Levy Model for Commodity Pricing

Size: px
Start display at page:

Download "Levy Model for Commodity Pricing"

Transcription

1 Levy Model for Commodity Pricing V. Benedico, Undergraduate Student, ECE Paris School of Engineering, France. C. Anacleto, A. Bearzi, L. Brice, V. Delahaye Undergraduate Student, ECE Paris School of Engineering, France. Abstract The aim in present paper is to construct an affordable and reliable commodity pricer based on a recalculation of its cost through time which allows visualize the potential risks and thus, take more appropriate decisions regarding forecasts. Here attention has been focused on Levy model, more reliable and realistic than classical random Gaussian one as it takes into consideration observed abrupt jumps in case of sudden price variation. In application to Energy Trading sector where it has never been used before, equations corresponding to Levy model have been written for electricity pricing in European market. Parameters have been set in order to predict and simulate the price and its evolution through time to remarkable accuracy. As predicted by Levy model, the results show significant spikes which reach unconventional levels contrary to currently used Brownian model. Keywords: Commodity Pricing, Lévy Model, Price Spikes, Electricity Market 1

2 1. Introduction During the meeting organized by Europlace Institute in Paris in 2009, specialists of financial mathematics recognized that because mathematical models were too simple they could not predict the 2008 collapse of financial world. Usual models [1] are mainly based on Brownian motion which gives a simple and supposedly realistic vision of finance dynamics in that it provides reasonable approach to universally observed fluctuations [2,3]. But a Brownian motion based model is a continuous model which cannot simulate sharp price changes through time [4-6]. This may be a reason why this model has not been able to predict the subprime crisis and consequently has shown its limits. So the idea of present work is in a first step to find a way to simulate real historical data in order to define a model close enough to reality. Among all available markets, the study will be undertaken on commodity price, easier to handle as more global, and example of electricity price in Europe will be considered here [7,8]. The first point is to analyze data corresponding to electricity price evolution [9]. From to its observation information is collected on its fluctuations with jumps and spikes, ie on the way price oscillates around the same average. This evolution appears much messier than basic Gaussian one, so in a next step it is interesting to use instead a Levy process [10-12], here implemented in an Ornstein-Uhlenbeck model equation [13], to simulate data of observed price evolution. Rather than using a model with many adjustable parameters not adapted for optimal calibration, it has been chosen to directly introduce functions having the ability to simulate spikes and jumps [14-16]. So from different papers dealing with this subject [17-22] a model based on a Levy process has been calibrated and adapted to the electricity market in order to obtain a theoretical curve close enough to reality. Calculations with resulting system are showing remarkable agreement with real market data. 2. Real Data Observation Figures 1 and 2 give the current evolution of electricity prices over a one year period and a 27 days period respectively. Figure 1: Electricity Price Evolution over a 1 Year Period 2

3 Figure 2: Price Evolution for a Month Period It is observed that price is not varying in a continuous way as described in usual models. Indeed there exist important spikes, jumps and other discontinuities in the curves. So it is necessary to build a model able to simulate these discontinuities and these important spikes. It is also noted that the curves follow a regular oscillatory pattern evolution. Reason is that prices depend on external conditions due to weather, temperature and so on. These conditions are modeled through the seasonality which is a periodic function such as a sine or a cosine directly obtained by Fourier transforming price curve of Figure 2 for a onemonth period analysis developed here, see Figure 3, Figure 3: Frequency Spectrum of Electricity Price over a Month Period 3

4 showing a main highest peak at lowest frequency corresponding to seasonality (around.5hz) and higher much smaller frequencies which will be neglected in the sequel. Lastly, price tends to vary around an average. This condition can be simulated through a mean reversion process which makes the curve oscillate around the same average. Collected data are showing totally unpredictable and messy evolution. Usually, to represent such dynamics, the choice is between either a model which already has most of these abilities and consequently implies a large number of parameters, or a simpler model in which it is possible to implement functions and to add proper parameters. First option is usually too complicated because of the amount of parameters generally difficult to evaluate for correct model calibration. The second more interesting one will be used here, because it provides a much more direct control of implemented functions in the model. 3. Sources and Discussion Along this line, a model based on Ornstein-Uhlenbeck equation with a Levy process has been implemented, because of Levy process ability to be discontinuous and to simulate important spikes. A reason is that Levy process fixes some negative points of the Brownian motion classically used in Black-Scholes (BS) model [ ]. Considering the properties of Brownian motion, the yield only depends on the period on which it is calculated. According to yields properties, when calculated for a market share, they have to be independent and identically distributed according to the same normal distribution. Moreover, Brownian motion path is continuous and so it is for the underlying. As empirically shown, yields are not identically distributed on the market and all but Gaussian [ ]. More specifically, the underlying path brings up some jumps at some high volatility periods. Through this point, BS model can be easily criticized in practical applications. This is where Levy process can step in. Indeed, jumps increase is independent and identically distributed. In addition, trajectories are continuous on the right and limited on the left. This is why advantages of Levy processes allow them to have discontinuous paths as jumps and spikes. However, the same issue still exists concerning the yields. Figure 4: Path of Levy Process (Brownian Motion + Poisson Process) Figure 4 shows Brownian motion continuity associated with jumps due to Poisson 4

