Two factors, factorial experiment, both factors

Size: px
Start display at page:

Download "Two factors, factorial experiment, both factors"

Transcription

1 Extension to Factorial Treatment Structure Two factors, factorial experiment, both factors random (Section , pg. 490) i 1,2,..., a yijk μ+ τi + β j + ( τβ) ij + εijk j 1,2,..., b k 1,2,..., n V( τ ) σ, V( β ) σ, V[( τβ) ] σ, V( ε ) σ i τ j β ij τβ ijk V( y ijk ) στ + σβ + στβ + σ The model parameters are all normally distributed, independent random variables with mean 0 and variances given above Random effects model

2 Testing Hypotheses - Random Effects Model Once again, the standard ANOVA partition is appropriate Relevant hypotheses: More Statistics tutorial at H : σ 0 H : σ 0 H : σ τ 0 β 0 τβ H : σ > 0 H : σ > 0 H : σ > τ 1 β 1 τβ Form of the test statistics depend on the expected mean squares: A ( A) σ + στβ + στ 0 AB E n bn F ( ) σ + σ + σ EB n τβ an β F0 E 2 2 E ( AB ) σ + nσ τβ F0 2 E ( ) σ B AB AB E

3 Recall E for two-way way fixed effect

4 Estimating the Variance Components Two Factor Random model As before, use the ANOVA method; equate expected mean squares to their observed values: bn an n 2 ˆ σ 2 A AB ˆ σ τ 2 B AB ˆ σ β 2 AB E ˆ σ τβ Potential problems with these estimators E

5 Example 13-2 (pg. 492) A Measurement Systems Capability Study Gauge capability (or R&R) is of interest The gauge is used by an operator to measure a critical dimension i on a part This is a two-factor factorial (completely randomized) with both factors (operators, parts) random a random effects model

6

7 #####obtain ANOVA table ###### aov1aov(y~part*operator) sum1summary(aov1)[[1]] sum1 Df Sum Sq Mean Sq F value Pr(>F) part <2e-16 *** operator part:operator Residuals Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Only the F test for interaction is valid!!!!!

8 # The F test for Apart and Boperator ##### ###sum[1:2,3] are the values for A and B#### ###sum1[3,3] are the value for E##### FAB F.A.Bsum1[1:2,3]/sum1[3,3] 1[123]/ 1[33]##F-value for A and B respectively p.a.b1-pf(f.a.b,sum1[1:2,1],sum1[3,1]) ###p-value for A and B respectively > F.A.B [1] > p.a.b [1] No significant part-operator interaction Effect of parts is large Operators may have a small negligible effect

9 # The variance estimates sigma2.esum1[4,3] asum1[1,1]+1 bsum1[2,1]+1 nsum1[4,1]/a/b+1 #df for SSE is ab(n-1) sigma2.ab(sum1[3,3]-sigma2.e)/n 3]-sigma2 sigma2.a(sum1[1,3]-sum1[3,3])/b/n sigma2.b(sum1[2,3]-sum1[3,3])/a/n c(sigma2.a,sigma2.b,sigma2.ab,sigma2.e) bn an n 2 ˆ σ 2 A AB ˆ σ τ 2 B AB ˆ σ β 2 AB E ˆ σ τβ E > c(sigma2.a,sigma2.b,sigma2.ab,sigma2.e) 2A i 2B i 2AB i 2E) [1] Not reasonable. But unavoidable if use ANOVA method of estimation set to 0 (reasonable in this case) since interaction is not significant + Additional variability in the measurement system resulting from use of the instrument by the operator Variation observed when the same part is measured by the same operator

10 Reduced Model aov2aov(y~part+operator) p sum2summary(aov2)[[1]] sum2 Df Sum Sq Mean Sq F value Pr(>F) part <2e-16 *** operator Residuals The two F tests are valid!!!!!

