Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts

Size: px
Start display at page:

Download "Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts"

Transcription

1 Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts M.Sghairi M.Kouki February 16, 2007 Abstract Ordinary mixed life insurance is a mix between temporary deathinsurance and pure endowment. Its duration is at least T years or more and in case of death the capital/pension will be paid to the inheritors and if the insured are alive, they will receive the payment. Thus, a single premium is paid by the policy-holders and placed by the insurance company on the incomplete financial market; but the difficulty lies in a fair tariffing. Our method is based primarily on two principles: equivalent martingale measure and the equality between the retrospective and the prospective market reserves. Then we obtain a condition on the discounting of the investment rate. This result generalizes the results obtained by M.Dahl [1] for a life insurance contract, in case of survival. Keywords: Life insurance; Stochastic mortality intensity; Incomplete financial markets; Lévy process; Equivalent measure principle 1 Introduction Traditionally, actuaries calculate premiums and market reserves using a deterministic mortality intensity that depends on age only, and a constant interest rate. But, in reality, neither the interest rate nor the mortality intensity are deterministic. It s well known, that we deal with two deferents life insurance contract : pure endowment and temporary death-insurance contracts. In this paper we address the case of an ordinary mixed insurance contract for only one x-year-old policy-holder, with stochastic mortality intensity, and an investment on the incomplete financial market. The ordinary 1

2 mixed insurance contract is a mix between temporary death insurance and pure endowment: - upon the policy-holder s death, a capital C0, 1 is paid to a designated recipient in the form of l benefits, in the event of death before the expiration date T of the contract, - a capital KT 2 is paid in full to the ensured person in the event of life at the expiry date (T) of the contract. This contract is paid by a single premium Π l 0 at time 0. In this paper we address the problem of fair pricing, which will be solved in two stages. First, by changing the initial probability measure in an equivalent measure, and then by expecting the retrospective and prospective market reserves. Thus, we obtain a necessary condition to the equity contract that relies on the discounting of the accumulation rate. In section 2 we present related to the financial market and those related the stochastic mortality. In section 3, we solve the problem by equalizing the time T retrospective and prospective market reserves. In section 4 we provide same Monte Carlo simulation experience, and section 5 concludes. 2 Assumptions and notations 2.1 The financial market We work on a space of probability (Ω, F,P) where filtration F = (F t ) t describes the information available on the incomplete financial market. We consider a financial market consisting of two traded assets : a risky asset with price process U and a locally risk-free asset with price process B (see T.Chan [4]). The stochastic process (U t ) t describes the accumulation rate. The dynamics of U and B may be given, for example, by : du t = α U (t,u t ) U t dt + σ U (t,u t ) U t dy t, > 0 db t = r t B t dt, B 0 = 1 (2.1) where r t 0 is the risk-free interest rate, α U (t,u t ) describes the expected behavior of the asset s instantaneous price, σ U (t,u t ) is uniformly bounded away from 0. It describes the sensitivity of the instantaneous price of the assets compared to the general trends in the 2

3 M.Sghairi, M.Kouki financial market. and (Y t ) t, a Lévy process on [0,T], is the index which describes the general trends in the financial market. For analytical purpose, we introduce the probability measure Q, equivalent to P, under which the discounted price process of the asset is a Q-martingale. Indeed, the expected discounted value is given by : p(t,t) = E Q [e R T t r udu F t ] so the financial annuity (see R.Cobbaut [3]) of an unity, paid in l periods, is given by l 1 a l = p(0,u). 2.2 The mortality u=0 The mortality is the second random component of the development of the ordinary mixed life insurance contract. It is linked to an F-adapted rightcontinuous Markov process Z = (Z t ) t [0,T], on a finite state space J = {0, 1} which describes the state of the insured person : 0 = alive, 1 = dead (see M.Dahl [1]). Only the transition from state 0 to state 1 is possible. On the one hand, under the initial probability P, the intensity of transition of Z is simply given at time t by the mortality intensity µ [x]+t, where, (µ [x]+t ) t is an adapted stochastic process. On the other hand, under the probability Q, the intensity of transition is multiplied by (1 + g t ), where (g t ) t is an adapted process, strictly higher than 1 Q-almost surely. Then we introduce the survival probability of an age [x]+t person from time t to T. It is given by G Q (t,µ [x]+t,t) = E Q [e R T t (1+gu)µ [x]+udu µ [x]+t ] where E Q indicates the expectation under Q. Then the death probability estimated at time t under Q is given by Ḡ Q (t,µ [x]+t,t) = 1 G Q (t,µ [x]+t,t). We denote by (K 2 t ) t T the adapted stochastic process, equal to the ensured sum at time t for pure endowment in the event of survival. In particular K 2 T indicates the sum to be paid at time T in the survival event at age x + T. 3