5 process, illustrating the fundamental property of a Levy process to have a continuous path on the right and a limited one on the left as indicated before. Consequently the prevailing advantage of Levy process lies in the fact that it allows simulate spikes in high volatility case. 4. Model used: To model system dynamics, the following expression of spot price function S t will be S t = exp [f(t) + X t + Y t ] (1) With St the Spot price function, f(t) the Seasonality function, Xt a mean-reverting process making the price oscillate around an average, and Yt a mean-reverting process with a jump component. The spot price is defined as the price paid in a fixed spot market for immediate delivery. The seasonality corresponds to the part of model defining seasonal or periodic particularity (year, trimester, month, day ) of spot price variation, as for instance analyzed in Part II for a month period. This function undergoes a predictable cyclic variation represented here by f(t) = f(0) + A cos( t (2) with amplitude, frequency and phase A, and F(0) is adjustable shift to match with observations. The mean reversion process of Ornstein-Uhlenbeck, allowing spot price to be constantly attracted to the overall average, writes dx t = X t dt + dl t (3) X t+1 = (1 h)x ti + (L t,i+1 L t,i ) (4) With Levy process L = a.brownian + b.poisson, a, b positive constants, the mean reversion rate, the (constant) price volatility. Finally, as electricity price undergoes large and abrupt variations, the added mean-reverting process with a jump component Y t is obeying the system dy t = Y t dt + J n dn t (5) Y t+1 = Y t,i 1 h + Y t,i + J t.(n t,i+1 N t,i ) (6) With Nt: Poisson process of intensity, β : mean-reversion rate, Jn: the jumps length, and J t = exp(1/ ) where is a constant. Equations (1-6) represent system state dynamics of present spot price model. Next step is to calibrate the various coefficients in their expression. Starting from data published in [X], and adapting them, one finally gets the Table Table 1: Numerical Values of System Coefficients Constant a b f(0) A Value /MWh 35 /MWh 4rad/s.2rad 5. Results and Comparison 5.1 Calculations with system (1-6) and coefficients values in Table I give the following 5

6 results Figure 5: Model Simulation over a Month Period (Left) and a Year Period (Right) As expected, the curve exhibits strong discontinuities with high jumps and spikes. Because of the exponential in its expression (1), the price oscillates between very small and very large values, and the contribution of each term in spot price expression can be analyzed. -The mean-reverting process makes the curve oscillate around the same average which is around for this example. -The jump function gives the model the ability to undergo large spikes. -The seasonality shapes the curve around a cosine oscillation, see Figure 6 for a year period analysis. Figure 6: Electricity Price Seasonality over a Year Period To visualize the difference between present model and Black-Scholes (BS) model commonly used in finance, same calculation with the later gives instead the curve displayed on Figure 7 Figure 7: Price Calculation over a Year Period with BS Model 6

7 By comparison, BS model is simple and produces continuous curve. There are no violent jumps, but only a succession of small jumps. It allows minimizing the risks when it comes to options such as Swing options, contrary to a Levy process based model which tends to maximize the risks. 5.2 In order to check if present model correctly represents real price, it has been compared to real historical graphs corresponding to price evolution during May 2014, see Figure 8 Figure 8: European Electricity Price Evolution during May 2014 Rather than usual direct evaluation [23,24],The idea is to subtract each calculated function in (1) from the real price evolution in order to show that after all the subtractions the mean of remaining curve tends toward zero. This method would confirm the fact that model calibration respects reality. A. The first step is to subtract seasonality, see Figure Figure 9: Electricity Price with and without Seasonality Price with seaso nality -100 Price without seasonality is more hectic as expectable B. The second step is to subtract mean-reversion process. To calibrate this function it is necessary to compare the graphs on different periods or moments because of random nature of the model. Figure 10: Prices with and without Mean Reverting Process 7

