Insider Trading in Sequential Auction Markets with Risk-aversion and Time-discounting

Size: px
Start display at page:

Download "Insider Trading in Sequential Auction Markets with Risk-aversion and Time-discounting"

Transcription

1 Insider Trading in Sequential Auction Markets with Risk-aversion and Time-discounting Paolo Vitale University of Pescara September 2015 ABSTRACT We extend Kyle s (Kyle, 1985) analysis of sequential auction markets to the case in which the insider is risk-averse and discounts her trading profits as her private information is long-lived. We see that time-discounting exacerbates the impact of risk-aversion on the optimal trading strategy of the insider. Ceteris paribus, a larger degree of riskaversion or a smaller time-discount factor induces the informed agent to consume more rapidly her informational advantage increasing the liquidity and efficiency of the securities market. JEL Classification Numbers: C61, G14. Keywords: Risk-aversion, Sequential Auction Markets, Long-lived Private Information. I wish to thank the Editor and two anonymous referees for valuable comments and suggestions. I am alone responsible for the views expressed in the paper and for any errors that may remain. Department of Economics, Università d Annunzio, Viale Pindaro 42, Pescara (Italy); telephone ; webpage: p.vitale@unich.it

2 1 Introduction Kyle (1985) investigates the behavior of an informed trader (insider) in the market for a risky asset. Such an agent possesses an incentive to act strategically and exploit her informational advantage to gain speculative profits from her trading activity. She acts strategically because in choosing the timing and size of her transactions she takes into account the impact that her trades will have on the equilibrium price of the risky asset and hence on her profits. Kyle s seminal model has stimulated an endless list of extensions and contributions. Thus, Holden and Subrahmanyam (1994) introduce multiple insiders and risk-aversion, analyzing the effects of risk-aversion and imperfect competition on insider trading, while Foster and Viswanathan (1996) consider the case in which insiders have different bits of information, investigating the impact of strategic complementarities on the diffusion of private information. Huddart et al. (2001) analyze the effect of trade disclosure on the trading activity of the insiders, while Daher et al. (2014) study the interplay between public and private signals. Chau and Vayanos investigate the impact of an infinite sequence of private signals, while Caldentey and Stacchetti (2010) allow for the random publication of the fundamental value of the risky asset. Finally, Vitale (2012) considers the scenario in which the insider possesses private information on several risky assets. We consider a particular extension of Kyle s model, which combines two different departures from his original formulation: we assume that the insider is risk-averse and that her private information is so long-lived as to require the discounting of her future profits. We deem this extension of Kyle s model important for two reasons. On the one hand, Kyle s assumption that future profits needn t be discounted can be justified either by assuming that, even if she can trade over several rounds of trading, her informational advantage is not very long-lived and it dissipates in a relatively short period of time, such as a day or a week, or by normalizing the interest rate to zero. The latter assumption, however, is not neutral with respect to the insider s attitude towards risk. In fact, the interplay between 1

3 the inter-temporal rate of substitution and risk-aversion is a crucial facet of portfolio theory and has potentially important implications for insider trading and market quality. On the other hand, combining risk-aversion and time-discounting is also a complex analytical endeavor which is worth undertaking. In this respect, we rely on some recent advances in optimal control theory and employ a recursive optimization criterion recently proposed by Vitale (2013). We are then able to investigate what happens to the insider s optimal trading strategy and the characteristics of the market for the risky asset, such as its efficiency and liquidity. An important conclusion of our analysis is that both time-discounting and risk-aversion induce the insider to trade more aggressively, revealing her informational advantage at a greater pace than that observed in Kyle s seminal contribution, and make the market for the risky asset more efficient. In addition, we show that the simultaneous presence of time-discounting and risk-aversion reinforces each other s impact on market quality. Our work is related to that of Holden and Subrahmanyam (1994), as we add timediscounting to their formulation with only one insider. Moreover, our model is also related to the contribution of Caldentey and Stacchetti (2010). In fact, in their extension of Kyle s model the insider receives in any round of trading a private signal on the fundamental value of the risky asset, while there is a positive probability that in any period the fundamental value is publicly announced. Caldentey and Stacchetti then show that this implies that in choosing her optimal trading strategy a risk-neutral insider maximizes the expected value of her discounted future profits. Hence, our contribution can be considered analogous to an extension of their formulation with a risk-averse insider. 2

4 2 Strategic Informed Trading According to Kyle s formulation, in a securities market a market maker trades with a group of customers a numeraire, which pays no return, for a risky asset with an uncertain liquidation value. Clients include an insider, who knows the liquidation value of the risky asset, and a group of liquidity (noise) traders, who trade purely for liquidity reasons. The liquidation value, v, of the risky asset is determined at time 0, before trading in the market starts, and is publicly announced at time 1, when no more trading is possible. Apart from the insider, no one knows the actual realization of v at time 0. However, unconditionally it is normally distributed, v N (µ v, Σ 0 ). This information is common knowledge. Between the instant the liquidation value is realized and that in which it is announced N rounds of trading, in the form of call auctions, are conducted by the market maker. Any call auction is identified by the subscript n and takes place at time t n, with 0 < t 1 <... < t N 1. When auction n is called, the market maker s clients, the liquidity traders and the insider, select their market orders, i.e. the amount of the risky asset they desire to trade. Their orders, x l n and x i n, are batched together and the overall market order, x n = x i n + x l n, is passed to the market maker. He then fixes a transaction price, p n, at which he executes all orders. The market maker cannot observe either the individual orders or the identity of his clients. This permits the insider to exploit over time her informational advantage. As the market maker is risk-neutral, Bertrand competition in the market making industry forces him to set the risky asset s transaction price according to a semi-strong form efficiency condition. Since he just observes the flow of total market orders he receives along the sequence of auctions and since these market orders may contain some information, impounded in the insider s orders, in any auction n the transaction price, p n, is equal to the 3

5 conditional expectation of the risky asset s liquidation value, p n = E[v x 1,..., x n 1, x n ]. (1) The liquidity traders place unpredictable market orders. Thus, in any auction, n, their market order is normally distributed, x l n N (0, σ 2 l t n) with t n = t n t n 1. The random values { x l n} N n=1 are independent of each other and of the liquidation value v. This means that the market orders of the liquidity traders follow a white noise process. In Kyle s original formulation the insider is risk-neutral. As she does not have any initial endowment of the risky asset, risk-neutrality implies that in any auction, n, the insider chooses her market order to maximize the expected value of her aggregate future profits. As no time-discounting is considered in Kyle s formulation these profits are equal to Π n = N k=n π k, where π k denotes the per-auction profits (v p k ) x k. Since the prices charged by the market maker are function of the unpredictable orders of the liquidity traders, these profits are uncertain. Thus, when auction n is called, the insider solves the problem x i n = argmax E[Π n p 1, p 2,..., p n 1, v]. (2) Private information may last longer than a day or a week, that is it may last longer than the span of time usually associated with the interval [0, 1] within which trading takes place in Kyle s formulation. When private information is very long-lived the insider needs to discount her future profits when her performance is assessed on a per-period basis. 1 Under risk-neutrality, this is dealt with straightforwardly, by introducing a time-discount factor δ (with 0 < δ < 1) and by assuming that the insider chooses her optimal market order in auction n by maximizing the expectation of the discounted value of her future profits. Thus, assume the N auctions are equally spaced in the interval [0,1]. This implies that t n = 1/N. We then conclude that in auction n the discounted value of the insider s 4

