make a decision regarding two alternatives. To make your

More information

Comparing Mutually Exclusive Alternatives

Comparing Mutually Exclusive Alternatives Comparing Mutually Exclusive Alternatives Lecture No. 18 Chapter 5 Contemporary Engineering Economics Copyright 2016 Comparing Mutually Exclusive Projects: Basic Terminologies Mutually Exclusive Projects

More information

Comparing Mutually Exclusive Alternatives

Comparing Mutually Exclusive Alternatives Comparing Mutually Exclusive Alternatives Comparing Mutually Exclusive Projects Mutually Exclusive Projects Alternative vs. Project Do-Nothing Alternative 2 Some Definitions Revenue Projects Projects whose

More information

Nominal and Effective Interest Rates

Nominal and Effective Interest Rates Nominal and Effective Interest Rates Effective interest rates tell you how much interest accrues over some integer number of interest periods with the effects of compounding included. Nominal interest

More information

Chapter 4. Establishing the Planning Horizon & MARR. Principles of Engineering Economic Analysis, 5th edition

Chapter 4. Establishing the Planning Horizon & MARR. Principles of Engineering Economic Analysis, 5th edition Chapter 4 Establishing the Planning Horizon & MARR Systematic Economic Analysis Technique 1. Identify the investment alternatives 2. Define the planning horizon 3. Specify the discount rate 4. Estimate

More information

Chapter 15 Inflation

Chapter 15 Inflation Chapter 15 Inflation 15-1 The first sewage treatment plant for Athens, Georgia cost about $2 million in 1964. The utilized capacity of the plant was 5 million gallons/day (mgd). Using the commonly accepted

More information

29/09/2010. Outline Module 4. Selection of Alternatives. Proposals for Investment Alternatives. Module 4: Present Worth Analysis

29/09/2010. Outline Module 4. Selection of Alternatives. Proposals for Investment Alternatives. Module 4: Present Worth Analysis Outline Module 4 Proposals for nvestment Alternatives Selection of Alternatives Future Worth Analysis Capitalized-cost calculation Module 4: Present Worth Analysis S-4251 konomi Teknik 4-2 S-4251 konomi

More information

ME 353 ENGINEERING ECONOMICS Sample Second Midterm Exam

ME 353 ENGINEERING ECONOMICS Sample Second Midterm Exam ME 353 ENGINEERING ECONOMICS Sample Second Midterm Exam Scoring gives priority to the correct formulation. Numerical answers without the correct formulas for justification receive no credit. Decisions

More information

Department of Humanities. Sub: Engineering Economics and Costing (BHU1302) (4-0-0) Syllabus

Department of Humanities. Sub: Engineering Economics and Costing (BHU1302) (4-0-0) Syllabus Department of Humanities Sub: Engineering Economics and Costing (BHU1302) (4-0-0) Syllabus Module I (10 Hours) Time value of money : Simple and compound interest, Time value equivalence, Compound interest

More information

Engineering Economics ECIV 5245

Engineering Economics ECIV 5245 Engineering Economics ECIV 5245 Chapter 3 Interest and Equivalence Cash Flow Diagrams (CFD) Used to model the positive and negative cash flows. At each time at which cash flow will occur, a vertical arrow

More information

IE463 Chapter 4. Objective: COMPARING INVESTMENT AND COST ALTERNATIVES

IE463 Chapter 4. Objective: COMPARING INVESTMENT AND COST ALTERNATIVES IE463 Chapter 4 COMPARING INVESTMENT AND COST ALTERNATIVES Objective: To learn how to properly apply the profitability measures described in Chapter 3 to select the best alternative out of a set of mutually

More information

CHAPTER 7: ENGINEERING ECONOMICS

CHAPTER 7: ENGINEERING ECONOMICS CHAPTER 7: ENGINEERING ECONOMICS The aim is to think about and understand the power of money on decision making BREAKEVEN ANALYSIS Breakeven point method deals with the effect of alternative rates of operation