8 Price with the mean reverting process Mean reverting process Prices without the mean reverting process Figure 10 exhibits an important element for the next step. It can be observed that some spikes tend to repeat themselves. The process developed for the jumps precisely includes this feature. C. Last step consists in calibrating the jumps according to results shown on Figure 10 (green curve) Figure 11: Prices after Jumps Substraction Price with Jumps Jump Function Price without Jumps Figure 11 describes the remaining behavior of real electricity price after every function in model representation (1) has been subtracted. It is not possible to obtain exactly zero because of model (unpredictable) random nature and only moments of observed curves can be compared to calculations. For lowest average one, exact mean value of remaining curve is equal to, much smaller than average fluctuation of initial observed price. So already within model approximation where higher order oscillations of seasonality function have been neglected, present approach provides a much more convenient setting for representing dynamical commodity evolution than usual BS model. 6. Conclusion A difficulty in price evaluation of economic items such as commodities and stocks is their inherent unpredictable dynamical behavior. Models trying to include this component in their structure by random Gaussian type terms have been developed but they are still not adapted to handle very steep jumps exhibited by recorded market prices and usually offer a relatively 8

9 poor predictive potential typically too weak for correct risk evaluation. To overcome this difficulty, a more complete model including an added Lévy component to handle the jumps has been worked out and application has been made to electricity price on European market. On a one month base analysis, it is shown that even with a relatively rough lowest order approximation, new proposed model correctly covers price evolution with a very small residual compared to observed fluctuations, validating the approach which will be refined in a next step elsewhere. Acknowledgments The authors are very much indebted to ECE Paris School of Engineering for having provided the necessary environment where the project has been developed and to Pr M. Cotsaftis for help in preparation of the manuscript. References A. Papapantoleon : An Introduction to Lévy Processes with Applications in Finance, PhD Thesis, Financial and Actuarial Math. Dept., TU Vienna, A.E. Kyprianou : An introduction to the Theory of Lévy Processes, PhD Thesis, Math. Sciences Dept., Bath Univ., C. Mancini : Disentangling the Jumps from the Diffusion in a Geometric Jumping Brownian Motion, Giornale dell'istituto Italiano degli Attuari, Vol.LXIV, pp.19-47, Cambridge Univ. Press, Cambridge, UK, D. Bates : Jumps and Stochastic Volatility: the Exchange Rate Processes Implicit in Deutschemark Options, Rev. Fin. Studies, Vol.9, pp , F. Black, M. Scholes : The Pricing of Options and Corporate Liabilities. J. Political Economy, Vol.81(3), pp , 1973; R. Merton : Option Pricing when Underlying Stock Returns are Discontinuous, J. Financial Economics, Vol.3, pp , H. Geman : Pure Jump Levy Processes for Asset Price Modeling, J. of Banking and Finance, Vol.26, pp , ICIS : European Electricity Market Reports, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS, UK. J. Bertoin : Levy Processes, Cambridge Univ. Press, Cambridge, J.P. Bouchaud, M. Potter : Theory of Financial Risk, Cambridge Univ. Press, Cambridge, UK, M. Kjaer : Pricing of Swing Options in a Mean Reverting Model with Jumps, Applied Math. Finance, Vol.15(56), pp , O. Barndorff-Nielsen, T. Mikosch, S. Resnick : eds., Levy Processes, Theory and Applications, Birkhauser, Boston,

10 O.E. Barndorff-Nielsen, N. Shephard : Non-Gaussian Ornstein-Uhlenbeck Based Models and Some of their Uses in Financial Econometrics, J. R. Statistic. Soc. B, Vol.63, pp , P. Jorion : On Jump Processes in the Foreign Exchange and Stock Markets, Rev. Fin. Studies, Vol.1, pp , P. Tankov : Processus de Lévy en Finance : Problèmes Inverses et Modélisation de Dépendance, PhD Thesis, Mathématiques Appliquées, Ecole Polytechnique Paris, R. Cont P. Tankov : Financial Modelling with Jump Processes, Chapman-Hall, CRC Press, 2004, 552p. R. Cont, P. Tankov : Retrieving Levy Processes from Option Prices: Regularization of an Ill- Posed Inverse Problem, SIAM J. Control and Optimization, Vol.45, pp. 1-25, R.N. Mantegna, H.E. Stanley : An Introduction to Econophysics: Correlations and Complexity in Finance. S. Beckers : A Note on Estimating Parameters of a Jump-Diffusion Process of Stock Returns, J. Fin. and Quant. Anal., Vol.16, pp , S. Boyarchenko, S. Levendorski : Non-Gaussian Merton-Black-Scholes Theory, World Scientific, River Edge, NJ, S. Cawston : Modèles de Lévy Exponentiels en Finance: Mesures de f-divergence Minimale et Modèles avec Change-Point, PhD Thesis, Mathématiques Appliquées, Angers Univ., S. Kou : A Jump-Diffusion Model for Option Pricing, Management Science, Vol.48, pp , S. Raible : Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, Freiburg Univ., T. Klugue : Pricing Swing Options and other Electricity Derivatives, Ph.D. Thesis, Oxford Univ., T. Roncalli : La Gestion des Risques Financiers, Economica/Gestion, Paris, 2004, 455p. W. Shoutens : Lévy Processes in Finance: Pricing Financial Derivatives, Wiley, New York, 2003, 200p. 10