6 future profits whose expectation she maximizes is Π n = N k=n δ(k n)/n π k. In our extension of Kyle s formulation we are interested in combining time-discounting and risk-aversion. This is analytically more involving than introducing individually either risk-aversion or time-discounting in his model. A possibility is to consider a CARA utility function of the insider s discounted future profits. This would imply that in any period n the insider would maximize the expected value of u(π n ) exp( ρπ n ). However, according to this formulation the impact of risk-aversion on the insider s trading strategy would dissipate over time. In addition, when the number of auctions approaches infinity such strategy would be non-stationary and would rapidly converge to the risk-neutral counter-part. 2 To avoid such unpleasant features of the CARA utility function we rely on the optimization criterion presented by Vitale (2013) which discriminates between timediscounting and risk-aversion in the formulation of individual preferences. Specifically, because profits are time-separable and the dynamics of the transaction price is Markovian, we assume that in any auction n the insider chooses her optimal market order, x i n, solving the following recursive optimization 3 V n = min x i n { 2 ρ ln ( E n [exp ( ρ 2 (c n + δ n V n+1 ))]) }, (3) where ρ (with ρ > 0) is the coefficient of risk-aversion, δ n (with δ n = δ t n+1 ) is the perperiod discount factor, c n is a scalar-valued cost function equal to the opposite of her per-auction profits, π n = (p n v) x i n, and V n is the optimization criterion in n (with terminal condition V N+1 = 0). The optimization criterion in (3) accommodates risk-aversion through the curvature of the exponential function, 4 while the coefficient δ n, which pre-multiplies next period optimization criterion V n+1, captures discounting from time t n+1 to time t n. The optimization criterion in (3) represents a particular formulation of Epstein-Zin preferences and hence it inherits most of their properties. 5 In particular, differently from standard time-separable preferences, in the optimization criterion in (3) the inter-temporal rate of substitution and 5

7 the coefficient of relative risk-aversion are separated. Importantly, this property implies that this optimization criterion allows to discriminate between the effects of risk-aversion and time-discounting on the insider s trading activity and market quality. For ρ 0, the recursive optimization in (3) converges to V n = min x i n E n [c n + δ n V n+1 ]. 6 This is analogous to the Bellman equation which solves the insider s optimization exercise within Caldentey and Stacchetti s model with the random publication of the fundamental value of the risky asset. 7 One should however note that in their formulation δ n indicates the probability that the fundamental value of the risky asset is announced at the end of auction n given that it has not been previously disclosed, whereas in our formulation it represents a time-discount factor in the insider s preferences. In other words, δ n has a different role within our and their formulations. For δ 1 the argmin of the recursive optimization in (3) corresponds to the argmax of E n [ exp( ρ N 2 k=n π k)], i.e. the expected value of the CARA utility function of the risk-averse insider investigated by Holden and Subrahmanyam (1994). Given the optimization criterion in (3), the insider needs to solve an optimal control problem characterized by a clear trade-off. In fact, a larger market order today generates larger profits now at the expense of future ones, since a more informative order is passed to the market maker reducing his uncertainty on the liquidation value. On the other hand, the market maker needs to solve a filtering problem. He uses the signal contained in the flow of orders to up-date his expectation of the liquidation value. This will induce a process of convergence of the transaction price to the actual liquidation value. To solve simultaneously and consistently these two problems Kyle introduces a special notion of sequential equilibrium. We adapt it to the scenario in which the insider recursively solves (3). First, we need to define the strategies that characterize an equilibrium. These are two collections of functions, X and P, that indicate the trading strategy of the 6

8 insider and the pricing rule of the market maker for any auction n, X = X 1, X 2,..., X n,..., X N, P = P 1, P 2,..., P n,..., P N, where (4) x i n = X n (p 1,..., p n 1, v), p n = P n ( x 1,..., x n ). (5) We can now define a sequential auction equilibrium. Definition 1 A sequential auction equilibrium is a couple (X, P ) such that: (1) n, the insider chooses her market order by solving the recursive optimization in (3); (2) n, the market maker sets the transaction price according to the efficiency condition (1). We can then define a Markovian linear equilibrium as follows. Definition 2 A sequential auction equilibrium is linear if the component functions of strategies X and P are linear. A linear sequential auction equilibrium is Markovian if there exist constants λ 1, λ 2,..., λ N, such that for any n = 1,..., N p n = p n 1 + λ n x n. (6) 3 A Markovian Linear Equilibrium To find a Markovian linear equilibrium for the model with risk-aversion and time-discounting, let us concentrate on the insider s trading strategy, assuming that the market maker sets the transaction price of the risky asset according to equation (6). Then, we introduce the discounted stress proposed by Vitale (2013) to solve the insider s optimization exercise. Definition 3 The (discounted) stress function in n is S n c n + δ n V n+1 1 ρ ( xl n) 2 /(σ 2 l t n). The following Lemma presents some important properties for this function. 7

9 Lemma 1 If: i) the market maker sets the transaction price according to equation (6); ii) the optimization criterion in n + 1, V n+1, is a quadratic form in v p n ; and iii) the stress S n satisfies a saddle point condition with respect to x l n and x i n, so that min x i n max x l n S n exists, then: 1) the saddle point condition identifies the optimal insider s market order; and 2) the optimization criterion in n is a quadratic form in v p n 1 equal to the extremized stress plus a constant, ϑ n, independent of v p n 1, V n = ϑ n + min x i n max S n. x l n Proof. See Appendix. As corollary of Lemma 1 we establish a particularly useful result. Proposition 1 If the stress respects the saddle point condition in the periods N, N 1,, n + 2, n + 1, (i.e. if min x i n+j max x l n+j S n+j exists for j = N n,..., 1), the insider s optimal market order in auction n is determined by extremizing the stress, that is by simultaneously maximizing S n with respect to x l n and minimizing it with respect to x i n. Proof. See Appendix. Proposition 1 indicates that the extremization of the stress can be undertaken recursively. In particular, starting from N one proceeds backward imposing the saddle point condition for the stress in periods N, N 1,..., 1. We are now ready to establish our main result. Proposition 2 A linear Markovian sequential Nash equilibrium with N auctions is identified 8

10 by constants α n, β n, λ n, Σ n and θ n such that for any n p n = p n 1 + λ n x n, (6) x i n = β n t n (v p n 1 ), (7) V n = θ n 1 α n 1 (v p n 1 ) 2, (8) Σ n = Var(v x 1,..., x n ). (9) Given the initial value of Σ 0, the constants α n, β n, λ n, Σ n and θ n, with n = 1, 2,..., N, are a solution of the following recursive system β n t n = 2(1 2α n δ n λ n ) 4λ n (1 α n δ n λ n ) + λ 2 nρσl 2 t, (10) n Σ n = σ 2 l Σ n 1 β 2 n t n Σ n 1 + σ 2 l, (11) λ n = β nσ n σ 2 l α n 1 =, (12) 1 4λ n (1 α n δ n λ n ) + λ 2 nρσl 2 t, (13) n θ n 1 = 1 ρ ln(1 + α nδ n λ 2 nρσ 2 l t n ) + δ n θ n, (14) subject to the terminal conditions α N = 0, θ N = 0 and the second order conditions 4λ n (1 α n δ n λ n ) + ρσ 2 l t n λ 2 n > 0 n. (15) Proof. See Appendix. 9