4 3 Solving the problem The equivalent measure Q principle yields the premium Π l 0 for the ordinary mixed life insurance contract, with sum C0 1 as the ensured sum in case of death, and KT 2 as the ensured sum in case of life. Let us notice that on model is an extension of the Norberg [2] model. Thus, the expected discounted value under Q of the actual payments having to be of null Q-mean, we have T Π l 0 = K0p(0,T)G 2 Q (0,µ [x],t) C1 0 l a l p(0,s) s G Q (0,µ [x],s)ds. (3.1) 0 Note that K 1,l 0 = C1 0 l a l the actual annuity value in l terms and the instantaneous risk of death is s G Q (0,µ [x],s). Proposition 3.1: Let the actual payments Π l 0 by given by (3.1) Then E Q [exp( T r 0 udu) U T ] = 1 + K1,l 0 [p(0,t)ḡq (0,µ [x],t) Π l 0 + T 0 (1 + g s)µ [x]+s p(0,s)g Q (0,µ [x],s)ds] (3.2) Proof : Let V i,l,retro t be the retrospective reserves conditioned at time t [0, T], given that the policy-holder is in the Z t = i state, is defined by: V i,l,retro t = Π l 0 U t K 1,l 0 1 {i=1} 1 {t<t } K 2 T 1 {i=0} 1 {t=t } (3.3) where K 1,l 0 = C1 0 l a l indicates the actual annuity value in l terms and i is person s state at time t. Let V i,l,pro t be the prospective reserves at time t, given that the policy-holder is in the Z t = i state. The sum insured in the event of life is Kt 2 and we consider that the sum insured in the event of death is constant in a course 4

5 M.Sghairi, M.Kouki of time equal to K 1,l 0. Therefore V i,l,pro t = E Q [K 1,l T 0 (1 + g t s)µ [x]+s e R s t ru+(1+gu)µ [x]+udu ds + e R T t r udu e R T 0 (1+gu)µ[x]+udu Kt 2 Z t = i, I t G t ], 0 t < T (3.4) To determine the adapted advantage, Kt 2, we use the following criterion: E Q [V Zt,l,pro t I t G t ] = E Q [V Zt,l,retro t I t G t ] (3.5) It is to be noted that in the above equality, the expectation relates only to the values of Z t. For the contract to be fair the expected discounted value under Q of the actual payments should be 0, i.e. E Q [Π l 0 + K 1,l 0 T 0 (1 + g s)µ [x]+s e R s t ru+(1+gu)µ [x]+udu ds K 2 T e R T 0 ru+(1+gu)µ [x]+udu ] = 0. (3.6) This leads to a condition on the process of accumulation U. Let us express K 2 T in terms of U, by the fact that the prospective reserve at time T must be null: V 0,l,pro T = V 1,l,pro T = 0. According to (3.3) we have : V 0,l,retro T = Π l U T 0 KT 2 K 1,l 0. Thus, criterion (3.5), applied at time T, gives : et V 1,l,retro T = Π l 0 U T KT 2 = Π l U T 1 0 G Q (0,µ [x],t) Ḡ Q (0,µ [x],t) K1,l 0 G Q (0,µ [x],t) with ḠQ (0,µ [x],t) = 1 G Q (0,µ [x],t) as the death probability from time 0 to time T. While inserting this in (3.6), one notes that the process U must check : E Q [e R T 0 rudu U T ] = 1 + K1,l 0 Π l [p(0,t)ḡq (0,µ [x],t) 0 + T 0 (1 + g s)µ [x]+s p(0,s)g Q (0,µ [x],s)ds]. (3.7) 5

