Gradient Boosting Trees: theory and applications

Size: px
Start display at page:

Download "Gradient Boosting Trees: theory and applications"

Transcription

1 Gradient Boosting Trees: theory and applications Dmitry Efimov November 05, 2016

2 Outline Decision trees Boosting Boosting trees Metaparameters and tuning strategies How-to-use remarks

3 Regression tree True X[12] <= mse = samples = 339 value = False X[5] <= mse = samples = 106 value = X[12] <= mse = samples = 233 value = X[7] <= mse = samples = 84 value = X[9] <= mse = samples = 22 value = X[5] <= mse = samples = 143 value = X[7] <= mse = samples = 90 value = mse = 0.0 samples = 3 value = 1.0 X[5] <= mse = samples = 81 value = X[0] <= mse = samples = 21 value = mse = 0.0 samples = 1 value = X[7] <= mse = samples = 129 value = X[5] <= mse = samples = 14 value = X[9] <= mse = samples = 54 value = X[0] <= mse = samples = 36 value = mse = samples = 44 value = mse = samples = 37 value = mse = samples = 15 value = mse = -0.0 samples = 6 value = 1.0 mse = 0.0 samples = 1 value = 1.0 mse = samples = 128 value = mse = samples = 8 value = mse = samples = 6 value = mse = samples = 15 value = mse = samples = 39 value = mse = samples = 15 value = mse = samples = 21 value = ( Mean square error for node k: y (i) ) 2 µ k m k i R k m k - number of samples µ k - average

4 Classification tree X[1] < error = samples = 134 prob = X[0] < error = samples = 70 prob = X[0] < error = samples = 64 prob = error = 0.0 samples = 4 prob = 0.0 X[1] < error = 0.14 samples = 66 prob = X[1] < error = samples = 58 prob = error = 0.0 samples = 6 prob = 1.0 error = 0.0 samples = 42 prob = 1.0 X[0] < error = 0.33 samples = 24 prob = error = 0.5 samples = 4 prob = 0.5 X[1] < error = samples = 54 prob = error = 0.0 samples = 11 prob = 1.0 X[0] < error = samples = 13 prob = X[1] < 0.47 error = samples = 20 prob = 0.15 error = 0.0 samples = 34 prob = 0.0 error = 0.0 samples = 5 prob = 0.0 error = 0.0 samples = 8 prob = 1.0 error = 0.0 samples = 12 prob = 0.0 X[0] < error = samples = 8 prob = error = samples = 4 prob = 0.25 error = 0.5 samples = 4 prob = 0.5

5 Classification error (two classes example) p - % of samples from one class in the node Misclassification error: min(p, 1 p) Gini index: 2p(1 p) Cross-entropy: p ln p (1 p) ln(1 p) 0.6 error 0.4 Gini index p Misclassification rate Entropy

6 Boosting (backfitting algorithm) Generalized additive model: ŷ = f (x 1,..., x n ) = α + f 1 (x 1 ) + f 2 (x 2 ) f n (x n ) Algorithm 1 Backfitting algorithm for GAM 1: set initial values α = 1 m y (i), f j = 0 for all j = 1,..., n m 2: repeat 3: for j = 1 to n do i=1 4: evaluate working targets z (i) = y (i) α n k=1,k j 5: train model with feature x j and target z to estimate f j 6: until convergence 7: return α, f j f k (x (i) k )

7 Boosting (general idea) Loss function for nonparametric model: L(f ) = 1 2m m (y (i) f (x (i) )) 2 i=1 From backfitting algorithm: f new = f old + g, where g is a building block algorithm Gradient Descent with respect to f : f new = f old α dl df General idea: we train the building block algorithm with the outputs g = dl df f =f old f =f old