More information

ECONOMIC ANALYSIS AND LIFE CYCLE COSTING SECTION I

ECONOMIC ANALYSIS AND LIFE CYCLE COSTING SECTION I ECONOMIC ANALYSIS AND LIFE CYCLE COSTING SECTION I ECONOMIC ANALYSIS AND LIFE CYCLE COSTING Engineering Economy and Economics 1. Several questions on basic economics. 2. Several problems on simple engineering

More information

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships)

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships) IE463 Chapter 2 Time Value of Money (Money- Time Relationships) Objective Given a cash flow (or series of cash flows) occurring at some point in time, the objective is to find its equivalent value at another

More information

Dr. Maddah ENMG 400 Engineering Economy 07/06/09. Chapter 5 Present Worth (Value) Analysis

Dr. Maddah ENMG 400 Engineering Economy 07/06/09. Chapter 5 Present Worth (Value) Analysis Dr. Maddah ENMG 400 Engineering Economy 07/06/09 Chapter 5 Present Worth (Value) Analysis Introduction Given a set of feasible alternatives, engineering economy attempts to identify the best (most viable)

More information

ME 353 ENGINEERING ECONOMICS

ME 353 ENGINEERING ECONOMICS ME 353 ENGINEERING ECONOMICS Final Exam Sample Scoring gives priority to the correct formulas. Numerical answers without the correct formulas for justification receive no credit. Decisions without numerical

More information

Section 4B: The Power of Compounding

Section 4B: The Power of Compounding Section 4B: The Power of Compounding Definitions The principal is the amount of your initial investment. This is the amount on which interest is paid. Simple interest is interest paid only on the original

More information

Overall ROR: 30,000(0.20) + 70,000(0.14) = 100,000(x) x = 15.8% Prepare a tabulation of cash flow for the alternatives shown below.

Overall ROR: 30,000(0.20) + 70,000(0.14) = 100,000(x) x = 15.8% Prepare a tabulation of cash flow for the alternatives shown below. Chapter 8, Problem 2. What is the overall rate of return on a $100,000 investment that returns 20% on the first $30,000 and 14% on the remaining $70,000? Chapter 8, Solution 2. Overall ROR: 30,000(0.20)

More information

Chapter 7 Rate of Return Analysis

Chapter 7 Rate of Return Analysis Chapter 7 Rate of Return Analysis 1 Recall the $5,000 debt example in chapter 3. Each of the four plans were used to repay the amount of $5000. At the end of 5 years, the principal and interest payments

More information

Tax Homework. A B C Installed cost $10,000 $15,000 $20,000 Net Uniform annual before 3,000 6,000 10,000

Tax Homework. A B C Installed cost $10,000 $15,000 $20,000 Net Uniform annual before 3,000 6,000 10,000 Tax Homework 1. A firm is considering three mutually exclusive alternatives as part of a production improvement program. Management requires that you must select one. The alternatives are: A B C Installed

More information

7 - Engineering Economic Analysis

7 - Engineering Economic Analysis Construction Project Management (CE 110401346) 7 - Engineering Economic Analysis Dr. Khaled Hyari Department of Civil Engineering Hashemite University Introduction Is any individual project worthwhile?

More information

Engineering Economy Chapter 4 More Interest Formulas

Engineering Economy Chapter 4 More Interest Formulas Engineering Economy Chapter 4 More Interest Formulas 1. Uniform Series Factors Used to Move Money Find F, Given A (i.e., F/A) Find A, Given F (i.e., A/F) Find P, Given A (i.e., P/A) Find A, Given P (i.e.,

More information

Chapter 7 Rate of Return Analysis

Chapter 7 Rate of Return Analysis Chapter 7 Rate of Return Analysis Rate of Return Methods for Finding ROR Internal Rate of Return (IRR) Criterion Incremental Analysis Mutually Exclusive Alternatives Why ROR measure is so popular? This

More information

Inflation Homework. 1. Life = 4 years

Inflation Homework. 1. Life = 4 years Inflation Homework 1. Life = 4 years 700 9001100 500 0 1 2 3 4-1500 You are to analyze the cash flow on the left with several assumptions regarding inflation. In all cases the general inflation rate is

More information

CE 231 ENGINEERING ECONOMY PROBLEM SET 1

CE 231 ENGINEERING ECONOMY PROBLEM SET 1 CE 231 ENGINEERING ECONOMY PROBLEM SET 1 PROBLEM 1 The following two cash-flow operations are said to be present equivalent at 10 % interest rate compounded annually. Find X that satisfies the equivalence.