6 In particular, it is to be noted that the expected discounted value of accumulation factor U T from 0 to T, E Q [exp( T r 0 udu) U T ], is higher than 1 whereas under the modeling of M.Dahl [1] it is equal to 1. After solving the problem of a fair contract we addressed the development of the benefits. Criterion (3.5) at time t < T is written as : Π l 0 Ut = e R t 0 (1+gu)µ [x]+udu K 2 t p(t,t)g Q (t,µ [x]+t,t) + K 1,l 0 T t (1 + g s)µ [x]+s p(0,s)g Q (0,µ [x],s)ds (3.8) Using the expression of premium (3.1), we express the advantages at time t according to the advantages at time 0 R t0 Kt 2 (1+gu)µ e [x]+u du = p(t,t)g Q (t,µ [x]+t,t) [K2 0p(0,T)G Q (0,µ [x],t) Ut + K 1,l 0 [ Ut T 0 (1 + g s)µ [x]+s p(0,s)g Q (0,µ [x],s)ds (3.9) T t (1 + g s)µ [x]+s p(0,s)g Q (0,µ [x],s)ds]. 4 Monte Carlo study In this section we simulate the loss risk. To get a realistic portfolio of the insured, it would be necessary to introduce policy-holders of different ages/cohorts, different horizons, and different dates of subscription. However, in this study, we started with simulations of homogeneous portfolios. We simulated the risk of loss of 1000 ordinary mixed life insurance contracts, concerning x-year insured people, x varying in somme interval I, and of fixed horizon T years. We used the mortality intensity of Gompertz-Makeham µ x = a + bc x of parameter a = , b = et c = Example: If the insured have different ages/cohorts, then the loss risk of the associated portfolio at T can be obtained as a weighted mean of the individuel risks. The left figure represent the dynamics of assets price is of the form du t = αu t dt + σu t dy t, where α = 0.6, and σ = 0.2, and Y t is a Lévy process of the 6

7 M.Sghairi, M.Kouki form dy t = dw t + dn t where W is the Brownian motion and N the Poisson process of 10% intensity, and that him of right-hand side the dynamics of assets price is of the form du t = αu t dt + σu t dw t. We calculated V Zt,x,retro t t [0,T], x I, given by formula (3.3) for 1000 contracts with C0 1 = 1, KT 2 = 0.5. We simulated the loser contract rate at time t [0,T] for N insured persons with ages x I using the approximation : t [0,T], x I : 1 N N i=1 1 {V x t <0} P(V x t < 0) Figure 1 : The left figure represent the risk of loss of contracts of 1000 insured persons, x [30, 60] years and horizon T = 30 years, with the dynamics of assets price is of the form du t = αu t dt + σu t dy t and that him of right-hand side, with the dynamics of assets price is of the form du t = αu t dt + σu t dw t. Figure 2 : The left figure represent the risk of loss of contracts of 1000 insured persons, x [40, 60] years and horizon T = 20 years, with the dynamics of assets price is of the form du t = αu t dt + σu t dy t and that him of right-hand side, with the dynamics of assets price is of the form du t = αu t dt + σu t dw t. Figure 3 :The left figure represent the risk of loss of contracts of 1000 insured persons, x [35, 55] years and horizon T = 20 years, with the dynamics of assets price is of the form du t = αu t dt + σu t dy t and that him of right-hand side, with the dynamics of assets price is of the form du t = αu t dt + σu t dw t. 7