8 Boosting trees Algorithm 2 Gradient Tree Boosting m 1: Initialize f 0 (x) = arg min L(y (i), µ) µ i=1 2: for k = 1 to K do ( ) 3: Compute working target r (i) dl f k = df =fk 1 (x (i) ) 4: Fit a regression tree to the targets r (i) k with terminal nodes R kj, j = 1,..., J k and compute γ kj = arg min γ 5: Update f k (x) = f k 1 (x) + 6: return f K (x) x (i) R kj L(y (i), f k 1 (x (i) ) + γ) J k j=1 γ kj 1{x R kj }

9 Metaparameters General: booster, seed, subsample, colsample bytree, colsample bylevel, eval metric Optimization related: objective, eta, gamma, lambda, alpha, num round, scale pos weight Tree related: max depth, min child weight

10 General metaparameters booster: gbtree, gblinear, dart seed subsample: number of training examples for each tree colsample bytree: number of features for each tree colsample bylevel: number of features for each tree node eval metric: rmse, mae, logloss, auc, map

11 Optimization and tree related metaparameters Optimization: objective: reg:linear, binary:logistic, multi:softprob, rank:pairwise eta: learning rate gamma: minimum loss reduction required lambda: L2 regularization alpha: L1 regularization scale pos weight: weights for classes num round: number of iterations Tree: max depth: maximum depth of tree min child weight: minimum size of tree node

12 Tuning strategies Grid search: Randomized search: Manual tuning parameter 2 parameter 2 parameter 1 parameter 1

13 When to apply xgboost? (just my observations) features of different origins: categorical, numerical, ordinal features are not correlated a lot the number of features is comparatively small the problem is not of some specific type (for example, not image recognition or time series) the parametric approach cannot be used General strategy 1. Use xgboost with basic parameters without tuning 2. Read literature about other approaches 3. Compare the results

14 Usecases relational datasets (Genentech, RiskyBusiness, Deloitte): Ex.: github.com/diefimov/genentech 2016 datasets with features of different origins (Otto): Ex.: github.com/diefimov/otto 2015 works for time series, but they should be converted to the traditional format (West Nile, Western Australia): Ex.: github.com/diefimov/west nile virus 2015

15 References T.Chen and C.Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, T.Hastie, R.Tibshirani and J.Friedman The elements of statistical learning. Springer, MachineLearning

16 Thank you! Questions? Dmitry Efimov kaggle.com/efimov github.com/diefimov

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 15: Tree-based Algorithms Cho-Jui Hsieh UC Davis March 7, 2018 Outline Decision Tree Random Forest Gradient Boosted Decision Tree (GBDT) Decision Tree Each node checks

More information

Session 5. Predictive Modeling in Life Insurance

Session 5. Predictive Modeling in Life Insurance SOA Predictive Analytics Seminar Hong Kong 29 Aug. 2018 Hong Kong Session 5 Predictive Modeling in Life Insurance Jingyi Zhang, Ph.D Predictive Modeling in Life Insurance JINGYI ZHANG PhD Scientist Global

More information

Investing through Economic Cycles with Ensemble Machine Learning Algorithms

Investing through Economic Cycles with Ensemble Machine Learning Algorithms Investing through Economic Cycles with Ensemble Machine Learning Algorithms Thomas Raffinot Silex Investment Partners Big Data in Finance Conference Thomas Raffinot (Silex-IP) Economic Cycles-Machine Learning

More information

Credit Card Default Predictive Modeling

Credit Card Default Predictive Modeling Credit Card Default Predictive Modeling Background: Predicting credit card payment default is critical for the successful business model of a credit card company. An accurate predictive model can help

More information

Machine Learning for Physicists Lecture 10. Summer 2017 University of Erlangen-Nuremberg Florian Marquardt

Machine Learning for Physicists Lecture 10. Summer 2017 University of Erlangen-Nuremberg Florian Marquardt Machine Learning for Physicists Lecture 10 Summer 2017 University of Erlangen-Nuremberg Florian Marquardt Function/Image representation Image classification [Handwriting recognition] Convolutional nets

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS TASK Run intervention analysis on the price of stock M: model a function of the price as ARIMA with outliers and interventions. SOLUTION The document below is an abridged version of the solution provided