11 4 Equilibrium Properties and Comparative Statics We now discuss the properties of the equilibrium described in Proposition 2. In particular we intend to unveil the impact of risk-aversion and time-discounting on the trading strategy of the insider and the characteristics of the market for the risky asset, by investigating the the dynamics of the coefficients β n, λ n and Σ n. β n represents the insider s trading intensity and determines how aggressively her trading strategy is; λ n reflects the liquidity of the market, as its inverse corresponds to the market s depth, a standard measure of liquidity for securities markets; Σ n is the residual uncertainty of the market maker on the liquidation value of the risky asset and hence it represents an indicator of market efficiency. Inspection of the expression for β n in equation (10) immediately reveals that both the coefficients of risk-aversion, ρ, and time-discounting, δ, affect the optimal trading strategy of the insider and the characteristics of the market. Indeed, risk-aversion makes the insider care about the variance of her profits. The uncertainty she faces results from the randomness of the liquidity traders orders. Given her information, the insider s expectation of the transaction price in auction n is E[p n In] i = p n 1 + λ n x i n and consequently the corresponding conditional variance is Var [p n In] i = λ 2 nσl 2 t n. This conditional variance and the insider s risk-aversion enter into the specification of β n and hence affect the sequential auction equilibrium. Similarly, time-discounting conditions the relevance that future payoffs have in shaping the insider s trading strategy and hence affects the sequential auction equilibrium. To determine the exact impact of time-discounting and risk-aversion on the trading strategy of the insider, the pricing process and the characteristics of the market for the risky asset we need to solve the system of recursive equations (10) to (15) which characterizes the sequential auction equilibrium in Proposition 2. To find the solution to this system we rely on a numerical algorithm based on a backward routine. To define this routine 10

12 consider that for any n, given α n and Σ n, there is a unique positive value of λ n satisfying the condition λ n (1 α n δ n λ n )+ 1 4 λ2 nρσ 2 l t n > 0 that the optimization problem of the insider must satisfy. This value is given by the appropriate root of the following equation 4 (1 α n δ n λ n )(Σ n σ 2 l t n λ 2 n) = 2 Σ n + ρσ 4 l t 2 nλ 3 n, which is obtained by substituting out the expression for β n in equation (10) into that for λ n in equation (12). Then, given λ n, alongside α n and Σ n, equation (10) yields β n. Using the projection theorem for normal distributions, one can write equation (12) as λ n = β n Σ n 1 β 2 n t n Σ n 1 + σ 2 l. Combining this expression with equation (11) it is found that Σ n 1 = (1 β n λ n ) 1 Σ n, so that Σ n 1 is derived from β n, Σ n and λ n. Equations (13) and (14) then provide α n 1 and θ n 1, completing the backward routine, (α n 1, β n, λ n, Σ n 1, θ n 1 ) = R(α n, β n+1, λ n+1, Σ n, θ n ). Since we have the terminal values α N = 0 and θ N = 0, while β N+1 = λ N+1 = 0, we can define a function of Σ N, G, that gives the initial variance of the liquidation value in 0, Σ (0) = G(Σ N ). Since G(Σ N ) is increasing in Σ N it is easy to find via the Newton-Raphson method the root of the equation Σ 0 = G(Σ N ) that gives the unique value of Σ N consistent with the boundary value Σ 0. This completes the algorithm which finds the solution to the system (10) to (15). 8 [Figure 1 about here] Using the algorithm above we can derive the dynamics of the equilibrium coefficients for any specific choice of the model s parameters. In Figure 1 we represent the dynamics of the conditional variance Σ n, top panel, and the liquidity coefficient λ n, bottom panel, across the N actions. The values of these coefficients are derived for N, the total number of auctions, equal to 100, σ l, the volatility of liquidity trading over the entire trading interval 11

13 [0, 1], and Σ 0, the unconditional variance of the liquidation value of the risky asset, equal to 1. In Figure 1 four different combinations of the coefficient of risk-aversion and the time-discount factor are considered. For ρ = 0 and δ = 1 we have the equilibrium derived in Kyle s original formulation with risk-neutrality and no time-discounting, while for ρ = 5 and δ = 1 we find the equilibrium described by Holden and Subrahmanyam (1994) under risk-aversion with only one insider. For ρ = 0 and δ = 0.5 we obtain an equilibrium which is analogous to that derived by Caldentey and Stacchetti (2010) with the random publication of the fundamental value of the risky asset. Finally, for ρ = 5 and δ = 0.5 we have the more general formulation with both risk-aversion and time-discounting. Figure 1 shows that in all the scenarios we consider the conditional variance of the liquidation value given the information the market maker possesses at the end of auction n, Σ n, is monotonically decreasing with n, indicating that private information is gradually incorporated into the asset price as it is disclosed through time by order flow. As eventually Σ n vanishes, the market maker learns the liquidation value of the risky asset by the time trading halts. How quickly the transaction price converges to the liquidation value depends on the insider s trading strategy. For ρ = 0 and δ = 1, i.e. in Kyle s original formulation, private information is disclosed at a constant pace (the derivative of Σ n with respect to n is constant). This is because the insider finds it optimal to trade with constant intensity and maintain overtime a stable news-to-noise ratio in order flow. Consequently the price sensitiveness, or liquidity coefficient, λ n is constant throughout most of the auctions. Figure 1 shows that in the risk-averse case considered by Holden and Subrahmanyam (ρ = 5 and δ = 1), instead, the insider places larger market orders in the initial auctions, as β n is larger than in the risk-neutral case (ρ = 0 and δ = 1) and so is the liquidity coefficient, λ n. This is because the inter-temporal substitution between present and future profits is reduced by risk-aversion and, therefore, the insider prefers exploiting sooner her information advantage. Consequently, for ρ > 0 she trades more aggressively, order flow is more informative and the market maker learns at a higher speed the liquidation value 12

14 of the risky asset. This implies that the conditional variance, Σ n, declines more rapidly. As the market maker progressively learns the liquidation value, the volatility of the price p n and the insider s uncertainty over future profits fall and consequently the inter-temporal substitution between present and future profits dissipates. Hence, as the last auction approaches the impact of risk-aversion on the trading activity of the insider resembles that of the static version of Kyle s model studied by Subrahmanyam (1991): risk-aversion induces the insider to be more cautious and trade less aggressively. This means that as time elapses the informational content of order flow decreases (λ n declines through time) and hence the reduction in the value of Σ n is smaller. In the end, in the risk-averse case the information gain from order flow becomes smaller than that of the risk-neutral one while market liquidity is larger (λ n is now smaller for ρ > 0). Anyway, despite the reduction in the information gain, the informativeness of prices is always larger in the risk-averse case as Σ n is always smaller for ρ larger than 0. The impact of time-discounting on market efficiency is similar to that of risk-aversion (ρ = 0 and δ = 0.5), in that a smaller δ reduces the inter-temporal substitution between present and future profits, inducing the insider to act more aggressively and reveal more rapidly her informational advantage. Figure 1 also shows how time-discounting and riskaversion interact and exacerbate each other s effect on the insider s trading strategy. In fact, for ρ = 5 and δ = 0.5 we see that the market maker learns at an even faster pace the liquidation value, as the insider trades even more aggressively. A similar result is proved by Caldentey and Stacchetti in their formulation with the random publication of the fundamental value of the risky asset. For a larger probability of the publication of the fundamental value, in steady state, the insider s trading intensity is larger, while the market maker s conditional variance of the fundamental value is smaller. This is not surprising, since an increase in the probability of the publication of the fundamental value has an impact on the insider s payoffs equivalent to that of a reduction in the time-discount factor δ. 13

15 Whereas Figure 1 applies to specific parametric constellations, the properties of the equilibrium it illustrates are actually general. In particular, the reduced inter-temporal trade-off between present and future profits that a smaller δ entails holds whatever the value of δ. Similarly, the impact of a larger degree of risk-aversion would be to make the insider more aggressive and the market more efficient whatever the value of ρ. This is because as shown by Tallarini 2000 for any choice of ρ > 0 in the optimization criterion (3) the coefficient of relative risk-aversion is larger than the inverse of the inter-temporal elasticity of substitution. 9 Exploiting results from Kreps and Porteus (1978), Epstein and Zin (1989) show that under such condition their recursive preferences induce earlier resolution of uncertainty vis-a-vis the case of expected utility. Given that our optimization criterion is a special version of their recursive preferences, this property extends to our formulation. Therefore, when ρ is positive the insider is willing to trade-off her expected future profits in order to reduce their uncertainty. This means that she will be willing to reveal more information to the market maker than it would be optimal under risk-neutrality by trading more aggressively in the earlier auctions. Appendix Proof of Lemma 1. To prove this Lemma we first need to establish a preliminary result. Lemma 2 If Q(u, ɛ) is a quadratic form in the vectors u and ɛ which admits the saddle point max u min ɛ Q(u, ɛ), then the following holds min u [ exp 12 ] [ Q(u, ɛ) dɛ exp 1 ] 2 max min Q(u, ɛ). u ɛ 14