8 Figure 1: Risk of loss Figure 2: Risk of loss 8

9 M.Sghairi, M.Kouki Figure 3: Risk of loss 5 Conclusion Our objective in this study was to find a tool to determine the premium that policy-holders have to pay to insurers according to the terms of the contracts. However the contracts mention the expiry date, as well as the mode of payment of the annuities due by the policy-holder and the two parties operate in a context of information asymmetry. In this context each individual tries to maximize his/her utility function, in other terms his/her future benefit. The uncertainty that prevails in all incomplete contracts requires an estimate of the risk induced by incomplete information. From this point of view we tried to design a mathematical model in order to help the insurer take his/her decision, estimate the risks, and determine the premium of the contract while taking into account unquestionable variables: mortality intensity rate, the characteristics of each insurance contract(temporary death-insurance, pure endowment). Certain assumptions were put forward to design a model that considers the determination of the premium as well as the risk. An empirical study was undertaken to highlight the reliability of our model. Indeed the model shows that in the event of non-diversification of the insurer s portfolios, the risk of loss caused varies according to the expiry date of the contract. However these results must not be considered as the limits of our model, since the data used to test this model were subjective data which do not reflect 9

10 the reality. Collecting data in this field remains complex and it is the major problem for the validation of our model. References [1] M. Dahl. Stochastic mortality in life insurance:market reserves and mortality-linked insurance contracts. Insurance:Mathematics and Economics 35., pages , [2] R. Norberg. Reserves in life and pension insurance. Scandinavian Actuarial Journal 1, pages 3 24, [3] R.Cobbaut. Théorie Financière. Economica, Paris, [4] T.Chan. Pricing contingent claims on stocks driven by lévy processes. The Annals of Applied Probability., pages , 1999, Vol.9. M.Sghairi M.Kouki Université PARIS DESCARTES Ecole Supérieure de la Statistique LABORATOIRE MAP5 et de l Analyse de l Information 45, RUE DES SAINTS-PÈRES 6, rue des mètiers PARIS CEDEX Charguia 2 Ariana FRANCE TUNISIE sghairi@math-info.univ-paris5.fr mokhtar.kouki@essai.rnu.tn 10

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

induced by the Solvency II project

induced by the Solvency II project Asset Les normes allocation IFRS : new en constraints assurance induced by the Solvency II project 36 th International ASTIN Colloquium Zürich September 005 Frédéric PLANCHET Pierre THÉROND ISFA Université

More information

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Simon Man Chung Fung, Katja Ignatieva and Michael Sherris School of Risk & Actuarial Studies University of

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

1. For a special whole life insurance on (x), payable at the moment of death:

1. For a special whole life insurance on (x), payable at the moment of death: **BEGINNING OF EXAMINATION** 1. For a special whole life insurance on (x), payable at the moment of death: µ () t = 0.05, t > 0 (ii) δ = 0.08 x (iii) (iv) The death benefit at time t is bt 0.06t = e, t

More information

Indifference fee rate 1

Indifference fee rate 1 Indifference fee rate 1 for variable annuities Ricardo ROMO ROMERO Etienne CHEVALIER and Thomas LIM Université d Évry Val d Essonne, Laboratoire de Mathématiques et Modélisation d Evry Second Young researchers

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

VALUATION OF FLEXIBLE INSURANCE CONTRACTS

VALUATION OF FLEXIBLE INSURANCE CONTRACTS Teor Imov r.tamatem.statist. Theor. Probability and Math. Statist. Vip. 73, 005 No. 73, 006, Pages 109 115 S 0094-90000700685-0 Article electronically published on January 17, 007 UDC 519.1 VALUATION OF

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Interest rate models in continuous time

Interest rate models in continuous time slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part IV József Gáll University of Debrecen Nov. 2012 Jan. 2013, Ljubljana Continuous time markets General assumptions, notations

More information

Parameter sensitivity of CIR process

Parameter sensitivity of CIR process Parameter sensitivity of CIR process Sidi Mohamed Ould Aly To cite this version: Sidi Mohamed Ould Aly. Parameter sensitivity of CIR process. Electronic Communications in Probability, Institute of Mathematical

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

1 Cash-flows, discounting, interest rates and yields

1 Cash-flows, discounting, interest rates and yields Assignment 1 SB4a Actuarial Science Oxford MT 2016 1 1 Cash-flows, discounting, interest rates and yields Please hand in your answers to questions 3, 4, 5, 8, 11 and 12 for marking. The rest are for further

More information

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1.