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous

Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous www.sbm.itb.ac.id/ajtm The Asian Journal of Technology Management Vol. 3 No. 2 (2010) 69-73 Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous Budhi Arta Surya *1 1

More information

(FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline. Lappeenranta University Of Technology.

(FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline. Lappeenranta University Of Technology. (FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline Lappeenranta University Of Technology. 16,April 2009 OUTLINE Introduction Definitions Aim Electricity price Modelling Approaches

More information

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD The Annals of Applied Probability 1999, Vol. 9, No. 2, 493 53 SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1 By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD The use of saddlepoint

More information

Optimal Option Pricing via Esscher Transforms with the Meixner Process

Optimal Option Pricing via Esscher Transforms with the Meixner Process Communications in Mathematical Finance, vol. 2, no. 2, 2013, 1-21 ISSN: 2241-1968 (print), 2241 195X (online) Scienpress Ltd, 2013 Optimal Option Pricing via Esscher Transforms with the Meixner Process

More information

Energy Price Processes

Energy Price Processes Energy Processes Used for Derivatives Pricing & Risk Management In this first of three articles, we will describe the most commonly used process, Geometric Brownian Motion, and in the second and third

More information

Estimation of Value at Risk and ruin probability for diffusion processes with jumps

Estimation of Value at Risk and ruin probability for diffusion processes with jumps Estimation of Value at Risk and ruin probability for diffusion processes with jumps Begoña Fernández Universidad Nacional Autónoma de México joint work with Laurent Denis and Ana Meda PASI, May 21 Begoña

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Two and Three factor models for Spread Options Pricing

Two and Three factor models for Spread Options Pricing Two and Three factor models for Spread Options Pricing COMMIDITIES 2007, Birkbeck College, University of London January 17-19, 2007 Sebastian Jaimungal, Associate Director, Mathematical Finance Program,

More information

Using Fractals to Improve Currency Risk Management Strategies

Using Fractals to Improve Currency Risk Management Strategies Using Fractals to Improve Currency Risk Management Strategies Michael K. Lauren Operational Analysis Section Defence Technology Agency New Zealand m.lauren@dta.mil.nz Dr_Michael_Lauren@hotmail.com Abstract

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay Pricing Dynamic Guaranteed Funds Under a Double Exponential Jump Diffusion Process Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay ABSTRACT This paper complements the extant literature to evaluate the

More information

Financial Engineering. Craig Pirrong Spring, 2006

Financial Engineering. Craig Pirrong Spring, 2006 Financial Engineering Craig Pirrong Spring, 2006 March 8, 2006 1 Levy Processes Geometric Brownian Motion is very tractible, and captures some salient features of speculative price dynamics, but it is

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

STOCHASTIC VOLATILITY AND OPTION PRICING

STOCHASTIC VOLATILITY AND OPTION PRICING STOCHASTIC VOLATILITY AND OPTION PRICING Daniel Dufresne Centre for Actuarial Studies University of Melbourne November 29 (To appear in Risks and Rewards, the Society of Actuaries Investment Section Newsletter)

More information

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-18-2018 A Simulation Study of Bipower and Thresholded

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY Applied Mathematical and Computational Sciences Volume 7, Issue 3, 015, Pages 37-50 015 Mili Publications MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY J. C.

More information

Calculation of Volatility in a Jump-Diffusion Model

Calculation of Volatility in a Jump-Diffusion Model Calculation of Volatility in a Jump-Diffusion Model Javier F. Navas 1 This Draft: October 7, 003 Forthcoming: The Journal of Derivatives JEL Classification: G13 Keywords: jump-diffusion process, option

More information

Mgr. Jakub Petrásek 1. May 4, 2009

Mgr. Jakub Petrásek 1. May 4, 2009 Dissertation Report - First Steps Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University email:petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability

More information

Statistical methods for financial models driven by Lévy processes

Statistical methods for financial models driven by Lévy processes Statistical methods for financial models driven by Lévy processes José Enrique Figueroa-López Department of Statistics, Purdue University PASI Centro de Investigación en Matemátics (CIMAT) Guanajuato,

