A model for determining the optimal base stock level when the lead time has a change of distribution property

Size: px
Start display at page:

Download "A model for determining the optimal base stock level when the lead time has a change of distribution property"

Transcription

1 A model for determining the optimal base stock level when the lead time has a change of distribution property R.Jagatheesan 1, S.Sachithanantham 2 1 Research scholar, ManonmaniamSundaranar University, Tirunelveli 12, Tamil Nadu, India. 2 Arignar Anna Government Arts College, Viluppuram, Tamil Nadu, India, rjm.maths@gmail.com 1,sachin7676@yahoo.com 2 AbstractA new type of inventory model using the so called Change of Distribution property is analyzed in this paper. Base Stock system for patient customers is a special type of ordering mechanism in inventory control theory. The inventory process begins with an initial inventory of B units. Whenever a customer s order for r units is received, an inventory replenishment order of r units is placed. Replenishment orders are fulfilled after the lead time L. If the demand exceeds the stock on hand, then assume that the customer will not cancel the order but await the arrival of sufficient stock. Here we assume that L is a random variable and it satisfies the Change of Distribution property and so the distribution undergoes a parametric change after the truncation point. Assuming that the truncation point is a random variable which has the mixed exponential distribution, the optimal value of Base Stock is derived. Index Terms Base Stock, Lead time, Change of Distribution propertyand Truncation point. 1. INTRODUCTION In inventory control theory, one of the important and fame model is Base Stock system for patient customers and these models have been discussed by many authors. Base Stock system for patient customers is an interesting method of ordering mechanism. The inventory initially begins with B number of units. Whenever a customer order for r units is received, an inventory replenishment order for r units is placed immediately. Replenishment orders are filled after the lead time L. The customer s demand is met with as far as possible from the supply on hand. If the total unfilled customer s demand exceeds the supply on hand, then assume that the customer will not cancel the orders but the customers will wait till their requirement is fulfilled. The sum of inventory on hand and order placed is constant in time and equal to B, called as Base Stock. The detailed study of the Base Stock system for patient customers has been discussed by Gaver 1959). The very basic model for base stock system has been discussed by Hanssman 1962). In the sense that after the truncation point the lead time takes parametric change. The change point known as the truncation point and is also assumed to be a random variable. The very basic concept of Change of Distribution property was discussed by Stangl 1995). Ramanarayanan et.al 1998) have discussed the model in which the lead time was assumed to be a random variable. Suresh Kumar 2006) has used this concept in the stock model approach. Sachithanantham et. al 2008) have discussed the modified version of the Base Stock model in which the lead time is assumed to be a random variable and which satisfies the so called Change of distribution property. Henry et. al 2011) have discussed the base stock system for patient customers with the assumptions that the lead time random variable is continuous and it undergoes the Change of distribution property with the assumption that the truncation point itself a random variable, which follows exponential with parameter. The Change of distribution property refers that a random variable takes different probability function after the certain point known as truncation point. In this paper, it is assumed that the lead time random variable has Change of distribution property and the change point itself a random variable, which has the mixed exponential distribution. Under this assumption, the optimal Base Stock level is derived. 2. NOTATIONS B : The Base Stock level. L : A random variable denoting the lead time with the pdf is k.). U : Random variable denoting the interarrival times between successive demands during the lead time with Pdf g.) and cdf G.). : Parameter of inter arrival time distribution. 2019

2 G n.) : The n th convolution of G.). X i : A random variable denoting the magnitude of demand at the i th demand epoch with pdf f.) and F.) is the cdf and X i ~ exp, i = 1,2,3,..n. µ : Parameter of demand distribution. F k.) : The k th convolution of F.). h : Inventory holding cost / unit / time. d : Shortage cost / unit / time. 3. PROBLEM FORMATION Consider the Base Stock system, in which let X be the amount of demand during the lead time L. If fx) is the probability density function of demand, then the Expected Cost per unit time of overages and shortages attributed to the inventory on ground is, Therefore the optimal Base Stock, can be obtained by using. It follows that F 1) Here Fx) is distribution of fx). If there are N demand epochs during L and N is a random variable then the probability that there are exactly n demand during L is [ ] [from the renewal theory arguments] Let X be the total demand during L, say X = X 1 X 2..X N, then the total demand is at the most x, during L, is given by [ ] [ ] Therefore, the expected cost is, [ ] Thus the optimal Base Stock is given by F = [ ] Hence, [ ] 2) In the above, we assume that the lead time L be a continuous random variable with probability density function K.). For the sake of convenience, take L= Y. Therefore the optimal Base Stock is given by [ ] 3) 2020