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. Solutions to the Spring 213 Course MLC Examination by Krzysztof Ostaszewski, http://wwwkrzysionet, krzysio@krzysionet Copyright 213 by Krzysztof Ostaszewski All rights reserved No reproduction in any form

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 1 Hacettepe University Department of Actuarial Sciences 06800, TURKEY 2 Middle

More information

Longevity risk: past, present and future

Longevity risk: past, present and future Longevity risk: past, present and future Xiaoming Liu Department of Statistical & Actuarial Sciences Western University Longevity risk: past, present and future Xiaoming Liu Department of Statistical &

More information

MATH/STAT 4720, Life Contingencies II Fall 2015 Toby Kenney

MATH/STAT 4720, Life Contingencies II Fall 2015 Toby Kenney MATH/STAT 4720, Life Contingencies II Fall 2015 Toby Kenney In Class Examples () September 2, 2016 1 / 145 8 Multiple State Models Definition A Multiple State model has several different states into which

More information

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20 1 of 17 1/4/2008 12:01 PM 1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7 b. 22 3 c. 23 3 d. 20 3 e. 8 2. Suppose 1 for 0 x 1 s(x) = 1 ex 100 for 1

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

8.5 Numerical Evaluation of Probabilities

8.5 Numerical Evaluation of Probabilities 8.5 Numerical Evaluation of Probabilities 1 Density of event individual became disabled at time t is so probability is tp 7µ 1 7+t 16 tp 11 7+t 16.3e.4t e.16 t dt.3e.3 16 Density of event individual became

More information

Asymmetric information in trading against disorderly liquidation of a large position.

Asymmetric information in trading against disorderly liquidation of a large position. Asymmetric information in trading against disorderly liquidation of a large position. Caroline Hillairet 1 Cody Hyndman 2 Ying Jiao 3 Renjie Wang 2 1 ENSAE ParisTech Crest, France 2 Concordia University,

More information

STEX s valuation analysis, version 0.0

STEX s valuation analysis, version 0.0 SMART TOKEN EXCHANGE STEX s valuation analysis, version. Paulo Finardi, Olivia Saa, Serguei Popov November, 7 ABSTRACT In this paper we evaluate an investment consisting of paying an given amount (the

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Introduction Credit risk

Introduction Credit risk A structural credit risk model with a reduced-form default trigger Applications to finance and insurance Mathieu Boudreault, M.Sc.,., F.S.A. Ph.D. Candidate, HEC Montréal Montréal, Québec Introduction

More information

Rough volatility models: When population processes become a new tool for trading and risk management

Rough volatility models: When population processes become a new tool for trading and risk management Rough volatility models: When population processes become a new tool for trading and risk management Omar El Euch and Mathieu Rosenbaum École Polytechnique 4 October 2017 Omar El Euch and Mathieu Rosenbaum

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

Annuities. Lecture: Weeks 8-9. Lecture: Weeks 8-9 (Math 3630) Annuities Fall Valdez 1 / 41

Annuities. Lecture: Weeks 8-9. Lecture: Weeks 8-9 (Math 3630) Annuities Fall Valdez 1 / 41 Annuities Lecture: Weeks 8-9 Lecture: Weeks 8-9 (Math 3630) Annuities Fall 2017 - Valdez 1 / 41 What are annuities? What are annuities? An annuity is a series of payments that could vary according to:

More information

Credit Risk Models with Filtered Market Information

Credit Risk Models with Filtered Market Information Credit Risk Models with Filtered Market Information Rüdiger Frey Universität Leipzig Bressanone, July 2007 ruediger.frey@math.uni-leipzig.de www.math.uni-leipzig.de/~frey joint with Abdel Gabih and Thorsten

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

MATH 3630 Actuarial Mathematics I Class Test 2 - Section 1/2 Wednesday, 14 November 2012, 8:30-9:30 PM Time Allowed: 1 hour Total Marks: 100 points