More information

Introduction Credit risk

Introduction Credit risk A structural credit risk model with a reduced-form default trigger Applications to finance and insurance Mathieu Boudreault, M.Sc.,., F.S.A. Ph.D. Candidate, HEC Montréal Montréal, Québec Introduction

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Option Pricing Formula for Fuzzy Financial Market

Option Pricing Formula for Fuzzy Financial Market Journal of Uncertain Systems Vol.2, No., pp.7-2, 28 Online at: www.jus.org.uk Option Pricing Formula for Fuzzy Financial Market Zhongfeng Qin, Xiang Li Department of Mathematical Sciences Tsinghua University,

More information

A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS. Burhaneddin İZGİ

A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS. Burhaneddin İZGİ A NEW NOTION OF TRANSITIVE RELATIVE RETURN RATE AND ITS APPLICATIONS USING STOCHASTIC DIFFERENTIAL EQUATIONS Burhaneddin İZGİ Department of Mathematics, Istanbul Technical University, Istanbul, Turkey

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Modelling the Term Structure of Hong Kong Inter-Bank Offered Rates (HIBOR)

Modelling the Term Structure of Hong Kong Inter-Bank Offered Rates (HIBOR) Economics World, Jan.-Feb. 2016, Vol. 4, No. 1, 7-16 doi: 10.17265/2328-7144/2016.01.002 D DAVID PUBLISHING Modelling the Term Structure of Hong Kong Inter-Bank Offered Rates (HIBOR) Sandy Chau, Andy Tai,

More information

Assicurazioni Generali: An Option Pricing Case with NAGARCH

Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: Business Snapshot Find our latest analyses and trade ideas on bsic.it Assicurazioni Generali SpA is an Italy-based insurance

More information

Short-Time Asymptotic Methods in Financial Mathematics

Short-Time Asymptotic Methods in Financial Mathematics Short-Time Asymptotic Methods in Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Probability and Mathematical Finance Seminar Department of Mathematical

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week 2-3 1 / 24 Outline

More information

S9/ex Minor Option K HANDOUT 1 OF 7 Financial Physics

S9/ex Minor Option K HANDOUT 1 OF 7 Financial Physics S9/ex Minor Option K HANDOUT 1 OF 7 Financial Physics Professor Neil F. Johnson, Physics Department n.johnson@physics.ox.ac.uk The course has 7 handouts which are Chapters from the textbook shown above:

More information

Homework 1 posted, due Friday, September 30, 2 PM. Independence of random variables: We say that a collection of random variables

Homework 1 posted, due Friday, September 30, 2 PM. Independence of random variables: We say that a collection of random variables Generating Functions Tuesday, September 20, 2011 2:00 PM Homework 1 posted, due Friday, September 30, 2 PM. Independence of random variables: We say that a collection of random variables Is independent

More information

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Professor Ingve Simonsen Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 Allowed help: Alternativ D All written material This

More information

Modeling the Spot Price of Electricity in Deregulated Energy Markets

Modeling the Spot Price of Electricity in Deregulated Energy Markets in Deregulated Energy Markets Andrea Roncoroni ESSEC Business School roncoroni@essec.fr September 22, 2005 Financial Modelling Workshop, University of Ulm Outline Empirical Analysis of Electricity Spot

More information

Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts

Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts M.Sghairi M.Kouki February 16, 2007 Abstract Ordinary mixed life insurance is a mix between temporary deathinsurance and pure endowment.

More information

ANALYSIS OF STOCHASTIC PROCESSES: CASE OF AUTOCORRELATION OF EXCHANGE RATES

ANALYSIS OF STOCHASTIC PROCESSES: CASE OF AUTOCORRELATION OF EXCHANGE RATES Abstract ANALYSIS OF STOCHASTIC PROCESSES: CASE OF AUTOCORRELATION OF EXCHANGE RATES Mimoun BENZAOUAGH Ecole Supérieure de Technologie, Université IBN ZOHR Agadir, Maroc The present work consists of explaining

More information

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

Option Pricing under Delay Geometric Brownian Motion with Regime Switching Science Journal of Applied Mathematics and Statistics 2016; 4(6): 263-268 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20160406.13 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS Erasmus Mundus Master in Complex Systems STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS June 25, 2012 Esteban Guevara Hidalgo esteban guevarah@yahoo.es

More information

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005 Valuation of Volatility Derivatives Jim Gatheral Global Derivatives & Risk Management 005 Paris May 4, 005 he opinions expressed in this presentation are those of the author alone, and do not necessarily

More information

A note on the existence of unique equivalent martingale measures in a Markovian setting

A note on the existence of unique equivalent martingale measures in a Markovian setting Finance Stochast. 1, 251 257 1997 c Springer-Verlag 1997 A note on the existence of unique equivalent martingale measures in a Markovian setting Tina Hviid Rydberg University of Aarhus, Department of Theoretical

More information

Financial and Actuarial Mathematics

Financial and Actuarial Mathematics Financial and Actuarial Mathematics Syllabus for a Master Course Leda Minkova Faculty of Mathematics and Informatics, Sofia University St. Kl.Ohridski leda@fmi.uni-sofia.bg Slobodanka Jankovic Faculty

More information

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1.