16 Proof. Consider the quadratic form Q(u, ɛ) in the vectors u and ɛ, where Q(u, ɛ) = u ɛ Q u u Q ɛ u Q u ɛ Q ɛ ɛ u. ɛ Assume Q admits a minimum in ɛ in that Q ɛ ɛ is positive definite. Then, the following holds exp [ 12 ] [ Q(u, ɛ) d ɛ exp 1 ] 2 min Q(u, ɛ). (16) ɛ In fact, for ˆɛ the vector ɛ minimizing Q, we can write Q(u, ɛ) = Q(u, ˆɛ)+(ɛ ˆɛ) Q ɛ ɛ (ɛ ˆɛ). Consider that as Q ɛ ɛ is positive definite and invertible, the minimum of Q with respect to ɛ is obtained for ˆɛ = Q 1 ɛ ɛ Q ɛ u u and is equal to Q(u, ˆɛ) = u [Q u u Q u ɛ Q 1 ɛ ɛ Q ɛ u ]u. Thus, Q(u, ɛ) Q(u, ˆɛ) = ɛ Q ɛ ɛ ɛ + ɛ Q ɛ u u + u Q u ɛ ɛ + u Q u ɛ Q 1 ɛ ɛ Q ɛ u u = ɛ Q ɛ ɛ ɛ ɛ Q ɛ ɛ ˆɛ ˆɛ Q ɛ ɛ ɛ + ˆɛ Q ɛ ɛ ˆɛ = (ɛ ˆɛ) Q ɛ ɛ (ɛ ˆɛ). As Q(u, ˆɛ) = min ɛ Q(u, ɛ) is a constant in the integral in equation (16), we find that exp [ 12 ] [ Q(u, ɛ) d ɛ = exp 1 ] 2 min Q(u, ɛ) ɛ exp[ 1 2 (ɛ ˆɛ) Q ɛ ɛ (ɛ ˆɛ)] d ɛ. Therefore, the constant of proportionality in equation (16) is exp( 1 2 Q ɛ ɛ ) d = (2π) m/2 det(q ɛ ɛ ) 1/2, where m is the dimension of ɛ, and hence it is independent of u. Then, suppose that we solve the program min u exp [ 1 2 Q(u, ɛ)]. Assume that Q admits a saddle point with respect to ɛ and u, so that max u min ɛ Q(u, ɛ) exists. From equa- 15

17 tion (16) min u exp [ 12 ] [ Q(u, ɛ) d ɛ min exp 1 ] u 2 min Q(u, ɛ) ɛ [ = exp 1 ] 2 max min Q(u, ɛ). u ɛ It is worth noting this result applies also when Q is a non-homogeneous quadratic form, which depends on x and ɛ, alongside a third vector z, insofar it admits a saddle point max x min ɛ Q(x, ɛ, z). We are now ready to prove Lemma 1. Proof. First, we notice that because the exponential function is monotonic exp( ρ V 2 n) = [ ( min x i n E n exp ρ (c 2 n + δ n V n+1 ) )]. Second, we consider that v p n is linearly dependent on x l n via equation (6). Third, since c n = (p n 1 v + λ n x i n) x i n + λ n x i n x l n, the per-period cost depends on x l n. Then, the distribution of c n + δ n V n+1 depends on that of x l n and hence, given that x l n N(0, σl 2 t n), min x i n ( ρ )] E n [exp 2 (c n + δ n V n+1 ) = ( 2πσ 2 l t n ) 1/2 min x i n ( exp ρ S ) n d x l n, where 2 S n = c n + δ n V n+1 1 ρ ( xl n) 2 /(σ 2 l t n ). Now, since V n+1 is assumed to be a quadratic form in v p n and this is linear in x l n, x i n and v p n 1, V n+1 can be expressed as a quadratic form in x l n, x i n and v p n 1. Similarly, c n is a quadratic form in x l n, x i n and v p n 1 and so is S n. Thus, if the stress in n admits the saddle point min x i n statement of Lemma 2. Exploiting this Lemma min x i n ( exp ρ S ) n d x l n = min 2 x i n max x l n S n, then S n admits the saddle point in the exp ( ( = K n exp 1 2 max x i n 1 2 ( ρs n) }{{} Q( x i n, xl n ) ) min ( ρs n ) x l n d x l n ) ( ρ = K n exp 2 min x i n ) max S n, x l n 16

18 where, using the result outlined in the proof of Lemma 2, we establish that K n = (2π/Q x l n x l )1/2 n with Q x l n x equal to the second derivative of ρs l n n with respect to x l n. This implies that [ ( min x i n E n exp ρ (c 2 n + δ n V n+1 ) )] = (σl 2 t nq x l n x l ) 1/2 exp( ρ min n 2 x i max n x S l n n). Extremizing the stress S n, i.e. maximizing it with respect to x l n and minimizing the resulting function with respect to x i n, we find that min x i n max x l n S n is a quadratic form in v p n 1. Because exp( ρ V [ ( 2 n) = min x i n E n exp ρ (c 2 n + δ n V n+1 ) )] we conclude that the saddle point condition pins down the optimal market order for the insider and that the optimization criterion in n is a quadratic form in v p n 1 equal to the extremized stress plus a constant independent of v p n 1, V n = ϑ n + min max S n, where ϑ n = 1 x i n x l n ρ ln(σ2 l t n Q x l n x ). l n Proof of Proposition 1. Notice that in N c N is a positive definite quadratic form in x i N, while V N+1 = d N+1 = 0. This implies that S N is a quadratic form in x i N and xl n and hence that the conditions to apply Lemma 1 are met, so that the saddle point conditions for S N yields the optimal control x i N, with the extremized stress, min x i max N x S N, and l N the optimization criterion, V N, both quadratic forms in v p N 1. By backward induction the statement is proved. Proof of Proposition 2. Assume n the market maker sets the transaction price according to (6). From Lemma 1 we know that for V n+1 a quadratic form in v p n, V n = ϑ n +min x i n max x l n S n, where ϑ n = 1 ρ ln(σ2 l t nq x l n x ) and Q l n x is the second l n x l n derivative of ρs n with respect to x l n. Therefore, assume that V n+1 = θ n α n (v p n ) 2, where θ n is independent of v p n. Clearly, as V N+1 = 0, it must be that α N = 0 and θ N = 0. 17