MATH 3630 Actuarial Mathematics I Class Test 2 - Section 1/2 Wednesday, 14 November 2012, 8:30-9:30 PM Time Allowed: 1 hour Total Marks: 100 points MATH 3630 Actuarial Mathematics I Class Test 2 - Section 1/2 Wednesday, 14 November 2012, 8:30-9:30 PM Time Allowed: 1 hour Total Marks: 100 points Please write your name and student number at the spaces

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k Solutions to the November 202 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 202 by Krzysztof Ostaszewski All rights reserved. No reproduction in

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

A Proper Derivation of the 7 Most Important Equations for Your Retirement

A Proper Derivation of the 7 Most Important Equations for Your Retirement A Proper Derivation of the 7 Most Important Equations for Your Retirement Moshe A. Milevsky Version: August 13, 2012 Abstract In a recent book, Milevsky (2012) proposes seven key equations that are central

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

The Forward PDE for American Puts in the Dupire Model

The Forward PDE for American Puts in the Dupire Model The Forward PDE for American Puts in the Dupire Model Peter Carr Ali Hirsa Courant Institute Morgan Stanley New York University 750 Seventh Avenue 51 Mercer Street New York, NY 10036 1 60-3765 (1) 76-988

More information

Survival models. F x (t) = Pr[T x t].

Survival models. F x (t) = Pr[T x t]. 2 Survival models 2.1 Summary In this chapter we represent the future lifetime of an individual as a random variable, and show how probabilities of death or survival can be calculated under this framework.

More information

THE MARTINGALE METHOD DEMYSTIFIED

THE MARTINGALE METHOD DEMYSTIFIED THE MARTINGALE METHOD DEMYSTIFIED SIMON ELLERSGAARD NIELSEN Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk s Arbitrage Theory

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

1 Consumption and saving under uncertainty

1 Consumption and saving under uncertainty 1 Consumption and saving under uncertainty 1.1 Modelling uncertainty As in the deterministic case, we keep assuming that agents live for two periods. The novelty here is that their earnings in the second

More information

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Applied Mathematical Sciences, Vol. 6, 2012, no. 112, 5597-5602 Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Nasir Rehman Department of Mathematics and Statistics

More information

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given: Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any

More information

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

Option Pricing under Delay Geometric Brownian Motion with Regime Switching Science Journal of Applied Mathematics and Statistics 2016; 4(6): 263-268 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20160406.13 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

EMPIRICAL EVIDENCE ON ARBITRAGE BY CHANGING THE STOCK EXCHANGE

EMPIRICAL EVIDENCE ON ARBITRAGE BY CHANGING THE STOCK EXCHANGE Advances and Applications in Statistics Volume, Number, This paper is available online at http://www.pphmj.com 9 Pushpa Publishing House EMPIRICAL EVIDENCE ON ARBITRAGE BY CHANGING THE STOCK EXCHANGE JOSÉ

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Consistently modeling unisex mortality rates. Dr. Peter Hieber, Longevity 14, University of Ulm, Germany

Consistently modeling unisex mortality rates. Dr. Peter Hieber, Longevity 14, University of Ulm, Germany Consistently modeling unisex mortality rates Dr. Peter Hieber, Longevity 14, 20.09.2018 University of Ulm, Germany Seite 1 Peter Hieber Consistently modeling unisex mortality rates 2018 Motivation European

More information

DEFERRED ANNUITY CONTRACTS UNDER STOCHASTIC MORTALITY AND INTEREST RATES: PRICING AND MODEL RISK ASSESSMENT

DEFERRED ANNUITY CONTRACTS UNDER STOCHASTIC MORTALITY AND INTEREST RATES: PRICING AND MODEL RISK ASSESSMENT DEFERRED ANNUITY CONTRACTS UNDER STOCHASTIC MORTALITY AND INTEREST RATES: PRICING AND MODEL RISK ASSESSMENT DENIS TOPLEK WORKING PAPERS ON RISK MANAGEMENT AND INSURANCE NO. 41 EDITED BY HATO SCHMEISER

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

The Capital Asset Pricing Model as a corollary of the Black Scholes model

The Capital Asset Pricing Model as a corollary of the Black Scholes model he Capital Asset Pricing Model as a corollary of the Black Scholes model Vladimir Vovk he Game-heoretic Probability and Finance Project Working Paper #39 September 6, 011 Project web site: http://www.probabilityandfinance.com

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Risk Neutral Pricing. to government bonds (provided that the government is reliable).