More information

Discounted Cash Flow Analysis

Discounted Cash Flow Analysis Discounted Cash Flow Analysis Lecture No.16 Chapter 5 Contemporary Engineering Economics Copyright 2016 Net Present Worth Measure Principle: Compute the equivalent net surplus at n = 0 for a given interest

More information

FINANCE, GROWTH & DECAY (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples

FINANCE, GROWTH & DECAY (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples FINANCE, GROWTH & DECAY (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples There are two types of formula dealt with in this section: Future Value Annuity Formula where: equal and regular payment

More information

Engineering Economics

Engineering Economics Economic Analysis Methods Engineering Economics Day 3: Rate of Return Analysis Three commonly used economic analysis methods are 1. Present Worth Analysis 2. Annual Worth Analysis 3. www.engr.sjsu.edu/bjfurman/courses/me195/presentations/engeconpatel3nov4.ppt

More information

Present Worth Analysis

Present Worth Analysis Present Worth Analysis Net Present Worth of initial and future cash flows can be used to select among alternative projects It is important to understand what Net Present Worth means, especially when the

More information

IE 343 Midterm Exam. March 7 th Closed book, closed notes.

IE 343 Midterm Exam. March 7 th Closed book, closed notes. IE 343 Midterm Exam March 7 th 2013 Closed book, closed notes. Write your name in the spaces provided above. Write your name on each page as well, so that in the event the pages are separated, we can still

More information

IE463 Chapter 3. Objective: INVESTMENT APPRAISAL (Applications of Money-Time Relationships)

IE463 Chapter 3. Objective: INVESTMENT APPRAISAL (Applications of Money-Time Relationships) IE463 Chapter 3 IVESTMET APPRAISAL (Applications of Money-Time Relationships) Objective: To evaluate the economic profitability and liquidity of a single proposed investment project. CHAPTER 4 2 1 Equivalent

More information

Engineering Economics

Engineering Economics Engineering Economics Lecture 6 Er. Sushant Raj Giri B.E. (Industrial Engineering), MBA Lecturer Department of Industrial Engineering Contemporary Engineering Economics 3 rd Edition Chan S Park 1 Chapter

More information

(Refer Slide Time: 3:03)

(Refer Slide Time: 3:03) Depreciation, Alternate Investment and Profitability Analysis. Professor Dr. Bikash Mohanty. Department of Chemical Engineering. Indian Institute of Technology, Roorkee. Lecture-7. Depreciation Sinking

More information

EGR 312 ENGINEERING ECONOMY PRACTICE FINAL EXAM

EGR 312 ENGINEERING ECONOMY PRACTICE FINAL EXAM EGR 312 ENGINEERING ECONOMY PRACTICE FINAL EXAM PART A: MULTIPLE CHOICE. Circle the one best answer for each question (5 points each.) 1. A piece of equipment that was purchased 2 years ago for $45,000

More information

FinQuiz Notes

FinQuiz Notes Reading 6 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.

More information

(Refer Slide Time: 2:20)

(Refer Slide Time: 2:20) Engineering Economic Analysis Professor Dr. Pradeep K Jha Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Lecture 09 Compounding Frequency of Interest: Nominal

More information

i* = IRR i*? IRR more sign changes Passes: unique i* = IRR

i* = IRR i*? IRR more sign changes Passes: unique i* = IRR Decision Rules Single Alternative Based on Sign Changes of Cash Flow: Simple Investment i* = IRR Accept if i* > MARR Single Project start with zero, one sign change Non-Simple Investment i*? IRR Net Investment

More information

Selection from Independent Projects Under Budget Limitation

Selection from Independent Projects Under Budget Limitation Basics In previous weeks, the alternatives have been mutually exclusive; only one could be selected. If the projects are not mutually exclusive; they are called independent projects. We learned the criteria