3 4. DEFINITIONS AND ASSUMPTIONS 4.1. Definition Setting the Clock Back to Zero property SCBZ property) The special property known as Setting the Clock Back to Zero property SCBZ property)is due torajarao. B and Talwaker [4].The family of life distributions {, 0, ϵ Ω } is said to have be SCBZ property is the form of remains unchanged except for value of the parameter. i.e., where ϵ Ω Under the following three operations i) Truncating original distribution of some point 0 ii) Considering the observable distribution for life time and iii) Changing the origin by means of the transformation given by =, 0, where is a Truncation point Assumptions 1. The lead time is continuous random variable and its probability density function undergoes change of distribution property after the truncation point. Here the pdf of lead time random variable is x if X X fx { x if X > X Where is a Truncation point. 2. The truncation point is a random variable, which follows Uniform distribution Hence, f f > Here 3. The interarrival times between successive demand epochs are i.i.d random variables and are assumed to be followed as exponential with parameter 5. MAIN RESULTS In this paper, an improvised model for base stock system for patient customers is discussed with the assumption that the lead time random variable has Change of distribution. It is also assumed that the truncation point itself a random variable, which has Uniform distribution with parameter and. Based on these assumptions the optimal level of base stock system is derived and the variations in the optimal level of base stock with reference to various parameters like holding cost, shortage cost, parameter of inter arrival time distribution and the parameter of demand distribution is studied with the help of numerical illustrations., [ ] 4), > here, 2021

4 [ ] [ ] Hence, [ ], [ ],, [ ],, [ ] [ ] [ ] consider, Consider,, ) ) ) 2022

5 Consider ) ),,,, [ ],, [ ] [ ], [ ] [ ], [ ] Therefore,, ) ), ),,, Hence,,[ { }], [ ] Since the probability distribution of demand at the i th demand epoch is exponential with parameter, 2023

6 ,[ { }], [ ] { }, [ ] { } [ ) ] ) [ ], 2024

7 B International Journal of Research in Advent Technology, Vol.6, No.8, August 2018 [ ] ) ), ) ), ) For the fixed values of h, d,, and n, the optimal value of B, can be obtained. 6. NUMERICAL ILLUSTRATIONS The variations in the values of optimal,consequent on the changes in the parametersh, d, and µ have been studied by taking numerical illustrations. The tables and the corresponding graphs are given Casei) For the fixed values of d=3, =2, β=6, =4, = 4, =1, µ=1.5, and n = 5, the optimal value of B is obtained when the variations of h. Table1.The variations in for the changes in the value of h. h h B Fig. 1.The variations in for the changes in the value of h 2025

8 B B B International Journal of Research in Advent Technology, Vol.6, No.8, August Caseii) For the fixed values of h = 5, =2, β=6, =4, = 4, =1, µ=1.5, and n = 5, the optimal value of B is obtained when the variations of d. Table 2. The variations in for the changes in the value ofd. d B Table 4. The variations in for the changes in the value of B Caseiii) For the fixed values of h = 5, d= 3, β=6, =4, = 4, =1, µ=1.5, and n = 5, the optimal value of B is obtained when the variations of µ Table 3. The variations in for the changes in the value of B Fig.4.The variations in for the changes in the value of. 7. FINDINGS AND CONCLUSIONS From the tables and graphs, it is observed that, As the holding cost h) increases, the optimal Base Stock decreases. Hence it suggests less base stock Caseiv) For the fixed values of h = 5, d= 3, β=6, =4, = 4, =1, and n = 5, the optimal value of B is obtained when the variations of Fig. 2.The variations in for the changes in the value of d. d Fig. 3. The variations in for the changes in the value of. λ 2026