19 Considering that S n = c n + δ n V n+1 1 ρ ( xl n) 2 /(σ 2 l t n), it follows that min x i n max x l n { [ S n = min max c n + δ n θ n δ n α n (v p n ) 2 1 ] } x i n x l n ρ ( xl n) 2 /(σl 2 t n ) = δ n θ n + min x i n { [ max c n δ n α n (v p n ) 2 1 ] } x l n ρ ( xl n) 2 /(σl 2 t n ) (17). Maximizing the argument in the square brackets with respect to x l n, we have x l n = γ n {λ n (1 2α n δ n λ n ) x i n 2α n δ n λ n (v p n 1 )}, with γ n = ρσ 2 l t n 2(1 + α n δ n λ 2 nρσ 2 l t n). Notice that we have maximum as the second order condition holds. In fact, the second derivative is 2(α n δ n λ 2 n + 1/(ρσl 2 t n)), which is negative for α n 0. Plugging our expression for x l n in the argument inside the square brackets in the right hand side of (17), we find that minimizing the resulting expression in curly brackets with respect to x i n, under the second order condition (15), gives the optimal market order of the insider at time n, x i n = β n t n (v p n 1 ), where β n t n = 2(1 2α n δ n λ n ) 4λ n (1 α n δ n λ n ) + λ 2 nρσl 2 t. n Condition (15) guarantees that the saddle point condition of Proposition 1 is met. Plugging the optimal value of x i n in the right hand side of (17) we find that min x i n max x l n S n = δ n θ n α n 1 (v p n 1 ) 2 where α n 1 = 1 4λ n (1 α n δ n λ n ) + λ 2 nρσl 2 t. n Coherently with the original assumption on V n+1, we see that V n = θ n 1 α n 1 (v p n 1 ) 2, with θ n 1 = ϑ n + δ n θ n. Since Q x l n x = l 1/(σ2 n l t n) + α n δ n λ 2 nρ, ϑ n = 1 ln(1 + ρ α n δ n λ 2 nρσn t 2 n ). Finally, the projection theorem for normal distributions shows that if equation (7) holds n, the conditional expectation of the liquidation value in n, p n, is a linear function of the total market order, p n = p n 1 + λ n x n, where λ n is given by equation (12), while its conditional variance, Σ n, respects equation (11). 18

20 References Boukaiz, M., and M. Sobel (1984): Non Stationarity Policies Are Optimal for Risk-sensitive Markov Decision Processes, Discussion paper, California Institute of Technology. Caldentey, R., and E. Stacchetti (2010): Insider Trading with a Random Deadline, Econometrica, 78, Chau, M. and D. Vayanos (2008): Strong-Form Efficiency with Monopolistic Insiders, Review of Financial Studies, 21, Daher, W., L.J. Mirman and E.G. Saleeby (2014): Two Period Model of Insider Trading with Correlated Signals, Journal of Mathematical Economics, 52, Epstein, L.G., and S.E. Zin (1989): Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework, Econometrica, 57, Foster, F.D. and S. Viswanathan (1996): Strategic Trading When Agents Forecast the Forecasts of Others, Journal of Finance, 51, Hansen, L., and T. J. Sargent (1994): Discounted Linear Exponential Quadratic Gaussian Control, Discussion paper, University of Chicago mimeo. (1995): Discounted Linear Exponential Quadratic Gaussian Control, IEEE Transactions on Automatic Control, 40, Holden, C. W., and A. Subrahmanyam (1994): Risk-aversion, Imperfect Competition, and Long-lived Information, Economic Letters, 44, Huddart, S., J.S. Hughes and C. Levine (2001): Public Disclosure and Dissimulation of Insider Trading, Econometrica, 69, Kreps, D. M., and E.L. Porteus (1978): Temporal Resolution of Uncertainty and Dy- namic Choice Theory, Econometrica, 46,

21 Kyle, A. S. (1985): Continuous Auction and Insider Trading, Econometrica, 53, Subrahmanyam, A. (1991): Risk Aversion, Market Liquidity, and Price Efficiency, Review of Financial Studies, 4, Tallarini, T. D. (2000): Risk-Sensitive Real Business Cycles, Journal of Monetary Economics, 45, Vitale, P. (2012): Risk-averse Insider Trading in Multi-asset Sequential Auction Markets, Economic Letters, 117, (2013): Pessimistic Optimal Choice for Risk-averse Agents, Discussion paper, CASMEF , vitale/pessimistic-optimal-choice-for-risk-averse- Agents-Quater.pdf. Whittle, P. (1990): Risk-sensitive Optimal Control. John Wiley & Sons, New York. 20

22 Notes 1 The market maker keeps setting the transaction price according to equation (1), as he calculates his profits/losses only when the liquidation value of the risky asset is announced. On the contrary, the insider can calculate the profits associated with any round of trading, π n, at the end of any auction, n, and assess her performance on a per-period basis. 2 See Bouakiz and Sobel (1984), Whittle (1990) and Hansen and Sargent (1994). 3 Hansen and Sargent (1994,1995) have proposed a similar optimization criterion. 4 The functional form ln(e[exp( ρ X )]) is monotonic increasing and convex in X. In 2 the optimization criterion in (3) X c n + δ n V n+1. We will show that c n and V n+1 are positive definite quadratic forms in x i n and v p n 1. This implies that X is convex in x i n and v p n 1. Given the convexity of the functional form ln(e[exp( ρ X )]), we see 2 that the optimization criterion in (3) is convex in x i n and v p n 1. This means that our optimization criterion is well-defined, in that the insider s market order, x i n, is her choice variable in auction n, whereas the risky asset mis-pricing, v p n 1, is the fundamental information she carries into such an auction. As the convexity of ln(e[exp( ρ X )]) increases 2 with ρ, this coefficients determines the insider s degree of risk-aversion. 5 See Tallarini (2000) and Vitale (2013) for extensive discussions of the properties of the optimization criterion in (3) and of its relation to Epstein-Zin preferences. 6 For δ = 1, this is the Bellman equation solved by Kyle in his original formulation. 7 Indeed, in their formulation Caldentey and Stacchetti assume that the fundamental value is subject to unpredictable shocks. In addition they do not impose a terminal date for the announcement of the fundamental value. 21

23 8 The corresponding MatLab code is available on request. 9 See also Vitale (2013). 22

24 1 Conditional Variance of Liquidation Value, n =5, =0.5 =5, =1 =0, =0.5 =0, = Auction, n Market Liquidity, n =5, =0.5 =5, =1 =0, =0.5 =0, = Auction, n Figure 1: Market efficiency (Σ n, top panel) and liquidity (λ n, bottom panel) for N = 100, σ 2 l = 1, Σ 0 = 1. 23

Strategic Trading of Informed Trader with Monopoly on Shortand Long-Lived Information

Strategic Trading of Informed Trader with Monopoly on Shortand Long-Lived Information ANNALS OF ECONOMICS AND FINANCE 10-, 351 365 (009) Strategic Trading of Informed Trader with Monopoly on Shortand Long-Lived Information Chanwoo Noh Department of Mathematics, Pohang University of Science

More information

Ambiguous Information and Trading Volume in stock market

Ambiguous Information and Trading Volume in stock market Ambiguous Information and Trading Volume in stock market Meng-Wei Chen Department of Economics, Indiana University at Bloomington April 21, 2011 Abstract This paper studies the information transmission

More information

Market Liquidity and Performance Monitoring The main idea The sequence of events: Technology and information

Market Liquidity and Performance Monitoring The main idea The sequence of events: Technology and information Market Liquidity and Performance Monitoring Holmstrom and Tirole (JPE, 1993) The main idea A firm would like to issue shares in the capital market because once these shares are publicly traded, speculators

More information

Feedback Effect and Capital Structure

Feedback Effect and Capital Structure Feedback Effect and Capital Structure Minh Vo Metropolitan State University Abstract This paper develops a model of financing with informational feedback effect that jointly determines a firm s capital

More information

Lectures on Trading with Information Competitive Noisy Rational Expectations Equilibrium (Grossman and Stiglitz AER (1980))

Lectures on Trading with Information Competitive Noisy Rational Expectations Equilibrium (Grossman and Stiglitz AER (1980)) Lectures on Trading with Information Competitive Noisy Rational Expectations Equilibrium (Grossman and Stiglitz AER (980)) Assumptions (A) Two Assets: Trading in the asset market involves a risky asset

More information

Why Do Agency Theorists Misinterpret Market Monitoring?