More information

Economic Decision Making Using Fuzzy Numbers Shih-Ming Lee, Kuo-Lung Lin, Sushil Gupta. Florida International University Miami, Florida

Economic Decision Making Using Fuzzy Numbers Shih-Ming Lee, Kuo-Lung Lin, Sushil Gupta. Florida International University Miami, Florida Economic Decision Making Using Fuzzy Numbers Shih-Ming Lee, Kuo-Lung Lin, Sushil Gupta Florida International University Miami, Florida Abstract In engineering economic studies, single values are traditionally

More information

Outline of Review Topics

Outline of Review Topics Outline of Review Topics Cash flow and equivalence Depreciation Special topics Comparison of alternatives Ethics Method of review Brief review of topic Problems 1 Cash Flow and Equivalence Cash flow Diagrams

More information

Homework 4. Public Projects. (a) Using the benefit cost ratio, which system should be selected?

Homework 4. Public Projects. (a) Using the benefit cost ratio, which system should be selected? Homework 4. Public Projects 1. A city government is considering two types of town-dump sanitary systems, Design A requires an initial outlay of $400,000, with annual operating and maintenance costs of

More information

IE463 Chapter 5 DEPRECIATION AND INCOME TAXES

IE463 Chapter 5 DEPRECIATION AND INCOME TAXES IE6 Chapter 5 DEPRECIATION AND INCOME TAXES Depreciation Depreciation is the decrease in the value of physical properties with passage of time Because, depreciation is a non-cash cost that affects income

More information

FE Review Economics and Cash Flow

FE Review Economics and Cash Flow 4/4/16 Compound Interest Variables FE Review Economics and Cash Flow Andrew Pederson P = present single sum of money (single cash flow). F = future single sum of money (single cash flow). A = uniform series

More information

Introduction to Engineering Economic Analysis DR. AHMED ELYAMANY

Introduction to Engineering Economic Analysis DR. AHMED ELYAMANY Introduction to Engineering Economic Analysis DR. AHMED ELYAMANY Topics ointroduction to engineering economic analysis otime value of money othe principle of interest, osimple interest rates ocompounding

More information

Chapter 2 Time Value of Money

Chapter 2 Time Value of Money 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series of Cash Flows 7. Other Compounding

More information

RULE OF TIME VALUE OF MONEY

RULE OF TIME VALUE OF MONEY RULE OF TIME VALUE OF MONEY 1. CMPD : a. We can set our calculator either begin mode or end mode when we don t use pmt. We can say that in case of using n, I, pv, fv, c/y we can set out calculator either

More information

IE463 Chapter 5. Depreciation. Depreciable Property. Basic Terminology STRAIGHT-LINE (SL) METHOD DEPRECIATION AND INCOME TAXES

IE463 Chapter 5. Depreciation. Depreciable Property. Basic Terminology STRAIGHT-LINE (SL) METHOD DEPRECIATION AND INCOME TAXES Depreciation IE463 Chapter 5 DEPRECIATION AND INCOME TAXES Depreciation is the decrease in the value of physical properties with passage of time Because, depreciation is a non-cash cost that affects income

More information

Perpetuity It is a type of annuity whose payments continue forever.

Perpetuity It is a type of annuity whose payments continue forever. Perpetuity It is a type of annuity whose payments continue forever. Something to think about... How does an equal payment at an equal interval continue forever? Example: An individual might, for example

More information

Engineering Economic Analysis 13E Supplement for Tax Cuts and Jobs Act p. 1. Determine the depreciation schedule with 100% bonus depreciation.