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Evaluation of Models. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Evaluation of Models. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Evaluation of Models Niels andwehr earning and Prediction Classification, Regression: earning problem Input: training data Output:

More information

Lecture 9: Classification and Regression Trees

Lecture 9: Classification and Regression Trees Lecture 9: Classification and Regression Trees Advanced Applied Multivariate Analysis STAT 2221, Spring 2015 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department of Mathematical

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

Quantile Regression. By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting

Quantile Regression. By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting Quantile Regression By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting Agenda Overview of Predictive Modeling for P&C Applications Quantile

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Non linearity issues in PD modelling. Amrita Juhi Lucas Klinkers

Non linearity issues in PD modelling. Amrita Juhi Lucas Klinkers Non linearity issues in PD modelling Amrita Juhi Lucas Klinkers May 2017 Content Introduction Identifying non-linearity Causes of non-linearity Performance 2 Content Introduction Identifying non-linearity

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

Top-down particle filtering for Bayesian decision trees

Top-down particle filtering for Bayesian decision trees Top-down particle filtering for Bayesian decision trees Balaji Lakshminarayanan 1, Daniel M. Roy 2 and Yee Whye Teh 3 1. Gatsby Unit, UCL, 2. University of Cambridge and 3. University of Oxford Outline

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

The Loans_processed.csv file is the dataset we obtained after the pre-processing part where the clean-up python code was used.

The Loans_processed.csv file is the dataset we obtained after the pre-processing part where the clean-up python code was used. Machine Learning Group Homework 3 MSc Business Analytics Team 9 Alexander Romanenko, Artemis Tomadaki, Justin Leiendecker, Zijun Wei, Reza Brianca Widodo The Loans_processed.csv file is the dataset we

More information

Data Mining Applications in Health Insurance

Data Mining Applications in Health Insurance Data Mining Applications in Health Insurance Salford Systems Data Mining Conference New York, NY March 28-30, 2005 Lijia Guo,, PhD, ASA, MAAA University of Central Florida 1 Agenda Introductions to Data

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

MDPs and Value Iteration 2/20/17

MDPs and Value Iteration 2/20/17 MDPs and Value Iteration 2/20/17 Recall: State Space Search Problems A set of discrete states A distinguished start state A set of actions available to the agent in each state An action function that,

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

Predicting Foreign Exchange Arbitrage

Predicting Foreign Exchange Arbitrage Predicting Foreign Exchange Arbitrage Stefan Huber & Amy Wang 1 Introduction and Related Work The Covered Interest Parity condition ( CIP ) should dictate prices on the trillion-dollar foreign exchange

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

Genetic Algorithms Overview and Examples

Genetic Algorithms Overview and Examples Genetic Algorithms Overview and Examples Cse634 DATA MINING Professor Anita Wasilewska Computer Science Department Stony Brook University 1 Genetic Algorithm Short Overview INITIALIZATION At the beginning

More information

LendingClub Loan Default and Profitability Prediction

LendingClub Loan Default and Profitability Prediction LendingClub Loan Default and Profitability Prediction Peiqian Li peiqian@stanford.edu Gao Han gh352@stanford.edu Abstract Credit risk is something all peer-to-peer (P2P) lending investors (and bond investors

More information

Anurag Sodhi University of North Carolina at Charlotte

Anurag Sodhi University of North Carolina at Charlotte American Put Option pricing using Least squares Monte Carlo method under Bakshi, Cao and Chen Model Framework (1997) and comparison to alternative regression techniques in Monte Carlo Anurag Sodhi University

More information

Extending MCTS

Extending MCTS Extending MCTS 2-17-16 Reading Quiz (from Monday) What is the relationship between Monte Carlo tree search and upper confidence bound applied to trees? a) MCTS is a type of UCT b) UCT is a type of MCTS

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

Numerical investigation on multiclass probabilistic classification of damage location in a plate structure