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1. THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** Abstract The change of numeraire gives very important computational

More information

COMPARISON OF GAIN LOSS ASYMMETRY BEHAVIOR FOR STOCKS AND INDEXES

COMPARISON OF GAIN LOSS ASYMMETRY BEHAVIOR FOR STOCKS AND INDEXES Vol. 37 (2006) ACTA PHYSICA POLONICA B No 11 COMPARISON OF GAIN LOSS ASYMMETRY BEHAVIOR FOR STOCKS AND INDEXES Magdalena Załuska-Kotur a, Krzysztof Karpio b,c, Arkadiusz Orłowski a,b a Institute of Physics,

More information

Stock Market Forecast: Chaos Theory Revealing How the Market Works March 25, 2018 I Know First Research

Stock Market Forecast: Chaos Theory Revealing How the Market Works March 25, 2018 I Know First Research Stock Market Forecast: Chaos Theory Revealing How the Market Works March 25, 2018 I Know First Research Stock Market Forecast : How Can We Predict the Financial Markets by Using Algorithms? Common fallacies

More information

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model American Journal of Theoretical and Applied Statistics 2018; 7(2): 80-84 http://www.sciencepublishinggroup.com/j/ajtas doi: 10.11648/j.ajtas.20180702.14 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

Spot/Futures coupled model for commodity pricing 1

Spot/Futures coupled model for commodity pricing 1 6th St.Petersburg Worshop on Simulation (29) 1-3 Spot/Futures coupled model for commodity pricing 1 Isabel B. Cabrera 2, Manuel L. Esquível 3 Abstract We propose, study and show how to price with a model

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version Rüdiger Kiesel, Thomas Liebmann, Stefan Kassberger University of Ulm and LSE June 8, 2005 Abstract The valuation

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

An Efficient Numerical Scheme for Simulation of Mean-reverting Square-root Diffusions

An Efficient Numerical Scheme for Simulation of Mean-reverting Square-root Diffusions Journal of Numerical Mathematics and Stochastics,1 (1) : 45-55, 2009 http://www.jnmas.org/jnmas1-5.pdf JNM@S Euclidean Press, LLC Online: ISSN 2151-2302 An Efficient Numerical Scheme for Simulation of

More information

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s., and and Econometric Day 2009 Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s., email:petrasek@karlin.mff.cuni.cz 2 Department of Probability and

More information

Advanced Numerical Techniques for Financial Engineering

Advanced Numerical Techniques for Financial Engineering Advanced Numerical Techniques for Financial Engineering Andreas Binder, Heinz W. Engl, Andrea Schatz Abstract We present some aspects of advanced numerical analysis for the pricing and risk managment of

More information

Alternative Statistical Specifications of Commodity Price Distribution with Fat Tail

Alternative Statistical Specifications of Commodity Price Distribution with Fat Tail AMO Advanced Modeling and Optimization, Volume 4, Number 2, 22 Alternative Statistical Specifications of Commodity Price Distribution with Fat Tail Shi-Jie Deng Wenjiang Jiang Ý Zhendong Xia Þ School of

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

Modelling the electricity markets

Modelling the electricity markets Modelling the electricity markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Collaborators: J. Kallsen and T. Meyer-Brandis Stochastics in Turbulence and Finance

More information

IT Project Investment Decision Analysis under Uncertainty

IT Project Investment Decision Analysis under Uncertainty T Project nvestment Decision Analysis under Uncertainty Suling Jia Na Xue Dongyan Li School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 009, China. Email: jiasul@yeah.net

More information

Lévy processes in finance and risk management

Lévy processes in finance and risk management Lévy processes in finance and risk management Peter Tankov Laboratoire de Probabilités et Modèles Aléatoires Université Paris-Diderot Email: tankov@math.jussieu.fr World Congress on Computational Finance

More information

Financial Models with Levy Processes and Volatility Clustering

Financial Models with Levy Processes and Volatility Clustering Financial Models with Levy Processes and Volatility Clustering SVETLOZAR T. RACHEV # YOUNG SHIN ICIM MICHELE LEONARDO BIANCHI* FRANK J. FABOZZI WILEY John Wiley & Sons, Inc. Contents Preface About the