Engineering Economic Analysis 13E Supplement for Tax Cuts and Jobs Act p. 1. Determine the depreciation schedule with 100% bonus depreciation. Engineering Economic Analysis 13E Supplement for Tax Cuts and Jobs Act p. 1 EEA13 SUPPLEMENT FOR TAX CUTS AND JOBS ACT The Tax Cuts and Jobs Act, approved in December 2017, made significant changes in

More information

COMPARING ALTERNATIVES

COMPARING ALTERNATIVES CHAPTER 6 COMPARING FEASIBLE DESIGN Alternatives may be mutually exclusive (i.e., choice if one excludes the choice of any other alternative) because : The alternatives being considered may require different

More information

Section 8.3 Compound Interest

Section 8.3 Compound Interest Section 8.3 Compound Interest Objectives 1. Use the compound interest formulas. 2. Calculate present value. 3. Understand and compute effective annual yield. 4/24/2013 Section 8.3 1 Compound interest is

More information

Financial Management I

Financial Management I Financial Management I Workshop on Time Value of Money MBA 2016 2017 Slide 2 Finance & Valuation Capital Budgeting Decisions Long-term Investment decisions Investments in Net Working Capital Financing

More information

LESSON 2 INTEREST FORMULAS AND THEIR APPLICATIONS. Overview of Interest Formulas and Their Applications. Symbols Used in Engineering Economy

LESSON 2 INTEREST FORMULAS AND THEIR APPLICATIONS. Overview of Interest Formulas and Their Applications. Symbols Used in Engineering Economy Lesson Two: Interest Formulas and Their Applications from Understanding Engineering Economy: A Practical Approach LESSON 2 INTEREST FORMULAS AND THEIR APPLICATIONS Overview of Interest Formulas and Their

More information

which considers any inflationary effects in the cash flows.

which considers any inflationary effects in the cash flows. Note 1: Unless otherwise stated, all cash flows given in the problems represent aftertax cash flows in actual dollars. The MARR also represents a market interest rate, which considers any inflationary

More information

IE 343 Midterm Exam 1

IE 343 Midterm Exam 1 IE 343 Midterm Exam 1 Feb 17, 2012 Version A Closed book, closed notes. Write your printed name in the spaces provided above on every page. Show all of your work in the spaces provided. Interest rate tables

More information

Multiple Compounding Periods in a Year. Principles of Engineering Economic Analysis, 5th edition

Multiple Compounding Periods in a Year. Principles of Engineering Economic Analysis, 5th edition Multiple Compounding Periods in a Year Example 2.36 Rebecca Carlson purchased a car for $25,000 by borrowing the money at 8% per year compounded monthly. She paid off the loan with 60 equal monthly payments,

More information

CHAPTER 4. The Time Value of Money. Chapter Synopsis

CHAPTER 4. The Time Value of Money. Chapter Synopsis CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money

More information

FINAN303 Principles of Finance Spring Time Value of Money Part B

FINAN303 Principles of Finance Spring Time Value of Money Part B Time Value of Money Part B 1. Examples of multiple cash flows - PV Mult = a. Present value of a perpetuity b. Present value of an annuity c. Uneven cash flows T CF t t=0 (1+i) t 2. Annuity vs. Perpetuity

More information

ENSC 201 Assignment 5, Model Answers

ENSC 201 Assignment 5, Model Answers ENSC 201 Assignment 5, Model Answers 5.1 Gerry likes driving small cars, and buys nearly identical ones whenever the old one needs replacing. He typically trades in his old car for a new one costing about

More information

2/22/2017. Engineering Economics Knowledge. Engineering Economics FE REVIEW COURSE SPRING /22/2017

2/22/2017. Engineering Economics Knowledge. Engineering Economics FE REVIEW COURSE SPRING /22/2017 FE REVIEW COURSE SPRING 2017 Engineering Economics Paige Harris 2/22/2017 Engineering Economics Knowledge 4 6 problems Discounted cash flow Equivalence, PW, equivalent annual worth, FW, rate of return

More information

Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance

Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance 1 Introduction Chapter 2: Concepts of Finance 2017 Rationally, you will certainly

More information

ENGINEERING ECONOMIC ANALYSIS

ENGINEERING ECONOMIC ANALYSIS ENGINEERING ECONOMIC ANALYSIS r T ~' ELEVENTH EDITION Donald G. Newnan San Jose State University Ted G. Eschenbach University of Alaska Anchorage Jerome P. Lavelle North Carolina State t University New