Why Do Agency Theorists Misinterpret Market Monitoring? Why Do Agency Theorists Misinterpret Market Monitoring? Peter L. Swan ACE Conference, July 13, 2018, Canberra UNSW Business School, Sydney Australia July 13, 2018 UNSW Australia, Sydney, Australia 1 /

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 65 Outline 1 An Introduction

More information

Effects of Wealth and Its Distribution on the Moral Hazard Problem

Effects of Wealth and Its Distribution on the Moral Hazard Problem Effects of Wealth and Its Distribution on the Moral Hazard Problem Jin Yong Jung We analyze how the wealth of an agent and its distribution affect the profit of the principal by considering the simple

More information

Risk Aversion, Strategic Trading and Mandatory Public Disclosure

Risk Aversion, Strategic Trading and Mandatory Public Disclosure Risk Aversion, Strategic Trading and Mandatory Public Disclosure Hui Huang Department of Economics The University of Western Ontario May, 3 Abstract This paper studies the optimal dynamic behavior of a

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Chapter 9 Dynamic Models of Investment

Chapter 9 Dynamic Models of Investment George Alogoskoufis, Dynamic Macroeconomic Theory, 2015 Chapter 9 Dynamic Models of Investment In this chapter we present the main neoclassical model of investment, under convex adjustment costs. This

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Information Aggregation in Dynamic Markets with Strategic Traders. Michael Ostrovsky

Information Aggregation in Dynamic Markets with Strategic Traders. Michael Ostrovsky Information Aggregation in Dynamic Markets with Strategic Traders Michael Ostrovsky Setup n risk-neutral players, i = 1,..., n Finite set of states of the world Ω Random variable ( security ) X : Ω R Each

More information

Learning to Trade with Insider Information

Learning to Trade with Insider Information Learning to Trade with Insider Information Sanmay Das Center for Biological and Computational Learning and Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

More information

CONSUMPTION-BASED MACROECONOMIC MODELS OF ASSET PRICING THEORY

CONSUMPTION-BASED MACROECONOMIC MODELS OF ASSET PRICING THEORY ECONOMIC ANNALS, Volume LXI, No. 211 / October December 2016 UDC: 3.33 ISSN: 0013-3264 DOI:10.2298/EKA1611007D Marija Đorđević* CONSUMPTION-BASED MACROECONOMIC MODELS OF ASSET PRICING THEORY ABSTRACT:

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Consumption and Portfolio Decisions When Expected Returns A

Consumption and Portfolio Decisions When Expected Returns A Consumption and Portfolio Decisions When Expected Returns Are Time Varying September 10, 2007 Introduction In the recent literature of empirical asset pricing there has been considerable evidence of time-varying

More information

Online Appendix: Extensions

Online Appendix: Extensions B Online Appendix: Extensions In this online appendix we demonstrate that many important variations of the exact cost-basis LUL framework remain tractable. In particular, dual problem instances corresponding

More information

A unified framework for optimal taxation with undiversifiable risk

A unified framework for optimal taxation with undiversifiable risk ADEMU WORKING PAPER SERIES A unified framework for optimal taxation with undiversifiable risk Vasia Panousi Catarina Reis April 27 WP 27/64 www.ademu-project.eu/publications/working-papers Abstract This

More information

Consumption and Portfolio Choice under Uncertainty

Consumption and Portfolio Choice under Uncertainty Chapter 8 Consumption and Portfolio Choice under Uncertainty In this chapter we examine dynamic models of consumer choice under uncertainty. We continue, as in the Ramsey model, to take the decision of

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Haiyang Feng College of Management and Economics, Tianjin University, Tianjin , CHINA

Haiyang Feng College of Management and Economics, Tianjin University, Tianjin , CHINA RESEARCH ARTICLE QUALITY, PRICING, AND RELEASE TIME: OPTIMAL MARKET ENTRY STRATEGY FOR SOFTWARE-AS-A-SERVICE VENDORS Haiyang Feng College of Management and Economics, Tianjin University, Tianjin 300072,

More information

Risk aversion and choice under uncertainty

Risk aversion and choice under uncertainty Risk aversion and choice under uncertainty Pierre Chaigneau pierre.chaigneau@hec.ca June 14, 2011 Finance: the economics of risk and uncertainty In financial markets, claims associated with random future

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Algorithmic and High-Frequency Trading

Algorithmic and High-Frequency Trading LOBSTER June 2 nd 2016 Algorithmic and High-Frequency Trading Julia Schmidt Overview Introduction Market Making Grossman-Miller Market Making Model Trading Costs Measuring Liquidity Market Making using

More information

Efficiency and Herd Behavior in a Signalling Market. Jeffrey Gao

Efficiency and Herd Behavior in a Signalling Market. Jeffrey Gao Efficiency and Herd Behavior in a Signalling Market Jeffrey Gao ABSTRACT This paper extends a model of herd behavior developed by Bikhchandani and Sharma (000) to establish conditions for varying levels

More information

RECURSIVE VALUATION AND SENTIMENTS

RECURSIVE VALUATION AND SENTIMENTS 1 / 32 RECURSIVE VALUATION AND SENTIMENTS Lars Peter Hansen Bendheim Lectures, Princeton University 2 / 32 RECURSIVE VALUATION AND SENTIMENTS ABSTRACT Expectations and uncertainty about growth rates that

More information

D.1 Sufficient conditions for the modified FV model

D.1 Sufficient conditions for the modified FV model D Internet Appendix Jin Hyuk Choi, Ulsan National Institute of Science and Technology (UNIST Kasper Larsen, Rutgers University Duane J. Seppi, Carnegie Mellon University April 7, 2018 This Internet Appendix

More information

Liquidity and Risk Management

Liquidity and Risk Management Liquidity and Risk Management By Nicolae Gârleanu and Lasse Heje Pedersen Risk management plays a central role in institutional investors allocation of capital to trading. For instance, a risk manager

More information

Value of Flexibility in Managing R&D Projects Revisited

Value of Flexibility in Managing R&D Projects Revisited Value of Flexibility in Managing R&D Projects Revisited Leonardo P. Santiago & Pirooz Vakili November 2004 Abstract In this paper we consider the question of whether an increase in uncertainty increases

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Finite Memory and Imperfect Monitoring

Finite Memory and Imperfect Monitoring Federal Reserve Bank of Minneapolis Research Department Finite Memory and Imperfect Monitoring Harold L. Cole and Narayana Kocherlakota Working Paper 604 September 2000 Cole: U.C.L.A. and Federal Reserve

More information

Information and Learning in Markets. Chapter 9

Information and Learning in Markets. Chapter 9 Market Microstructure Competitive Rational Expectations Equilibria Informed Traders move First Hedgers and Producers Summary Appendix Information and Learning in Markets by Xavier Vives, Princeton University

More information

PhD Qualifier Examination

PhD Qualifier Examination PhD Qualifier Examination Department of Agricultural Economics May 29, 2014 Instructions This exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

Online Appendix. ( ) =max

Online Appendix. ( ) =max Online Appendix O1. An extend model In the main text we solved a model where past dilemma decisions affect subsequent dilemma decisions but the DM does not take into account how her actions will affect

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

The B.E. Journal of Theoretical Economics

The B.E. Journal of Theoretical Economics The B.E. Journal of Theoretical Economics Topics Volume 9, Issue 1 2009 Article 7 Risk Premiums versus Waiting-Options Premiums: A Simple Numerical Example Kenji Miyazaki Makoto Saito Hosei University,

More information

DEPARTMENT OF ECONOMICS Fall 2013 D. Romer

DEPARTMENT OF ECONOMICS Fall 2013 D. Romer UNIVERSITY OF CALIFORNIA Economics 202A DEPARTMENT OF ECONOMICS Fall 203 D. Romer FORCES LIMITING THE EXTENT TO WHICH SOPHISTICATED INVESTORS ARE WILLING TO MAKE TRADES THAT MOVE ASSET PRICES BACK TOWARD

More information

Making Money out of Publicly Available Information

Making Money out of Publicly Available Information Making Money out of Publicly Available Information Forthcoming, Economics Letters Alan D. Morrison Saïd Business School, University of Oxford and CEPR Nir Vulkan Saïd Business School, University of Oxford

More information

A Continuous-Time Asset Pricing Model with Habits and Durability

A Continuous-Time Asset Pricing Model with Habits and Durability A Continuous-Time Asset Pricing Model with Habits and Durability John H. Cochrane June 14, 2012 Abstract I solve a continuous-time asset pricing economy with quadratic utility and complex temporal nonseparabilities.