11 # The variance estimates asum2[1,1]+1 1 bsum2[2,1]+1 n(sum2[3,1]+a+b-1)/a/b sigma2.esum2[3,3] sigma2.a.b(sum2[1:2,3]-sum2[3,3])/n/c(b,a) 2AB 2[123] 2[3 3])/ / (b ) c(sigma2.a.b,sigma2.e) [1] Additional variability in the measurement system resulting from use of the instrument by the operator Variation i observed when the same part is measured by the same operator

Design of Engineering Experiments Part 9 Experiments with Random Factors

Design of Engineering Experiments Part 9 Experiments with Random Factors Design of ngineering xperiments Part 9 xperiments with Random Factors Text reference, Chapter 13, Pg. 484 Previous chapters have considered fixed factors A specific set of factor levels is chosen for the

More information

Random Effects... and more about pigs G G G G G G G G G G G

Random Effects... and more about pigs G G G G G G G G G G G et s examine the random effects model in terms of the pig weight example. This had eight litters, and in the first analysis we were willing to think of as fixed effects. This means that we might want to

More information

Topic 30: Random Effects Modeling

Topic 30: Random Effects Modeling Topic 30: Random Effects Modeling Outline One-way random effects model Data Model Inference Data for one-way random effects model Y, the response variable Factor with levels i = 1 to r Y ij is the j th

More information

Analysis of Variance in Matrix form

Analysis of Variance in Matrix form Analysis of Variance in Matrix form The ANOVA table sums of squares, SSTO, SSR and SSE can all be expressed in matrix form as follows. week 9 Multiple Regression A multiple regression model is a model

More information

Study of one-way ANOVA with a fixed-effect factor

Study of one-way ANOVA with a fixed-effect factor Study of one-way ANOVA with a fixed-effect factor In the last blog on Introduction to ANOVA, we mentioned that in the oneway ANOVA study, the factor contributing to a possible source of variation that

More information

1.017/1.010 Class 19 Analysis of Variance

1.017/1.010 Class 19 Analysis of Variance .07/.00 Class 9 Analysis of Variance Concepts and Definitions Objective: dentify factors responsible for variability in observed data Specify one or more factors that could account for variability (e.g.

More information

STA258 Analysis of Variance

STA258 Analysis of Variance STA258 Analysis of Variance Al Nosedal. University of Toronto. Winter 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into a matrix format

More information

Power in Mixed Effects

Power in Mixed Effects Power in Mixed Effects Gary W. Oehlert School of Statistics University of Minnesota December 1, 2014 Power is an important aspect of designing an experiment; we now return to power in mixed effects. We

More information

MODEL SELECTION CRITERIA IN R:

MODEL SELECTION CRITERIA IN R: 1. R 2 statistics We may use MODEL SELECTION CRITERIA IN R R 2 = SS R SS T = 1 SS Res SS T or R 2 Adj = 1 SS Res/(n p) SS T /(n 1) = 1 ( ) n 1 (1 R 2 ). n p where p is the total number of parameters. R

More information

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA)

Lecture note 8 Spring Lecture note 8. Analysis of Variance (ANOVA) Lecture note 8 Analysis of Variance (ANOVA) 1 Overview of ANOVA Analysis of variance (ANOVA) is a comparison of means. ANOVA allows you to compare more than two means simultaneously. Proper experimental

More information

STA218 Analysis of Variance

STA218 Analysis of Variance STA218 Analysis of Variance Al Nosedal. University of Toronto. Fall 2017 November 27, 2017 The Data Matrix The following table shows last year s sales data for a small business. The sample is put into

More information

Statistics and Measurement. (Section 2.2 of Vardeman and Jobe plus some)

Statistics and Measurement. (Section 2.2 of Vardeman and Jobe plus some) Statistics and Measurement (Section 2.2 of Vardeman and Jobe plus some) 1 A Measurement Sstem is One s Looking Glass Process Measurement Sstem 2 Basic Issues in Metrolog Validit (Am I reall tracking what

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

σ e, which will be large when prediction errors are Linear regression model

σ e, which will be large when prediction errors are Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the population of (x, y) pairs are related by an ideal population regression line y = α + βx +

More information

Soc 709 Lec 2 Inferences from Regression

Soc 709 Lec 2 Inferences from Regression Soc 709 Lec 2 Inferences from Regression Ted Mouw tedmouw@email.unc.edu Department of Sociology University of North Carolina, Chapel Hill January 2, 2008 Outline Basics Properties of the regression line

More information

Let us assume that we are measuring the yield of a crop plant on 5 different plots at 4 different observation times.