Numerical investigation on multiclass probabilistic classification of damage location in a plate structure Numerical investigation on multiclass probabilistic classification of damage location in a plate structure Rims Janeliukstis *, Sandris Rucevskis, Andrejs Kovalovs and Andris Chate Institute of Materials

More information

Budget Management In GSP (2018)

Budget Management In GSP (2018) Budget Management In GSP (2018) Yahoo! March 18, 2018 Miguel March 18, 2018 1 / 26 Today s Presentation: Budget Management Strategies in Repeated auctions, Balseiro, Kim, and Mahdian, WWW2017 Learning

More information

Parameterized Expectations

Parameterized Expectations Parameterized Expectations A Brief Introduction Craig Burnside Duke University November 2006 Craig Burnside (Duke University) Parameterized Expectations November 2006 1 / 10 Parameterized Expectations

More information

Session 57PD, Predicting High Claimants. Presenters: Zoe Gibbs Brian M. Hartman, ASA. SOA Antitrust Disclaimer SOA Presentation Disclaimer

Session 57PD, Predicting High Claimants. Presenters: Zoe Gibbs Brian M. Hartman, ASA. SOA Antitrust Disclaimer SOA Presentation Disclaimer Session 57PD, Predicting High Claimants Presenters: Zoe Gibbs Brian M. Hartman, ASA SOA Antitrust Disclaimer SOA Presentation Disclaimer Using Asymmetric Cost Matrices to Optimize Wellness Intervention

More information

Enforcing monotonicity of decision models: algorithm and performance

Enforcing monotonicity of decision models: algorithm and performance Enforcing monotonicity of decision models: algorithm and performance Marina Velikova 1 and Hennie Daniels 1,2 A case study of hedonic price model 1 Tilburg University, CentER for Economic Research,Tilburg,

More information

Announcements. Today s Menu

Announcements. Today s Menu Announcements Reading Assignment: > Nilsson chapters 13-14 Announcements: > LISP and Extra Credit Project Assigned Today s Handouts in WWW: > Homework 9-13 > Outline for Class 25 > www.mil.ufl.edu/eel5840

More information

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence

More information

Scenario reduction and scenario tree construction for power management problems

Scenario reduction and scenario tree construction for power management problems Scenario reduction and scenario tree construction for power management problems N. Gröwe-Kuska, H. Heitsch and W. Römisch Humboldt-University Berlin Institute of Mathematics Page 1 of 20 IEEE Bologna POWER

More information

A new look at tree based approaches

A new look at tree based approaches A new look at tree based approaches Xifeng Wang University of North Carolina Chapel Hill xifeng@live.unc.edu April 18, 2018 Xifeng Wang (UNC-Chapel Hill) Short title April 18, 2018 1 / 27 Outline of this

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

Algorithmic and High-Frequency Trading

Algorithmic and High-Frequency Trading LOBSTER June 2 nd 2016 Algorithmic and High-Frequency Trading Julia Schmidt Overview Introduction Market Making Grossman-Miller Market Making Model Trading Costs Measuring Liquidity Market Making using

More information

Behavioral patterns of long term saving : Predictive analysis of adverse behaviors on a savings portfolio

Behavioral patterns of long term saving : Predictive analysis of adverse behaviors on a savings portfolio Behavioral patterns of long term saving : Predictive analysis of adverse behaviors on a savings portfolio Introduction What is the context of this case study and what about the underlying challenges? Introduction

More information

MS&E 448 Final Presentation High Frequency Algorithmic Trading

MS&E 448 Final Presentation High Frequency Algorithmic Trading MS&E 448 Final Presentation High Frequency Algorithmic Trading Francis Choi George Preudhomme Nopphon Siranart Roger Song Daniel Wright Stanford University June 6, 2017 High-Frequency Trading MS&E448 June

More information

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Simerjot Kaur (sk3391) Stanford University Abstract This work presents a novel algorithmic trading system based on reinforcement