9 As the shortage cost d) increases, the optimal Base Stock increases and it tells us to maintain the more base stock level. As, the parameter of inter arrival time distribution between demand epochs increases, the optimal Base Stock decreases. It is inferred that the total demand is distributed at different demand epochs with lesser demand and it suggest lesser base stock level. As µ), the parameter of demand distribution increases, the optimal Base Stock decreases. It is inferred that the average demand is distributed at different demand epochs with lesser demand and it suggest lesser base stock level. REFFERENCES [1] D.P.,Jr.Gaver. On Base Stock Level Inventory Control. Operations Res. 7: , [2] F. Hanssmann. Operations Research in Production and Inventory Control. John Wiley and sons, inc. New York, [3] B. Raja Rao. Life Expectancy for a class of life distributions having the setting the Clock back to Zero property. Mathematical BioSciences, 98, pp , [4] R. Ramanarayanan,V. Ramachandran and R. Sathiyamoorthi, Base Stock system for patient customers when inter arrival times of demands are dependent. ASR. Vol. 2. No. 1, pp 16, [5] D.K. Stangl. Exponential change point model, statistics in Medicine, Vol.14, pp , [6] R. Suresh Kumar. Shock Model when the threshold has a change of Distribution after a change point. Journal of Indian Acad Math, Vol.28,No.1):pp.7384, [7] S. Sachithanantham, V.Ganesan. and R. Sathiyamoorthi. A model of Base Stock system for patient customers with lead time distribution undergoing a parametric change Journal of Ultra scientist of physical sciences. Vol.20No.3)M, pp , [8] L. Henry, C. Selvaraj and S. Sachithanantham. A Model for Base stock system for patient customers with lead time having a change of distribution, Journal of Ultra scientist of physical sciences. Vol.23No.3A), pp ,

Volume 5, No.7, July Journal of Global Research in Mathematical Archives. UGC Approved Journal RESEARCH PAPER

Volume 5, No.7, July Journal of Global Research in Mathematical Archives. UGC Approved Journal RESEARCH PAPER Volume 5, No.7, July 2018 Journal of Global Research in Mathematical Archives UGC Approved Journal RESEARCH PAPER Available online at http://www.jgrma.info VARIANCE OF TIME TO RECRUITMENT FOR A TWO GRADED

More information

GENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy

GENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy GENERATION OF STANDARD NORMAL RANDOM NUMBERS Naveen Kumar Boiroju and M. Krishna Reddy Department of Statistics, Osmania University, Hyderabad- 500 007, INDIA Email: nanibyrozu@gmail.com, reddymk54@gmail.com

More information

SAMPLE STANDARD DEVIATION(s) CHART UNDER THE ASSUMPTION OF MODERATENESS AND ITS PERFORMANCE ANALYSIS

SAMPLE STANDARD DEVIATION(s) CHART UNDER THE ASSUMPTION OF MODERATENESS AND ITS PERFORMANCE ANALYSIS Science SAMPLE STANDARD DEVIATION(s) CHART UNDER THE ASSUMPTION OF MODERATENESS AND ITS PERFORMANCE ANALYSIS Kalpesh S Tailor * * Assistant Professor, Department of Statistics, M K Bhavnagar University,

More information

STUDIES ON INVENTORY MODEL FOR DETERIORATING ITEMS WITH WEIBULL REPLENISHMENT AND GENERALIZED PARETO DECAY HAVING SELLING PRICE DEPENDENT DEMAND

STUDIES ON INVENTORY MODEL FOR DETERIORATING ITEMS WITH WEIBULL REPLENISHMENT AND GENERALIZED PARETO DECAY HAVING SELLING PRICE DEPENDENT DEMAND International Journal of Education & Applied Sciences Research (IJEASR) ISSN: 2349 2899 (Online) ISSN: 2349 4808 (Print) Available online at: http://www.arseam.com Instructions for authors and subscription

More information

Financial Risk Forecasting Chapter 9 Extreme Value Theory

Financial Risk Forecasting Chapter 9 Extreme Value Theory Financial Risk Forecasting Chapter 9 Extreme Value Theory Jon Danielsson 2017 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com Published by Wiley 2011