More information

INTERNAL RATE OF RETURN

INTERNAL RATE OF RETURN INTERNAL RATE OF RETURN Introduction You put money in a bank account and expect to get a return 1 percent You can think of investment/business/project in the same way Every investment/business/project

More information

STRAIGHT-LINE (SL) METHOD

STRAIGHT-LINE (SL) METHOD STRAIGHT-LINE (SL) METHOD A constant amount is depreciated each year over the asset's life. N = depreciable life of the asset in years. d k = annual depreciation deduction in year k d k = (B - SV N ) /

More information

Chapter 13 Breakeven and Payback Analysis

Chapter 13 Breakeven and Payback Analysis Chapter 13 Breakeven and Payback Analysis by Ir Mohd Shihabudin Ismail 13-1 LEARNING OUTCOMES 1. Breakeven point one parameter 2. Breakeven point two alternatives 3. Payback period analysis 13-2 Introduction

More information

Other Analysis Techniques. Future Worth Analysis (FWA) Benefit-Cost Ratio Analysis (BCRA) Payback Period

Other Analysis Techniques. Future Worth Analysis (FWA) Benefit-Cost Ratio Analysis (BCRA) Payback Period Other Analysis Techniques Future Worth Analysis (FWA) Benefit-Cost Ratio Analysis (BCRA) Payback Period 1 Techniques for Cash Flow Analysis Present Worth Analysis Annual Cash Flow Analysis Rate of Return

More information

IE 360 Engineering Economic Analysis Comprehensive Exam Version No. 1 Sample Test - Dr. Park

IE 360 Engineering Economic Analysis Comprehensive Exam Version No. 1 Sample Test - Dr. Park IE 360 Engineering Economic Analysis Comprehensive Exam Version No. 1 Sample Test - Dr. Park Part I: True or False Problem 1 When comparing mutually exclusive investments based on the rate of return principle,

More information

Basics. 7: Compounding Frequency. Lingua Franca (Language of the Trade) 7.1 Nominal and Effective Interest. Nominal and Effective.

Basics. 7: Compounding Frequency. Lingua Franca (Language of the Trade) 7.1 Nominal and Effective Interest. Nominal and Effective. Basics 7: Compounding Frequency Compounding frequency affects rate of growth of savings or debt $1 after 1 year at 18% per year compounded annually $118. $1 after 1 year at 18% per year compounded monthly

More information

3. Time value of money. We will review some tools for discounting cash flows.

3. Time value of money. We will review some tools for discounting cash flows. 1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned

More information

Introduction to the Compound Interest Formula

Introduction to the Compound Interest Formula Introduction to the Compound Interest Formula Lesson Objectives: students will be introduced to the formula students will learn how to determine the value of the required variables in order to use the

More information

Chapter 2. Time Value of Money (TVOM) Principles of Engineering Economic Analysis, 5th edition

Chapter 2. Time Value of Money (TVOM) Principles of Engineering Economic Analysis, 5th edition Chapter 2 Time Value of Money (TVOM) Cash Flow Diagrams (EOY) Example 2.1 Cash Flow Profiles for Two Investment Alternatives End of Year (EOY) CF(A) CF(B) CF(B-A) 0 -$100,000 -$100,000 $0 1 $10,000 $50,000

More information

3. Time value of money

3. Time value of money 1 Simple interest 2 3. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned

More information

STR 402: Quantity Surveying & Cost Control of Construction Projects

STR 402: Quantity Surveying & Cost Control of Construction Projects Time Value of Money Depreciation Accounting Techniques STR 402: Quantity Surveying & Cost Control of Construction Projects Dr. Ahmed Saad Eldin Eldieb Time Value of Money Money has a time value. The value

More information

2. CONCEPTS IN VALUATION

2. CONCEPTS IN VALUATION 2. CONCEPTS IN VALUATION Introduction: In the world of finance and investment, money is not free. Money has a time value. Interest rate gives money its time value. If a person lends his money to other,

More information

CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS. Copyright -The Institute of Chartered Accountants of India

CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS. Copyright -The Institute of Chartered Accountants of India CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY- APPLICATIONS LEARNING OBJECTIVES After studying this chapter students will be able