More information

Intro to Reinforcement Learning. Part 3: Core Theory

Intro to Reinforcement Learning. Part 3: Core Theory Intro to Reinforcement Learning Part 3: Core Theory Interactive Example: You are the algorithm! Finite Markov decision processes (finite MDPs) dynamics p p p Experience: S 0 A 0 R 1 S 1 A 1 R 2 S 2 A 2

More information

Predicting and Preventing Credit Card Default

Predicting and Preventing Credit Card Default Predicting and Preventing Credit Card Default Project Plan MS-E2177: Seminar on Case Studies in Operations Research Client: McKinsey Finland Ari Viitala Max Merikoski (Project Manager) Nourhan Shafik 21.2.2018

More information

Claim Risk Scoring using Survival Analysis Framework and Machine Learning with Random Forest

Claim Risk Scoring using Survival Analysis Framework and Machine Learning with Random Forest Paper 2521-2018 Claim Risk Scoring using Survival Analysis Framework and Machine Learning with Random Forest Yuriy Chechulin, Jina Qu, Terrance D'souza Workplace Safety and Insurance Board of Ontario,

More information

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration COS402- Artificial Intelligence Fall 2015 Lecture 17: MDP: Value Iteration and Policy Iteration Outline The Bellman equation and Bellman update Contraction Value iteration Policy iteration The Bellman

More information

Tests for Intraclass Correlation

Tests for Intraclass Correlation Chapter 810 Tests for Intraclass Correlation Introduction The intraclass correlation coefficient is often used as an index of reliability in a measurement study. In these studies, there are K observations

More information

Lasso and Ridge Quantile Regression using Cross Validation to Estimate Extreme Rainfall

Lasso and Ridge Quantile Regression using Cross Validation to Estimate Extreme Rainfall Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 3 (2016), pp. 3305 3314 Research India Publications http://www.ripublication.com/gjpam.htm Lasso and Ridge Quantile Regression

More information

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE Rollout algorithms Cost improvement property Discrete deterministic problems Approximations of rollout algorithms Discretization of continuous time

More information

Market Variables and Financial Distress. Giovanni Fernandez Stetson University

Market Variables and Financial Distress. Giovanni Fernandez Stetson University Market Variables and Financial Distress Giovanni Fernandez Stetson University In this paper, I investigate the predictive ability of market variables in correctly predicting and distinguishing going concern

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Test #1 (Solution Key)

Test #1 (Solution Key) STAT 47/67 Test #1 (Solution Key) 1. (To be done by hand) Exploring his own drink-and-drive habits, a student recalls the last 7 parties that he attended. He records the number of cans of beer he drank,

More information

WesVar uses repeated replication variance estimation methods exclusively and as a result does not offer the Taylor Series Linearization approach.

WesVar uses repeated replication variance estimation methods exclusively and as a result does not offer the Taylor Series Linearization approach. CHAPTER 9 ANALYSIS EXAMPLES REPLICATION WesVar 4.3 GENERAL NOTES ABOUT ANALYSIS EXAMPLES REPLICATION These examples are intended to provide guidance on how to use the commands/procedures for analysis of

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Computational Intelligence in the Development of Derivative s Pricing,Arbitrage and Hedging

Computational Intelligence in the Development of Derivative s Pricing,Arbitrage and Hedging Computational Intelligence in the Development of Derivative s Pricing,Arbitrage and Hedging Wo-Chiang Lee Department of Finance and Banking,Aletheia University AI-ECON Research Group August 20,2004 Outline

More information

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS001) p approach

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS001) p approach Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS001) p.5901 What drives short rate dynamics? approach A functional gradient descent Audrino, Francesco University

More information

Frequency of Price Adjustment and Pass-through

Frequency of Price Adjustment and Pass-through Frequency of Price Adjustment and Pass-through Gita Gopinath Harvard and NBER Oleg Itskhoki Harvard CEFIR/NES March 11, 2009 1 / 39 Motivation Micro-level studies document significant heterogeneity in

More information

The Balance-Matching Heuristic *

The Balance-Matching Heuristic * How Do Americans Repay Their Debt? The Balance-Matching Heuristic * John Gathergood Neale Mahoney Neil Stewart Jörg Weber February 6, 2019 Abstract In Gathergood et al. (forthcoming), we studied credit