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

A lower bound on seller revenue in single buyer monopoly auctions

A lower bound on seller revenue in single buyer monopoly auctions A lower bound on seller revenue in single buyer monopoly auctions Omer Tamuz October 7, 213 Abstract We consider a monopoly seller who optimally auctions a single object to a single potential buyer, with

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES DISCRETE RANDOM VARIABLE: Variable can take on only certain specified values. There are gaps between possible data values. Values may be counting numbers or

More information

Truncated Life Test Sampling Plan under Log-Logistic Model

Truncated Life Test Sampling Plan under Log-Logistic Model ISSN: 231-753 (An ISO 327: 2007 Certified Organization) Truncated Life Test Sampling Plan under Log-Logistic Model M.Gomathi 1, Dr. S. Muthulakshmi 2 1 Research scholar, Department of mathematics, Avinashilingam

More information

On the Distribution and Its Properties of the Sum of a Normal and a Doubly Truncated Normal

On the Distribution and Its Properties of the Sum of a Normal and a Doubly Truncated Normal The Korean Communications in Statistics Vol. 13 No. 2, 2006, pp. 255-266 On the Distribution and Its Properties of the Sum of a Normal and a Doubly Truncated Normal Hea-Jung Kim 1) Abstract This paper

More information

Cumulative Impact of Channels Characterized by Log-normal Distribution on Risk

Cumulative Impact of Channels Characterized by Log-normal Distribution on Risk Cumulative Impact of Channels Characterized by Log-normal Distribution on Risk Di Jin, Dianchao Liu, Pramode Verma School of Electrical and Computer Engineering University of Oklahoma Tulsa, OK, USA Email:

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016 Probability Theory Probability and Statistics for Data Science CSE594 - Spring 2016 What is Probability? 2 What is Probability? Examples outcome of flipping a coin (seminal example) amount of snowfall

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

Estimating Parameters for Incomplete Data. William White

Estimating Parameters for Incomplete Data. William White Estimating Parameters for Incomplete Data William White Insurance Agent Auto Insurance Agency Task Claims in a week 294 340 384 457 680 855 974 1193 1340 1884 2558 9743 Boss, Is this a good representation

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Section 3.1: Discrete Event Simulation

Section 3.1: Discrete Event Simulation Section 3.1: Discrete Event Simulation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 3.1: Discrete Event Simulation

More information

A Convenient Way of Generating Normal Random Variables Using Generalized Exponential Distribution

A Convenient Way of Generating Normal Random Variables Using Generalized Exponential Distribution A Convenient Way of Generating Normal Random Variables Using Generalized Exponential Distribution Debasis Kundu 1, Rameshwar D. Gupta 2 & Anubhav Manglick 1 Abstract In this paper we propose a very convenient

More information

Modified ratio estimators of population mean using linear combination of co-efficient of skewness and quartile deviation

Modified ratio estimators of population mean using linear combination of co-efficient of skewness and quartile deviation CSIRO PUBLISHING The South Pacific Journal of Natural and Applied Sciences, 31, 39-44, 2013 www.publish.csiro.au/journals/spjnas 10.1071/SP13003 Modified ratio estimators of population mean using linear

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULA-AR-GARCH MODEL

MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULA-AR-GARCH MODEL MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULA-AR-GARCH MODEL Isariya Suttakulpiboon MSc in Risk Management and Insurance Georgia State University, 30303 Atlanta, Georgia Email: suttakul.i@gmail.com,

More information

Study on Measurement and Management of Cash Flow Efficiency of Tata Steel Limited (Standalone Company)

Study on Measurement and Management of Cash Flow Efficiency of Tata Steel Limited (Standalone Company) Study on Measurement and Management of Cash Flow Efficiency of Tata Steel Limited (Standalone Company) R. Sathish Kumar, Department of Commerce, MIET Arts & Science College, Gundur, Tamil Nadu Abstract

More information

2. The sum of all the probabilities in the sample space must add up to 1

2. The sum of all the probabilities in the sample space must add up to 1 Continuous Random Variables and Continuous Probability Distributions Continuous Random Variable: A variable X that can take values on an interval; key feature remember is that the values of the variable

More information

Probability and Statistics

Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be CHAPTER 3: PARAMETRIC FAMILIES OF UNIVARIATE DISTRIBUTIONS 1 Why do we need distributions?