Let us assume that we are measuring the yield of a crop plant on 5 different plots at 4 different observation times. Mixed-effects models An introduction by Christoph Scherber Up to now, we have been dealing with linear models of the form where ß0 and ß1 are parameters of fixed value. Example: Let us assume that we are

More information

Logit Models for Binary Data

Logit Models for Binary Data Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis These models are appropriate when the response

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop

Hierarchical Generalized Linear Models. Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models Measurement Incorporated Hierarchical Linear Models Workshop Hierarchical Generalized Linear Models So now we are moving on to the more advanced type topics. To begin

More information

REML Estimation and Linear Mixed Models 2. Variance components models

REML Estimation and Linear Mixed Models 2. Variance components models REML Estimation and Linear Mixed s 2. Variance components models Sue Welham Rothamsted Research Harpenden UK AL5 2JQ November 18, 2008 1 Issues in variance modelling Fixed or random? Analysis of data &

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Modelling Returns: the CER and the CAPM

Modelling Returns: the CER and the CAPM Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20 Econometric Modelling of Financial Returns Financial data are mostly observational data: they

More information

STATISTICS 110/201, FALL 2017 Homework #5 Solutions Assigned Mon, November 6, Due Wed, November 15

STATISTICS 110/201, FALL 2017 Homework #5 Solutions Assigned Mon, November 6, Due Wed, November 15 STATISTICS 110/201, FALL 2017 Homework #5 Solutions Assigned Mon, November 6, Due Wed, November 15 For this assignment use the Diamonds dataset in the Stat2Data library. The dataset is used in examples

More information

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

σ 2 : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics σ : ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating other parameters besides μ Estimating variance Confidence intervals for σ Hypothesis tests for σ Estimating standard

More information

Chapter 8 Student Lecture Notes 8-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 8 Student Lecture Notes 8-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 8 Student Lecture Notes 8-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 11 One Way analysis of Variance QMIS 0 Dr. Mohammad Zainal Chapter Goals After completing

More information

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Chapter 510 Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Introduction This procedure computes power and sample size for non-inferiority tests in 2x2 cross-over designs

More information

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 20 th May 2013 Subject CT3 Probability & Mathematical Statistics Time allowed: Three Hours (10.00 13.00) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1.

More information

Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T

Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T Nathan P. Hendricks and Aaron Smith October 2014 A1 Bias Formulas for Large T The heterogeneous

More information

NEWCASTLE UNIVERSITY. School SEMESTER /2013 ACE2013. Statistics for Marketing and Management. Time allowed: 2 hours

NEWCASTLE UNIVERSITY. School SEMESTER /2013 ACE2013. Statistics for Marketing and Management. Time allowed: 2 hours NEWCASTLE UNIVERSITY School SEMESTER 2 2012/2013 Statistics for Marketing and Management Time allowed: 2 hours Candidates should attempt ALL questions. Marks for each question are indicated. However you

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

M1 M1 A1 M1 A1 M1 A1 A1 A1 11 A1 2 B1 B1. B1 M1 Relative efficiency (y) = M1 A1 BEWARE PRINTED ANSWER. 5

M1 M1 A1 M1 A1 M1 A1 A1 A1 11 A1 2 B1 B1. B1 M1 Relative efficiency (y) = M1 A1 BEWARE PRINTED ANSWER. 5 Q L e σ π ( W μ e σ π ( W μ M M A Product form. Two Normal terms. Fully correct. (ii ln L const ( W ( W d ln L ( W + ( W dμ 0 σ W σ μ W σ W W ˆ μ σ Chec this is a maximum. d ln L E.g. < 0 dμ σ σ σ μ σ

More information

Stat 401XV Exam 3 Spring 2017

Stat 401XV Exam 3 Spring 2017 Stat 40XV Exam Spring 07 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed ATTENTION! Incorrect numerical answers unaccompanied by supporting reasoning

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

Random Effects ANOVA

Random Effects ANOVA Random Effects ANOVA Grant B. Morgan Baylor University This post contains code for conducting a random effects ANOVA. Make sure the following packages are installed: foreign, lme4, lsr, lattice. library(foreign)

More information

Homework Assignment Section 3

Homework Assignment Section 3 Homework Assignment Section 3 Tengyuan Liang Business Statistics Booth School of Business Problem 1 A company sets different prices for a particular stereo system in eight different regions of the country.

More information

2SLS HATCO SPSS, STATA and SHAZAM. Example by Eddie Oczkowski. August 2001

2SLS HATCO SPSS, STATA and SHAZAM. Example by Eddie Oczkowski. August 2001 2SLS HATCO SPSS, STATA and SHAZAM Example by Eddie Oczkowski August 2001 This example illustrates how to use SPSS to estimate and evaluate a 2SLS latent variable model. The bulk of the example relates

More information

Stat 328, Summer 2005

Stat 328, Summer 2005 Stat 328, Summer 2005 Exam #2, 6/18/05 Name (print) UnivID I have neither given nor received any unauthorized aid in completing this exam. Signed Answer each question completely showing your work where

More information

Notice that X2 and Y2 are skewed. Taking the SQRT of Y2 reduces the skewness greatly.