More information

Subject CT8 Financial Economics Core Technical Syllabus

Subject CT8 Financial Economics Core Technical Syllabus Subject CT8 Financial Economics Core Technical Syllabus for the 2018 exams 1 June 2017 Aim The aim of the Financial Economics subject is to develop the necessary skills to construct asset liability models

More information

Modelling Credit Spreads for Counterparty Risk: Mean-Reversion is not Needed

Modelling Credit Spreads for Counterparty Risk: Mean-Reversion is not Needed Modelling Credit Spreads for Counterparty Risk: Mean-Reversion is not Needed Ignacio Ruiz, Piero Del Boca May 2012 Version 1.0.5 A version of this paper was published in Intelligent Risk, October 2012

More information

(A note) on co-integration in commodity markets

(A note) on co-integration in commodity markets (A note) on co-integration in commodity markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway In collaboration with Steen Koekebakker (Agder) Energy & Finance

More information

An Adjusted Trinomial Lattice for Pricing Arithmetic Average Based Asian Option

An Adjusted Trinomial Lattice for Pricing Arithmetic Average Based Asian Option American Journal of Applied Mathematics 2018; 6(2): 28-33 http://www.sciencepublishinggroup.com/j/ajam doi: 10.11648/j.ajam.20180602.11 ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online) An Adjusted Trinomial

More information

Jump-Diffusion Models for Option Pricing versus the Black Scholes Model

Jump-Diffusion Models for Option Pricing versus the Black Scholes Model Norwegian School of Economics Bergen, Spring, 2014 Jump-Diffusion Models for Option Pricing versus the Black Scholes Model Håkon Båtnes Storeng Supervisor: Professor Svein-Arne Persson Master Thesis in

More information

An IMEX-method for pricing options under Bates model using adaptive finite differences Rapport i Teknisk-vetenskapliga datorberäkningar

An IMEX-method for pricing options under Bates model using adaptive finite differences Rapport i Teknisk-vetenskapliga datorberäkningar PROJEKTRAPPORT An IMEX-method for pricing options under Bates model using adaptive finite differences Arvid Westlund Rapport i Teknisk-vetenskapliga datorberäkningar Jan 2014 INSTITUTIONEN FÖR INFORMATIONSTEKNOLOGI

More information

Hedging the Smirk. David S. Bates. University of Iowa and the National Bureau of Economic Research. October 31, 2005

Hedging the Smirk. David S. Bates. University of Iowa and the National Bureau of Economic Research. October 31, 2005 Hedging the Smirk David S. Bates University of Iowa and the National Bureau of Economic Research October 31, 2005 Associate Professor of Finance Department of Finance Henry B. Tippie College of Business

More information

ELECTRICITY MARKETS THILO MEYER-BRANDIS

ELECTRICITY MARKETS THILO MEYER-BRANDIS ELECTRICITY MARKETS THILO MEYER-BRANDIS Abstract. Since the early 1990s, an increasing number of countries worldwide have liberalized their electricity power sectors. Contrary to before, when power sectors

More information

American Option Pricing Formula for Uncertain Financial Market

American Option Pricing Formula for Uncertain Financial Market American Option Pricing Formula for Uncertain Financial Market Xiaowei Chen Uncertainty Theory Laboratory, Department of Mathematical Sciences Tsinghua University, Beijing 184, China chenxw7@mailstsinghuaeducn

More information

An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand

An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand Chaiyapo and Phewchean Advances in Difference Equations (2017) 2017:179 DOI 10.1186/s13662-017-1234-y R E S E A R C H Open Access An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand

More information

I Preliminary Material 1

I Preliminary Material 1 Contents Preface Notation xvii xxiii I Preliminary Material 1 1 From Diffusions to Semimartingales 3 1.1 Diffusions.......................... 5 1.1.1 The Brownian Motion............... 5 1.1.2 Stochastic

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Applications of Lévy processes

Applications of Lévy processes Applications of Lévy processes Graduate lecture 29 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 6. Poisson point processes in fluctuation theory

More information

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright

[D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright Faculty and Institute of Actuaries Claims Reserving Manual v.2 (09/1997) Section D7 [D7] PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY FROM INDIVIDUAL PAYMENTS DATA Contributed by T S Wright 1. Introduction

More information

Time change. TimeChange8.tex LaTeX2e. Abstract. The mathematical concept of time changing continuous time stochastic processes

Time change. TimeChange8.tex LaTeX2e. Abstract. The mathematical concept of time changing continuous time stochastic processes Time change Almut E. D. Veraart CREATES University of Aarhus Aarhus Denmark +45 8942 2142 averaart@creates.au.dk Matthias Winkel Department of Statistics University of Oxford Oxford UK tel. +44 1865 272875