Risk Neutral Pricing. to government bonds (provided that the government is reliable). Risk Neutral Pricing 1 Introduction and History A classical problem, coming up frequently in practical business, is the valuation of future cash flows which are somewhat risky. By the term risky we mean

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN SOLUTIONS Subject CM1A Actuarial Mathematics Institute and Faculty of Actuaries 1 ( 91 ( 91 365 1 0.08 1 i = + 365 ( 91 365 0.980055 = 1+ i 1+

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

PAPER 211 ADVANCED FINANCIAL MODELS

PAPER 211 ADVANCED FINANCIAL MODELS MATHEMATICAL TRIPOS Part III Friday, 27 May, 2016 1:30 pm to 4:30 pm PAPER 211 ADVANCED FINANCIAL MODELS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal

More information

Operational Risk. Robert Jarrow. September 2006

Operational Risk. Robert Jarrow. September 2006 1 Operational Risk Robert Jarrow September 2006 2 Introduction Risk management considers four risks: market (equities, interest rates, fx, commodities) credit (default) liquidity (selling pressure) operational

More information

Errata and Updates for ASM Exam MLC (Fifteenth Edition Third Printing) Sorted by Date

Errata and Updates for ASM Exam MLC (Fifteenth Edition Third Printing) Sorted by Date Errata for ASM Exam MLC Study Manual (Fifteenth Edition Third Printing) Sorted by Date 1 Errata and Updates for ASM Exam MLC (Fifteenth Edition Third Printing) Sorted by Date [1/25/218] On page 258, two

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou Stochastic Partial Differential Equations and Portfolio Choice Crete, May 2011 Thaleia Zariphopoulou Oxford-Man Institute and Mathematical Institute University of Oxford and Mathematics and IROM, The University

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki Jena, March 29, 211 Fractional Lévy processes 1/36 Outline of the talk 1. Introduction 2. Main results 3. Methodology 4. Conclusions

More information

Multiple Life Models. Lecture: Weeks Lecture: Weeks 9-10 (STT 456) Multiple Life Models Spring Valdez 1 / 38

Multiple Life Models. Lecture: Weeks Lecture: Weeks 9-10 (STT 456) Multiple Life Models Spring Valdez 1 / 38 Multiple Life Models Lecture: Weeks 9-1 Lecture: Weeks 9-1 (STT 456) Multiple Life Models Spring 215 - Valdez 1 / 38 Chapter summary Chapter summary Approaches to studying multiple life models: define

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES Along with providing the way uncertainty is formalized in the considered economy, we establish in this chapter the

More information

TWO-STAGE NEWSBOY MODEL WITH BACKORDERS AND INITIAL INVENTORY

TWO-STAGE NEWSBOY MODEL WITH BACKORDERS AND INITIAL INVENTORY TWO-STAGE NEWSBOY MODEL WITH BACKORDERS AND INITIAL INVENTORY Ali Cheaitou, Christian van Delft, Yves Dallery and Zied Jemai Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes,

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Unified Credit-Equity Modeling

Unified Credit-Equity Modeling Unified Credit-Equity Modeling Rafael Mendoza-Arriaga Based on joint research with: Vadim Linetsky and Peter Carr The University of Texas at Austin McCombs School of Business (IROM) Recent Advancements

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Portfolio Optimization using Conditional Sharpe Ratio

Portfolio Optimization using Conditional Sharpe Ratio International Letters of Chemistry, Physics and Astronomy Online: 2015-07-01 ISSN: 2299-3843, Vol. 53, pp 130-136 doi:10.18052/www.scipress.com/ilcpa.53.130 2015 SciPress Ltd., Switzerland Portfolio Optimization

More information