Notice that X2 and Y2 are skewed. Taking the SQRT of Y2 reduces the skewness greatly. Notice that X2 and Y2 are skewed. Taking the SQRT of Y2 reduces the skewness greatly. The MEANS Procedure Variable Mean Std Dev Minimum Maximum Skewness ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Business Statistics: A First Course

Business Statistics: A First Course Business Statistics: A First Course Fifth Edition Chapter 12 Correlation and Simple Linear Regression Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc. Chap 12-1 Learning Objectives In this

More information

Two Way ANOVA in R Solutions

Two Way ANOVA in R Solutions Two Way ANOVA in R Solutions Solutions to exercises found here # Exercise 1 # #Read in the moth experiment data setwd("h:/datasets") moth.experiment = read.csv("moth trap experiment.csv", header = TRUE)

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

Topic 8: Model Diagnostics

Topic 8: Model Diagnostics Topic 8: Model Diagnostics Outline Diagnostics to check model assumptions Diagnostics concerning X Diagnostics using the residuals Diagnostics and remedial measures Diagnostics: look at the data to diagnose

More information

Tests for the Difference Between Two Linear Regression Intercepts

Tests for the Difference Between Two Linear Regression Intercepts Chapter 853 Tests for the Difference Between Two Linear Regression Intercepts Introduction Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression

More information

Tests for Intraclass Correlation

Tests for Intraclass Correlation Chapter 810 Tests for Intraclass Correlation Introduction The intraclass correlation coefficient is often used as an index of reliability in a measurement study. In these studies, there are K observations

More information

STA 4504/5503 Sample questions for exam True-False questions.

STA 4504/5503 Sample questions for exam True-False questions. STA 4504/5503 Sample questions for exam 2 1. True-False questions. (a) For General Social Survey data on Y = political ideology (categories liberal, moderate, conservative), X 1 = gender (1 = female, 0

More information

A MODIFIED MULTINOMIAL LOGIT MODEL OF ROUTE CHOICE FOR DRIVERS USING THE TRANSPORTATION INFORMATION SYSTEM

A MODIFIED MULTINOMIAL LOGIT MODEL OF ROUTE CHOICE FOR DRIVERS USING THE TRANSPORTATION INFORMATION SYSTEM A MODIFIED MULTINOMIAL LOGIT MODEL OF ROUTE CHOICE FOR DRIVERS USING THE TRANSPORTATION INFORMATION SYSTEM Hing-Po Lo and Wendy S P Lam Department of Management Sciences City University of Hong ong EXTENDED

More information

Statistical Models of Stocks and Bonds. Zachary D Easterling: Department of Economics. The University of Akron

Statistical Models of Stocks and Bonds. Zachary D Easterling: Department of Economics. The University of Akron Statistical Models of Stocks and Bonds Zachary D Easterling: Department of Economics The University of Akron Abstract One of the key ideas in monetary economics is that the prices of investments tend to

More information

Interest Rate Curves Calibration with Monte-Carlo Simulatio

Interest Rate Curves Calibration with Monte-Carlo Simulatio Interest Rate Curves Calibration with Monte-Carlo Simulation 24 june 2008 Participants A. Baena (UCM) Y. Borhani (Univ. of Oxford) E. Leoncini (Univ. of Florence) R. Minguez (UCM) J.M. Nkhaso (UCM) A.

More information

Lecture #26 (tape #26) Prof. John W. Sutherland. Oct. 24, 2001

Lecture #26 (tape #26) Prof. John W. Sutherland. Oct. 24, 2001 Lecture #26 (tape #26) Prof. John W. Sutherland Oct. 24, 2001 Process Capability The extent to which a process produces parts that meet design intent. Most often, how well our process meets the engineering

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS Questions 1-307 have been taken from the previous set of Exam C sample questions. Questions no longer relevant

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

R & R Study. Chapter 254. Introduction. Data Structure

R & R Study. Chapter 254. Introduction. Data Structure Chapter 54 Introduction A repeatability and reproducibility (R & R) study (sometimes called a gauge study) is conducted to determine if a particular measurement procedure is adequate. If the measurement

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

CSC Advanced Scientific Programming, Spring Descriptive Statistics

CSC Advanced Scientific Programming, Spring Descriptive Statistics CSC 223 - Advanced Scientific Programming, Spring 2018 Descriptive Statistics Overview Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Tests for One Variance