More information

A Two-Factor Price Process for Modeling Uncertainty in the Oil Prices Babak Jafarizadeh, Statoil ASA Reidar B. Bratvold, University of Stavanger

A Two-Factor Price Process for Modeling Uncertainty in the Oil Prices Babak Jafarizadeh, Statoil ASA Reidar B. Bratvold, University of Stavanger SPE 160000 A Two-Factor Price Process for Modeling Uncertainty in the Oil Prices Babak Jafarizadeh, Statoil ASA Reidar B. Bratvold, University of Stavanger Copyright 2012, Society of Petroleum Engineers

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

Jaime Frade Dr. Niu Interest rate modeling

Jaime Frade Dr. Niu Interest rate modeling Interest rate modeling Abstract In this paper, three models were used to forecast short term interest rates for the 3 month LIBOR. Each of the models, regression time series, GARCH, and Cox, Ingersoll,

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Overnight Index Rate: Model, calibration and simulation

Overnight Index Rate: Model, calibration and simulation Research Article Overnight Index Rate: Model, calibration and simulation Olga Yashkir and Yuri Yashkir Cogent Economics & Finance (2014), 2: 936955 Page 1 of 11 Research Article Overnight Index Rate: Model,

More information

EMH vs. Phenomenological models. Enrico Scalas (DISTA East-Piedmont University)

EMH vs. Phenomenological models. Enrico Scalas (DISTA East-Piedmont University) EMH vs. Phenomenological models Enrico Scalas (DISTA East-Piedmont University) www.econophysics.org Summary Efficient market hypothesis (EMH) - Rational bubbles - Limits and alternatives Phenomenological

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Optimal switching problems for daily power system balancing

Optimal switching problems for daily power system balancing Optimal switching problems for daily power system balancing Dávid Zoltán Szabó University of Manchester davidzoltan.szabo@postgrad.manchester.ac.uk June 13, 2016 ávid Zoltán Szabó (University of Manchester)

More information

Stochastic volatility modeling in energy markets

Stochastic volatility modeling in energy markets Stochastic volatility modeling in energy markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Joint work with Linda Vos, CMA Energy Finance Seminar, Essen 18

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

Lecture 9: Practicalities in Using Black-Scholes. Sunday, September 23, 12

Lecture 9: Practicalities in Using Black-Scholes. Sunday, September 23, 12 Lecture 9: Practicalities in Using Black-Scholes Major Complaints Most stocks and FX products don t have log-normal distribution Typically fat-tailed distributions are observed Constant volatility assumed,

More information

MULTISCALE STOCHASTIC VOLATILITY FOR EQUITY, INTEREST RATE, AND CREDIT DERIVATIVES

MULTISCALE STOCHASTIC VOLATILITY FOR EQUITY, INTEREST RATE, AND CREDIT DERIVATIVES MULTISCALE STOCHASTIC VOLATILITY FOR EQUITY, INTEREST RATE, AND CREDIT DERIVATIVES Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility,

More information

Sterman, J.D Business dynamics systems thinking and modeling for a complex world. Boston: Irwin McGraw Hill

Sterman, J.D Business dynamics systems thinking and modeling for a complex world. Boston: Irwin McGraw Hill Sterman,J.D.2000.Businessdynamics systemsthinkingandmodelingfora complexworld.boston:irwinmcgrawhill Chapter7:Dynamicsofstocksandflows(p.231241) 7 Dynamics of Stocks and Flows Nature laughs at the of integration.

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

Risk Control of Mean-Reversion Time in Statistical Arbitrage,

Risk Control of Mean-Reversion Time in Statistical Arbitrage, Risk Control of Mean-Reversion Time in Statistical Arbitrage George Papanicolaou Stanford University CDAR Seminar, UC Berkeley April 6, 8 with Joongyeub Yeo Risk Control of Mean-Reversion Time in Statistical

More information

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Lars Holden PhD, Managing director t: +47 22852672 Norwegian Computing Center, P. O. Box 114 Blindern, NO 0314 Oslo,

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J Math Anal Appl 389 (01 968 978 Contents lists available at SciVerse Scienceirect Journal of Mathematical Analysis and Applications wwwelseviercom/locate/jmaa Cross a barrier to reach barrier options

More information

An Analysis of a Dynamic Application of Black-Scholes in Option Trading

An Analysis of a Dynamic Application of Black-Scholes in Option Trading An Analysis of a Dynamic Application of Black-Scholes in Option Trading Aileen Wang Thomas Jefferson High School for Science and Technology Alexandria, Virginia June 15, 2010 Abstract For decades people

More information