More information

Econ 101A Final exam May 14, 2013.

Econ 101A Final exam May 14, 2013. Econ 101A Final exam May 14, 2013. Do not turn the page until instructed to. Do not forget to write Problems 1 in the first Blue Book and Problems 2, 3 and 4 in the second Blue Book. 1 Econ 101A Final

More information

A Two-sector Ramsey Model

A Two-sector Ramsey Model A Two-sector Ramsey Model WooheonRhee Department of Economics Kyung Hee University E. Young Song Department of Economics Sogang University C.P.O. Box 1142 Seoul, Korea Tel: +82-2-705-8696 Fax: +82-2-705-8180

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Informed Trading with Dynamic Information Dissemination

Informed Trading with Dynamic Information Dissemination Informed Trading with Dynamic Information Dissemination Alex Boulatov and Dmitry Livdan March 8, 200 Abstract This paper analyzes the equilibrium trading strategies of large heterogeneously informed traders

More information

PAULI MURTO, ANDREY ZHUKOV

PAULI MURTO, ANDREY ZHUKOV GAME THEORY SOLUTION SET 1 WINTER 018 PAULI MURTO, ANDREY ZHUKOV Introduction For suggested solution to problem 4, last year s suggested solutions by Tsz-Ning Wong were used who I think used suggested

More information

Macroeconomics Sequence, Block I. Introduction to Consumption Asset Pricing

Macroeconomics Sequence, Block I. Introduction to Consumption Asset Pricing Macroeconomics Sequence, Block I Introduction to Consumption Asset Pricing Nicola Pavoni October 21, 2016 The Lucas Tree Model This is a general equilibrium model where instead of deriving properties of

More information

Budget Setting Strategies for the Company s Divisions

Budget Setting Strategies for the Company s Divisions Budget Setting Strategies for the Company s Divisions Menachem Berg Ruud Brekelmans Anja De Waegenaere November 14, 1997 Abstract The paper deals with the issue of budget setting to the divisions of a

More information

1 Precautionary Savings: Prudence and Borrowing Constraints

1 Precautionary Savings: Prudence and Borrowing Constraints 1 Precautionary Savings: Prudence and Borrowing Constraints In this section we study conditions under which savings react to changes in income uncertainty. Recall that in the PIH, when you abstract from

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Revenue Equivalence and Income Taxation

Revenue Equivalence and Income Taxation Journal of Economics and Finance Volume 24 Number 1 Spring 2000 Pages 56-63 Revenue Equivalence and Income Taxation Veronika Grimm and Ulrich Schmidt* Abstract This paper considers the classical independent

More information

LECTURE NOTES 10 ARIEL M. VIALE

LECTURE NOTES 10 ARIEL M. VIALE LECTURE NOTES 10 ARIEL M VIALE 1 Behavioral Asset Pricing 11 Prospect theory based asset pricing model Barberis, Huang, and Santos (2001) assume a Lucas pure-exchange economy with three types of assets:

More information

1 Consumption and saving under uncertainty

1 Consumption and saving under uncertainty 1 Consumption and saving under uncertainty 1.1 Modelling uncertainty As in the deterministic case, we keep assuming that agents live for two periods. The novelty here is that their earnings in the second

More information

KIER DISCUSSION PAPER SERIES

KIER DISCUSSION PAPER SERIES KIER DISCUSSION PAPER SERIES KYOTO INSTITUTE OF ECONOMIC RESEARCH http://www.kier.kyoto-u.ac.jp/index.html Discussion Paper No. 657 The Buy Price in Auctions with Discrete Type Distributions Yusuke Inami

More information

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g))

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g)) Problem Set 2: Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g)) Exercise 2.1: An infinite horizon problem with perfect foresight In this exercise we will study at a discrete-time version of Ramsey

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning MDP March May, 2013 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical

More information

UCLA Department of Economics Ph.D. Preliminary Exam Industrial Organization Field Exam (Spring 2010) Use SEPARATE booklets to answer each question

UCLA Department of Economics Ph.D. Preliminary Exam Industrial Organization Field Exam (Spring 2010) Use SEPARATE booklets to answer each question Wednesday, June 23 2010 Instructions: UCLA Department of Economics Ph.D. Preliminary Exam Industrial Organization Field Exam (Spring 2010) You have 4 hours for the exam. Answer any 5 out 6 questions. All

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

A Note on the Relation between Risk Aversion, Intertemporal Substitution and Timing of the Resolution of Uncertainty

A Note on the Relation between Risk Aversion, Intertemporal Substitution and Timing of the Resolution of Uncertainty ANNALS OF ECONOMICS AND FINANCE 2, 251 256 (2006) A Note on the Relation between Risk Aversion, Intertemporal Substitution and Timing of the Resolution of Uncertainty Johanna Etner GAINS, Université du

More information

Political Lobbying in a Recurring Environment

Political Lobbying in a Recurring Environment Political Lobbying in a Recurring Environment Avihai Lifschitz Tel Aviv University This Draft: October 2015 Abstract This paper develops a dynamic model of the labor market, in which the employed workers,

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Limits to Arbitrage. George Pennacchi. Finance 591 Asset Pricing Theory

Limits to Arbitrage. George Pennacchi. Finance 591 Asset Pricing Theory Limits to Arbitrage George Pennacchi Finance 591 Asset Pricing Theory I.Example: CARA Utility and Normal Asset Returns I Several single-period portfolio choice models assume constant absolute risk-aversion

More information

Bid-Ask Spreads and Volume: The Role of Trade Timing

Bid-Ask Spreads and Volume: The Role of Trade Timing Bid-Ask Spreads and Volume: The Role of Trade Timing Toronto, Northern Finance 2007 Andreas Park University of Toronto October 3, 2007 Andreas Park (UofT) The Timing of Trades October 3, 2007 1 / 25 Patterns

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Accounting Conservatism, Market Liquidity and Informativeness of Asset Price: Implications on Mark to Market Accounting

Accounting Conservatism, Market Liquidity and Informativeness of Asset Price: Implications on Mark to Market Accounting Journal of Applied Finance & Banking, vol.3, no.1, 2013, 177-190 ISSN: 1792-6580 (print version), 1792-6599 (online) Scienpress Ltd Accounting Conservatism, Market Liquidity and Informativeness of Asset

More information

Lastrapes Fall y t = ỹ + a 1 (p t p t ) y t = d 0 + d 1 (m t p t ).