Tests for One Variance Chapter 65 Introduction Occasionally, researchers are interested in the estimation of the variance (or standard deviation) rather than the mean. This module calculates the sample size and performs power

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

GARCH Models. Instructor: G. William Schwert

GARCH Models. Instructor: G. William Schwert APS 425 Fall 2015 GARCH Models Instructor: G. William Schwert 585-275-2470 schwert@schwert.ssb.rochester.edu Autocorrelated Heteroskedasticity Suppose you have regression residuals Mean = 0, not autocorrelated

More information

Factors affecting the share price of FMCG Companies

Factors affecting the share price of FMCG Companies Factors affecting the share price of FMCG Companies Authors: Dharia Dilasha, Kakadia Sachita ABSTRACT To review the factors affecting the share prices of various FMCG companies like revenues, operating

More information

A STATISTICAL ANALYSIS OF GDP AND FINAL CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA

A STATISTICAL ANALYSIS OF GDP AND FINAL CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA A STATISTICAL ANALYSIS OF GDP AND FINAL CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA 990 200 Bălăcescu Aniela Lecturer PhD, Constantin Brancusi University of Targu Jiu, Faculty of Economics

More information

ASTM D02, Dec./ Orlando Statistics Seminar

ASTM D02, Dec./ Orlando Statistics Seminar ASTM D02, Dec./ Orlando Statistics Seminar Presented by: Alex Lau, Chairman, D02.94 This brief seminar will provide : a very simple explanation on the use of statistics to estimate population parameters

More information

Analyzing Oil Futures with a Dynamic Nelson-Siegel Model

Analyzing Oil Futures with a Dynamic Nelson-Siegel Model Analyzing Oil Futures with a Dynamic Nelson-Siegel Model NIELS STRANGE HANSEN & ASGER LUNDE DEPARTMENT OF ECONOMICS AND BUSINESS, BUSINESS AND SOCIAL SCIENCES, AARHUS UNIVERSITY AND CENTER FOR RESEARCH

More information

Management Science Letters

Management Science Letters Management Science Letters 3 (2013) 73 80 Contents lists available at GrowingScience Management Science Letters homepage: www.growingscience.com/msl Investigating different influential factors on capital

More information

Econometric Methods for Valuation Analysis

Econometric Methods for Valuation Analysis Econometric Methods for Valuation Analysis Margarita Genius Dept of Economics M. Genius (Univ. of Crete) Econometric Methods for Valuation Analysis Cagliari, 2017 1 / 26 Correlation Analysis Simple Regression

More information

Modeling Uncertainty in Financial Markets

Modeling Uncertainty in Financial Markets Modeling Uncertainty in Financial Markets Peter Ritchken 1 Modeling Uncertainty in Financial Markets In this module we review the basic stochastic model used to represent uncertainty in the equity markets.

More information

Prob and Stats, Nov 7

Prob and Stats, Nov 7 Prob and Stats, Nov 7 The Standard Normal Distribution Book Sections: 7.1, 7.2 Essential Questions: What is the standard normal distribution, how is it related to all other normal distributions, and how

More information

Lecture # 24. Prof. John W. Sutherland. Oct. 21, 2005

Lecture # 24. Prof. John W. Sutherland. Oct. 21, 2005 Lecture # 24 Prof. John W. Sutherland Oct. 21, 2005 Process Capability The extent to which a process produces parts that meet design intent. Most often, how well the process meets the engineering specifications.

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

CLUSTER SAMPLING. 1 Estimation of a Population Mean and Total. 1.1 Notations. 1.2 Estimators. STAT 631 Survey Sampling Fall 2003

CLUSTER SAMPLING. 1 Estimation of a Population Mean and Total. 1.1 Notations. 1.2 Estimators. STAT 631 Survey Sampling Fall 2003 CLUSTER SAMPLING Definition 1 A cluster sample is a probability sample in which each sampling unit is a collection, or cluster, of elements. Cluster sampling is less costly than simple or stratified random

More information

Linear Regression with One Regressor

Linear Regression with One Regressor Linear Regression with One Regressor Michael Ash Lecture 9 Linear Regression with One Regressor Review of Last Time 1. The Linear Regression Model The relationship between independent X and dependent Y