More information

Chapter 02 Test Bank - Static KEY

Chapter 02 Test Bank - Static KEY Chapter 02 Test Bank - Static KEY 1. The present value of $100 expected two years from today at a discount rate of 6 percent is A. $112.36. B. $106.00. C. $100.00. D. $89.00. 2. Present value is defined

More information

UNIVERSITI TEKNIKAL MALAYSIA MELAKA PEPERIKSAAN SEMESTER II TEST- 1 SESI 2010/2011 MATA PELAJARAN : EKONOMI PEMBUATAN (MANUFACTURING ECONOMY) B 0 5 0

UNIVERSITI TEKNIKAL MALAYSIA MELAKA PEPERIKSAAN SEMESTER II TEST- 1 SESI 2010/2011 MATA PELAJARAN : EKONOMI PEMBUATAN (MANUFACTURING ECONOMY) B 0 5 0 SULIT UNIVERSITI TEKNIKAL MALAYSIA MELAKA PEPERIKSAAN SEMESTER II TEST- 1 SESI 2010/2011 KOD MATA PELAJARAN : BMFP 3582 MATA PELAJARAN : EKONOMI PEMBUATAN (MANUFACTURING ECONOMY) PENYELARAS : EN. H HAERY

More information

ENGM 310 Engineering Economy Lecture Notes (MJ Zuo) Page 1 of 36. Introduction

ENGM 310 Engineering Economy Lecture Notes (MJ Zuo) Page 1 of 36. Introduction ENGM 310 Engineering Economy Lecture Notes (MJ Zuo) Page 1 of 36 Introduction 1. Syllabus distributed: Dates of assignments, mid-terms, and final exams specified. (a) Let me know in writing about possible

More information

Mutually Exclusive Choose at most one From the Set

Mutually Exclusive Choose at most one From the Set 1 Mutually Exclusive Choose at most one From the Set This lecture addresses an issue that is confusing to many users of the rate of return method. When choosing among mutually exclusive alternatives, never

More information

IE 343 Midterm Exam 2

IE 343 Midterm Exam 2 IE 343 Midterm Exam 2 April 6, 2012 Version A Closed book, closed notes. 50 minutes Write your printed name in the spaces provided above on every page. Show all of your work in the spaces provided. Interest

More information

SIMPLE & COMPOUND INTEREST

SIMPLE & COMPOUND INTEREST SIMPLE & COMPOUND INTEREST INTEREST It is money paid by borrower for using the lender's money for a specified period of time. Denoted by I. PRINCIPAL The original sum borrowed. Denoted by P. TIME Time

More information

Chapter 2. Time Value of Money (TVOM) Principles of Engineering Economic Analysis, 5th edition

Chapter 2. Time Value of Money (TVOM) Principles of Engineering Economic Analysis, 5th edition Chapter 2 Time Value of Money (TVOM) Cash Flow Diagrams $5,000 $5,000 $5,000 ( + ) 0 1 2 3 4 5 ( - ) Time $2,000 $3,000 $4,000 Example 2.1: Cash Flow Profiles for Two Investment Alternatives (EOY) CF(A)

More information

Chapter 7 An Economic Appraisal II: NPV, AE, IRR Technique

Chapter 7 An Economic Appraisal II: NPV, AE, IRR Technique Chapter 7 An Economic Appraisal II: NPV, AE, IRR Technique Powerpoint Templates Page 1 Net Present Value Technique NPV=The Sum of The Present Values of All Cash Inflows The Sum of The Present Value of

More information

Engineering Economics

Engineering Economics Engineering Economics Lecture 7 Er. Sushant Raj Giri B.E. (Industrial Engineering), MBA Lecturer Department of Industrial Engineering Contemporary Engineering Economics 3 rd Edition Chan S Park 1 Chapter

More information

IE 343 Section 2 - Final Exam

IE 343 Section 2 - Final Exam IE 343 Section 2 - Final Exam Dec 12, 2011 Closed book, closed notes. 120 minutes Write your printed name in the spaces provided above on every page. Show all of your work in the spaces provided. Interest