Lastrapes Fall y t = ỹ + a 1 (p t p t ) y t = d 0 + d 1 (m t p t ). ECON 8040 Final exam Lastrapes Fall 2007 Answer all eight questions on this exam. 1. Write out a static model of the macroeconomy that is capable of predicting that money is non-neutral. Your model should

More information

Appendix: Common Currencies vs. Monetary Independence

Appendix: Common Currencies vs. Monetary Independence Appendix: Common Currencies vs. Monetary Independence A The infinite horizon model This section defines the equilibrium of the infinity horizon model described in Section III of the paper and characterizes

More information

1 The Solow Growth Model

1 The Solow Growth Model 1 The Solow Growth Model The Solow growth model is constructed around 3 building blocks: 1. The aggregate production function: = ( ()) which it is assumed to satisfy a series of technical conditions: (a)

More information

Andreas Wagener University of Vienna. Abstract

Andreas Wagener University of Vienna. Abstract Linear risk tolerance and mean variance preferences Andreas Wagener University of Vienna Abstract We translate the property of linear risk tolerance (hyperbolical Arrow Pratt index of risk aversion) from

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Dynamic Market Making and Asset Pricing

Dynamic Market Making and Asset Pricing Dynamic Market Making and Asset Pricing Wen Chen 1 Yajun Wang 2 1 The Chinese University of Hong Kong, Shenzhen 2 Baruch College Institute of Financial Studies Southwestern University of Finance and Economics

More information

Information aggregation for timing decision making.

Information aggregation for timing decision making. MPRA Munich Personal RePEc Archive Information aggregation for timing decision making. Esteban Colla De-Robertis Universidad Panamericana - Campus México, Escuela de Ciencias Económicas y Empresariales

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

1 A tax on capital income in a neoclassical growth model

1 A tax on capital income in a neoclassical growth model 1 A tax on capital income in a neoclassical growth model We look at a standard neoclassical growth model. The representative consumer maximizes U = β t u(c t ) (1) t=0 where c t is consumption in period

More information

Portfolio Choice and Permanent Income

Portfolio Choice and Permanent Income Portfolio Choice and Permanent Income Thomas D. Tallarini, Jr. Stanley E. Zin January 2004 Abstract We solve the optimal saving/portfolio-choice problem in an intertemporal recursive utility framework.

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Moral Hazard: Dynamic Models. Preliminary Lecture Notes

Moral Hazard: Dynamic Models. Preliminary Lecture Notes Moral Hazard: Dynamic Models Preliminary Lecture Notes Hongbin Cai and Xi Weng Department of Applied Economics, Guanghua School of Management Peking University November 2014 Contents 1 Static Moral Hazard

More information

Liquidity and Asset Prices in Rational Expectations Equilibrium with Ambiguous Information

Liquidity and Asset Prices in Rational Expectations Equilibrium with Ambiguous Information Liquidity and Asset Prices in Rational Expectations Equilibrium with Ambiguous Information Han Ozsoylev SBS, University of Oxford Jan Werner University of Minnesota September 006, revised March 007 Abstract:

More information

Risk and Ambiguity in Asset Returns

Risk and Ambiguity in Asset Returns Risk and Ambiguity in Asset Returns Cross-Sectional Differences Chiaki Hara and Toshiki Honda KIER, Kyoto University and ICS, Hitotsubashi University KIER, Kyoto University April 6, 2017 Hara and Honda

More information

Imperfect Competition, Information Asymmetry, and Cost of Capital

Imperfect Competition, Information Asymmetry, and Cost of Capital Imperfect Competition, Information Asymmetry, and Cost of Capital Judson Caskey, UT Austin John Hughes, UCLA Jun Liu, UCSD Institute of Financial Studies Southwestern University of Economics and Finance

More information

Financial Economics Field Exam January 2008

Financial Economics Field Exam January 2008 Financial Economics Field Exam January 2008 There are two questions on the exam, representing Asset Pricing (236D = 234A) and Corporate Finance (234C). Please answer both questions to the best of your

More information

Information Acquisition under Persuasive Precedent versus Binding Precedent (Preliminary and Incomplete)

Information Acquisition under Persuasive Precedent versus Binding Precedent (Preliminary and Incomplete) Information Acquisition under Persuasive Precedent versus Binding Precedent (Preliminary and Incomplete) Ying Chen Hülya Eraslan March 25, 2016 Abstract We analyze a dynamic model of judicial decision

More information

Internet Appendix to: Common Ownership, Competition, and Top Management Incentives

Internet Appendix to: Common Ownership, Competition, and Top Management Incentives Internet Appendix to: Common Ownership, Competition, and Top Management Incentives Miguel Antón, Florian Ederer, Mireia Giné, and Martin Schmalz August 13, 2016 Abstract This internet appendix provides

More information

FINANCIAL REPRESSION AND LAFFER CURVES

FINANCIAL REPRESSION AND LAFFER CURVES Kanat S. Isakov, Sergey E. Pekarski FINANCIAL REPRESSION AND LAFFER CURVES BASIC RESEARCH PROGRAM WORKING PAPERS SERIES: ECONOMICS WP BRP 113/EC/2015 This Working Paper is an output of a research project

More information

The Analytics of Information and Uncertainty Answers to Exercises and Excursions

The Analytics of Information and Uncertainty Answers to Exercises and Excursions The Analytics of Information and Uncertainty Answers to Exercises and Excursions Chapter 6: Information and Markets 6.1 The inter-related equilibria of prior and posterior markets Solution 6.1.1. The condition

More information

The test has 13 questions. Answer any four. All questions carry equal (25) marks.

The test has 13 questions. Answer any four. All questions carry equal (25) marks. 2014 Booklet No. TEST CODE: QEB Afternoon Questions: 4 Time: 2 hours Write your Name, Registration Number, Test Code, Question Booklet Number etc. in the appropriate places of the answer booklet. The test

More information

Chapter 3. Dynamic discrete games and auctions: an introduction

Chapter 3. Dynamic discrete games and auctions: an introduction Chapter 3. Dynamic discrete games and auctions: an introduction Joan Llull Structural Micro. IDEA PhD Program I. Dynamic Discrete Games with Imperfect Information A. Motivating example: firm entry and

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS Jan Werner University of Minnesota SPRING 2019 1 I.1 Equilibrium Prices in Security Markets Assume throughout this section that utility functions

More information

LECTURE NOTES 3 ARIEL M. VIALE

LECTURE NOTES 3 ARIEL M. VIALE LECTURE NOTES 3 ARIEL M VIALE I Markowitz-Tobin Mean-Variance Portfolio Analysis Assumption Mean-Variance preferences Markowitz 95 Quadratic utility function E [ w b w ] { = E [ w] b V ar w + E [ w] }

More information

Key Moments in the Rouwenhorst Method

Key Moments in the Rouwenhorst Method Key Moments in the Rouwenhorst Method Damba Lkhagvasuren Concordia University CIREQ September 14, 2012 Abstract This note characterizes the underlying structure of the autoregressive process generated

More information

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Lars Holden PhD, Managing director t: +47 22852672 Norwegian Computing Center, P. O. Box 114 Blindern, NO 0314 Oslo,

More information

Standard Risk Aversion and Efficient Risk Sharing

Standard Risk Aversion and Efficient Risk Sharing MPRA Munich Personal RePEc Archive Standard Risk Aversion and Efficient Risk Sharing Richard M. H. Suen University of Leicester 29 March 2018 Online at https://mpra.ub.uni-muenchen.de/86499/ MPRA Paper

More information

Bargaining Order and Delays in Multilateral Bargaining with Asymmetric Sellers

Bargaining Order and Delays in Multilateral Bargaining with Asymmetric Sellers WP-2013-015 Bargaining Order and Delays in Multilateral Bargaining with Asymmetric Sellers Amit Kumar Maurya and Shubhro Sarkar Indira Gandhi Institute of Development Research, Mumbai August 2013 http://www.igidr.ac.in/pdf/publication/wp-2013-015.pdf

More information

Estimating Market Power in Differentiated Product Markets

Estimating Market Power in Differentiated Product Markets Estimating Market Power in Differentiated Product Markets Metin Cakir Purdue University December 6, 2010 Metin Cakir (Purdue) Market Equilibrium Models December 6, 2010 1 / 28 Outline Outline Estimating

More information