More information

STRUCTURE EVALUATION OF CREDIT TO HOUSEHOLDS FROM ROMANIA DURING USING ANOVA: TWO-FACTOR WITH REPLICATION

STRUCTURE EVALUATION OF CREDIT TO HOUSEHOLDS FROM ROMANIA DURING USING ANOVA: TWO-FACTOR WITH REPLICATION Dimitrie Cantemir Christian University Knowledge Horizons - Economics Volume 7, No. 2, pp. 176 181 P-ISSN: 2069-0932, E-ISSN: 2066-1061 2015 Pro Universitaria www.orizonturi.ucdc.ro STRUCTURE EVALUATION

More information

Evaluation of a New Variance Components Estimation Method Modi ed Henderson s Method 3 With the Application of Two Way Mixed Model

Evaluation of a New Variance Components Estimation Method Modi ed Henderson s Method 3 With the Application of Two Way Mixed Model Evaluation of a New Variance Components Estimation Method Modi ed Henderson s Method 3 With the Application of Two Way Mixed Model Author: Weigang Qie; Chenfan Xu Supervisor: Lars Rönnegård June 0th, 009

More information

STAT 111 Recitation 3

STAT 111 Recitation 3 STAT 111 Recitation 3 Linjun Zhang stat.wharton.upenn.edu/~linjunz/ September 23, 2017 Misc. The unpicked-up homeworks will be put in the STAT 111 box in the Stats Department lobby (It s on the 4th floor

More information

Discussion Shocks vs Structure: Explaining Differences in Exchange Rate Pass-Through across Countries and Time Forbes, Hjortsoe and Nenova

Discussion Shocks vs Structure: Explaining Differences in Exchange Rate Pass-Through across Countries and Time Forbes, Hjortsoe and Nenova Discussion Shocks vs Structure: Explaining Differences in Exchange Rate Pass-Through across Countries and Time Forbes, Hjortsoe and Nenova Philippe Martin 1 1 Sciences Po and CEPR Paris, 3rd BoE-BdF International

More information

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority

Analysis of 2x2 Cross-Over Designs using T-Tests for Non-Inferiority Chapter 235 Analysis of 2x2 Cross-Over Designs using -ests for Non-Inferiority Introduction his procedure analyzes data from a two-treatment, two-period (2x2) cross-over design where the goal is to demonstrate

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (30 pts) Answer briefly the following questions. 1. Suppose that

More information

IIntroduction the framework

IIntroduction the framework Author: Frédéric Planchet / Marc Juillard/ Pierre-E. Thérond Extreme disturbances on the drift of anticipated mortality Application to annuity plans 2 IIntroduction the framework We consider now the global

More information

Reserve Risk Modelling: Theoretical and Practical Aspects

Reserve Risk Modelling: Theoretical and Practical Aspects Reserve Risk Modelling: Theoretical and Practical Aspects Peter England PhD ERM and Financial Modelling Seminar EMB and The Israeli Association of Actuaries Tel-Aviv Stock Exchange, December 2009 2008-2009

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Chapter 3 Descriptive Statistics: Numerical Measures Part A Slides Prepared by JOHN S. LOUCKS St. Edward s University Slide 1 Chapter 3 Descriptive Statistics: Numerical Measures Part A Measures of Location Measures of Variability Slide Measures of Location Mean

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 13 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 017 by D.B. Rowe 1 Agenda: Recap Chapter 6.3 6.5 Lecture Chapter 7.1 7. Review Chapter 5 for Eam 3.

More information

20135 Theory of Finance Part I Professor Massimo Guidolin

20135 Theory of Finance Part I Professor Massimo Guidolin MSc. Finance/CLEFIN 2014/2015 Edition 20135 Theory of Finance Part I Professor Massimo Guidolin A FEW SAMPLE QUESTIONS, WITH SOLUTIONS SET 2 WARNING: These are just sample questions. Please do not count

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2010, Mr. Ruey S. Tsay Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2010, Mr. Ruey S. Tsay Solutions to Final Exam The University of Chicago, Booth School of Business Business 410, Spring Quarter 010, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (4 pts) Answer briefly the following questions. 1. Questions 1

More information

E&G, Ch. 8: Multi-Index Models & Grouping Techniques I. Multi-Index Models.

E&G, Ch. 8: Multi-Index Models & Grouping Techniques I. Multi-Index Models. 1 E&G, Ch. 8: Multi-Index Models & Grouping Techniques I. Multi-Index Models. A. The General Multi-Index Model: R i = a i + b i1 I 1 + b i2 I 2 + + b il I L + c i Explanation: 1. Let I 1 = R m ; I 2 =

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information