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

A Hidden Markov Model Approach to Information-Based Trading: Theory and Applications

A Hidden Markov Model Approach to Information-Based Trading: Theory and Applications A Hidden Markov Model Approach to Information-Based Trading: Theory and Applications Online Supplementary Appendix Xiangkang Yin and Jing Zhao La Trobe University Corresponding author, Department of Finance,

More information

Econometrics is. The estimation of relationships suggested by economic theory

Econometrics is. The estimation of relationships suggested by economic theory Econometrics is Econometrics is The estimation of relationships suggested by economic theory Econometrics is The estimation of relationships suggested by economic theory The application of mathematical

More information

GMM for Discrete Choice Models: A Capital Accumulation Application

GMM for Discrete Choice Models: A Capital Accumulation Application GMM for Discrete Choice Models: A Capital Accumulation Application Russell Cooper, John Haltiwanger and Jonathan Willis January 2005 Abstract This paper studies capital adjustment costs. Our goal here

More information

Stock Trading Following Stock Price Index Movement Classification Using Machine Learning Techniques

Stock Trading Following Stock Price Index Movement Classification Using Machine Learning Techniques Stock Trading Following Stock Price Index Movement Classification Using Machine Learning Techniques 6.1 Introduction Trading in stock market is one of the most popular channels of financial investments.

More information

Automated Options Trading Using Machine Learning

Automated Options Trading Using Machine Learning 1 Automated Options Trading Using Machine Learning Peter Anselmo and Karen Hovsepian and Carlos Ulibarri and Michael Kozloski Department of Management, New Mexico Tech, Socorro, NM 87801, U.S.A. We summarize

More information

CS188 Spring 2012 Section 4: Games

CS188 Spring 2012 Section 4: Games CS188 Spring 2012 Section 4: Games 1 Minimax Search In this problem, we will explore adversarial search. Consider the zero-sum game tree shown below. Trapezoids that point up, such as at the root, represent

More information

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity Coralia Cartis, Nick Gould and Philippe Toint Department of Mathematics,

More information

A Multi-topic Approach to Building Quant Models. Bringing Semantic Intelligence to Financial Markets

A Multi-topic Approach to Building Quant Models. Bringing Semantic Intelligence to Financial Markets A Multi-topic Approach to Building Quant Models Bringing Semantic Intelligence to Financial Markets Data is growing at an incredible speed Source: IDC - 2014, Structured Data vs. Unstructured Data: The

More information

Algorithms and Networking for Computer Games

Algorithms and Networking for Computer Games Algorithms and Networking for Computer Games Chapter 4: Game Trees http://www.wiley.com/go/smed Game types perfect information games no hidden information two-player, perfect information games Noughts

More information

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Aku Seppänen Inverse Problems Group Department of Applied Physics University of Eastern Finland

More information

Table of Contents. New to the Second Edition... Chapter 1: Introduction : Social Research...

Table of Contents. New to the Second Edition... Chapter 1: Introduction : Social Research... iii Table of Contents Preface... xiii Purpose... xiii Outline of Chapters... xiv New to the Second Edition... xvii Acknowledgements... xviii Chapter 1: Introduction... 1 1.1: Social Research... 1 Introduction...

More information

Prediction of Stock Closing Price by Hybrid Deep Neural Network

Prediction of Stock Closing Price by Hybrid Deep Neural Network Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2018, 5(4): 282-287 Research Article ISSN: 2394-658X Prediction of Stock Closing Price by Hybrid Deep Neural Network

More information

Online Appendices Practical Procedures to Deal with Common Support Problems in Matching Estimation

Online Appendices Practical Procedures to Deal with Common Support Problems in Matching Estimation Online Appendices Practical Procedures to Deal with Common Support Problems in Matching Estimation Michael Lechner Anthony Strittmatter April 30, 2014 Abstract This paper assesses the performance of common