More information

Fundamental Principles of Project Prioritization

Fundamental Principles of Project Prioritization Fundamental Principles of Project Prioritization Prepared by Charles Feinstein and Stephen Chapel c 2004 VMN Group LLC and S.Chapel Associates This document describes four basic valuation concepts that

More information

Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money

Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money Question 3-1 What is the essential concept in understanding compound interest? The concept of earning interest on interest

More information

Quantitative. Workbook

Quantitative. Workbook Quantitative Investment Analysis Workbook Third Edition Richard A. DeFusco, CFA Dennis W. McLeavey, CFA Jerald E. Pinto, CFA David E. Runkle, CFA Cover image: r.nagy/shutterstock Cover design: Loretta

More information

Present Value, Discounted Cash Flow. Engineering Economy

Present Value, Discounted Cash Flow. Engineering Economy Present Value, Discounted Cash Flow. Engineering Economy Objective: To provide economic comparison of benefits and costs that occur over time Assumptions: All Benefits, Costs measured in money Single point

More information

Mathematical Interest Theory-Week 1

Mathematical Interest Theory-Week 1 Mathematical Interest Theory-Week 1 Jonathan Curtis September 2016 Contents 0.1 Introduction.............................. 2 1 Chapter 1: The Growth of Money 3 1.1 Section 1.3: Accumulation and Amount

More information

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 09 Future Value Welcome to the lecture series on Time

More information

# 6. Comparing Alternatives

# 6. Comparing Alternatives IE 5441 1 # 6. Comparing Alternatives One of the main purposes of this course is to discuss how to make decisions in engineering economy. Let us first consider a single period case. Suppose that there

More information

Engineering Economics, ENGR 610 Final Exam (35%)

Engineering Economics, ENGR 610 Final Exam (35%) Engineering Economics, ENGR 610 Final Exam (35%) Name: Instructor: Mutlu Ozer, Fall 2011 CF Diagrams are required. Without CF diagram solutions would not be accepted!!! ------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Financial Mathematics II. ANNUITY (Series of payments or receipts) Definition ( ) m = parts of the year

Financial Mathematics II. ANNUITY (Series of payments or receipts) Definition ( ) m = parts of the year Chapter 6 Financial Mathematics II References r = rate of interest (annual usually) R = Regular period equal amount Also called equivalent annual cost P = Present value (or Principal) SI = Simple Interest

More information

IE 343 Section 1 Engineering Economy Exam 2 Review Problems Solutions Instructor: Tian Ni March 30, 2012

IE 343 Section 1 Engineering Economy Exam 2 Review Problems Solutions Instructor: Tian Ni March 30, 2012 IE 343 Section 1 Engineering Economy Exam 2 Review Problems Solutions Instructor: Tian Ni March 30, 2012 1. A firm is considering investing in a machine that has an initial cost of $36,000. For a period

More information

Compound Interest Questions Quiz for Bank Clerk Mains and PO Pre Exams.

Compound Interest Questions Quiz for Bank Clerk Mains and PO Pre Exams. Compound Interest Questions Quiz for Bank Clerk Mains and PO Pre Exams. Compound Interest Quiz 9 Directions: Kindly study the following Questions carefully and choose the right answer: 1. Pankaj borrowed

More information

I. Warnings for annuities and

I. Warnings for annuities and Outline I. More on the use of the financial calculator and warnings II. Dealing with periods other than years III. Understanding interest rate quotes and conversions IV. Applications mortgages, etc. 0

More information

MGT201 Lecture No. 11

MGT201 Lecture No. 11 MGT201 Lecture No. 11 Learning Objectives: In this lecture, we will discuss some special areas of capital budgeting in which the calculation of NPV & IRR is a bit more difficult. These concepts will be

More information

3: Balance Equations 3.1 Accounts with Constant Interest Rates. Terms. Example. Simple Interest

3: Balance Equations 3.1 Accounts with Constant Interest Rates. Terms. Example. Simple Interest 3: Balance Equations 3.1 Accounts with Constant Interest Rates Example Two different accounts 1% per year: earn 1% each year on dollars at beginning of year 1% per month: earn 1% each month on dollars

More information