More information

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models Math. Program., Ser. A DOI 10.1007/s10107-017-1137-4 FULL LENGTH PAPER Global convergence rate analysis of unconstrained optimization methods based on probabilistic models C. Cartis 1 K. Scheinberg 2 Received:

More information

Approximating a life table by linear combinations of exponential distributions and valuing life-contingent options

Approximating a life table by linear combinations of exponential distributions and valuing life-contingent options Approximating a life table by linear combinations of exponential distributions and valuing life-contingent options Zhenhao Zhou Department of Statistics and Actuarial Science The University of Iowa Iowa

More information

Option Pricing Using Bayesian Neural Networks

Option Pricing Using Bayesian Neural Networks Option Pricing Using Bayesian Neural Networks Michael Maio Pires, Tshilidzi Marwala School of Electrical and Information Engineering, University of the Witwatersrand, 2050, South Africa m.pires@ee.wits.ac.za,

More information

Econ 582 Nonlinear Regression

Econ 582 Nonlinear Regression Econ 582 Nonlinear Regression Eric Zivot June 3, 2013 Nonlinear Regression In linear regression models = x 0 β (1 )( 1) + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β it is assumed that the regression

More information

Predicting Economic Recession using Data Mining Techniques

Predicting Economic Recession using Data Mining Techniques Predicting Economic Recession using Data Mining Techniques Authors Naveed Ahmed Kartheek Atluri Tapan Patwardhan Meghana Viswanath Predicting Economic Recession using Data Mining Techniques Page 1 Abstract

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

Approximate Composite Minimization: Convergence Rates and Examples

Approximate Composite Minimization: Convergence Rates and Examples ISMP 2018 - Bordeaux Approximate Composite Minimization: Convergence Rates and S. Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi MLO Lab, EPFL, Switzerland sebastian.stich@epfl.ch July 4, 2018

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

Multidimensional Monotonicity Discovery with mbart

Multidimensional Monotonicity Discovery with mbart Multidimensional Monotonicity Discovery with mart Rob McCulloch Arizona State Collaborations with: Hugh Chipman (Acadia), Edward George (Wharton, University of Pennsylvania), Tom Shively (UT Austin) October

More information

Estimation Procedure for Parametric Survival Distribution Without Covariates

Estimation Procedure for Parametric Survival Distribution Without Covariates Estimation Procedure for Parametric Survival Distribution Without Covariates The maximum likelihood estimates of the parameters of commonly used survival distribution can be found by SAS. The following

More information

Part 1 Back Testing Quantitative Trading Strategies

Part 1 Back Testing Quantitative Trading Strategies Part 1 Back Testing Quantitative Trading Strategies A Guide to Your Team Project 1 of 21 February 27, 2017 Pre-requisite The most important ingredient to any quantitative trading strategy is data that

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Markov Decision Processes. Lirong Xia

Markov Decision Processes. Lirong Xia Markov Decision Processes Lirong Xia Today ØMarkov decision processes search with uncertain moves and infinite space ØComputing optimal policy value iteration policy iteration 2 Grid World Ø The agent

More information

Session 5. A brief introduction to Predictive Modeling

Session 5. A brief introduction to Predictive Modeling SOA Predictive Analytics Seminar Malaysia 27 Aug. 2018 Kuala Lumpur, Malaysia Session 5 A brief introduction to Predictive Modeling Lichen Bao, Ph.D A Brief Introduction to Predictive Modeling LICHEN BAO

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

Risk premia in electricity spot markets - New empirical evidence for Germany and Austria

Risk premia in electricity spot markets - New empirical evidence for Germany and Austria Risk premia in electricity spot markets - New empirical evidence for Germany and Austria Niyaz Valitov Schumpeter School of Business and Economics University of Wuppertal, Germany valitov@wiwi.uni-wuppertal.de

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b Chris Edmond hcpedmond@unimelb.edu.aui Aiyagari s model Arguably the most popular example of a simple incomplete markets model is due to Rao Aiyagari (1994,

More information