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc.

Chapter 3 Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2013 John Wiley & Sons, Inc. 1 3.1 Describing Variation Stem-and-Leaf Display Easy to find percentiles of the data; see page 69 2 Plot of Data in Time Order Marginal plot produced by MINITAB Also called a run chart 3 Histograms Useful

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

1. For two independent lives now age 30 and 34, you are given:

1. For two independent lives now age 30 and 34, you are given: Society of Actuaries Course 3 Exam Fall 2003 **BEGINNING OF EXAMINATION** 1. For two independent lives now age 30 and 34, you are given: x q x 30 0.1 31 0.2 32 0.3 33 0.4 34 0.5 35 0.6 36 0.7 37 0.8 Calculate

More information

arxiv: v1 [math.pr] 6 Apr 2015

arxiv: v1 [math.pr] 6 Apr 2015 Analysis of the Optimal Resource Allocation for a Tandem Queueing System arxiv:1504.01248v1 [math.pr] 6 Apr 2015 Liu Zaiming, Chen Gang, Wu Jinbiao School of Mathematics and Statistics, Central South University,

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

More On λ κ closed sets in generalized topological spaces

More On λ κ closed sets in generalized topological spaces Journal of Algorithms and Computation journal homepage: http://jac.ut.ac.ir More On λ κ closed sets in generalized topological spaces R. Jamunarani, 1, P. Jeyanthi 2 and M. Velrajan 3 1,2 Research Center,

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Analysis of truncated data with application to the operational risk estimation

Analysis of truncated data with application to the operational risk estimation Analysis of truncated data with application to the operational risk estimation Petr Volf 1 Abstract. Researchers interested in the estimation of operational risk often face problems arising from the structure

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

King Saud University Academic Year (G) College of Sciences Academic Year (H) Solutions of Homework 1 : Selected problems P exam

King Saud University Academic Year (G) College of Sciences Academic Year (H) Solutions of Homework 1 : Selected problems P exam King Saud University Academic Year (G) 6 7 College of Sciences Academic Year (H) 437 438 Mathematics Department Bachelor AFM: M. Eddahbi Solutions of Homework : Selected problems P exam Problem : An auto

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 1.010 Uncertainty in Engineering Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Application Example 18

More information

Optimal Replacement Policy for a Repairable System with Two Types of Failures modesusingalpha Series Process

Optimal Replacement Policy for a Repairable System with Two Types of Failures modesusingalpha Series Process IOSR Journal of Mathematics IOSR-JM e-iss: 78-578, p-iss: 39-765X. Volume, Issue 5 Ver. VI Sep. - Oct.06, 0-5 www.iosrournals.org Optimal Replacement olicy for a Repairable System with Two Types of Failures

More information

GPD-POT and GEV block maxima

GPD-POT and GEV block maxima Chapter 3 GPD-POT and GEV block maxima This chapter is devoted to the relation between POT models and Block Maxima (BM). We only consider the classical frameworks where POT excesses are assumed to be GPD,

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011 ECON 60B Problem Set Suggested Solutions Fall 0 September 7, 0 Optimal Consumption with A Linear Utility Function (Optional) Similar to the example in Lecture 3, the household lives for two periods and

More information

Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard. Single Period Model with No Setup Cost

Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard. Single Period Model with No Setup Cost Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Inventory Theory.4 ingle Period tochastic Inventories This section considers an inventory situation in which the current order

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 12: Continuous Distributions Uniform Distribution Normal Distribution (motivation) Discrete vs Continuous

More information

Dividend Strategies for Insurance risk models

Dividend Strategies for Insurance risk models 1 Introduction Based on different objectives, various insurance risk models with adaptive polices have been proposed, such as dividend model, tax model, model with credibility premium, and so on. In this

More information

Simulation of Moment, Cumulant, Kurtosis and the Characteristics Function of Dagum Distribution

Simulation of Moment, Cumulant, Kurtosis and the Characteristics Function of Dagum Distribution 264 Simulation of Moment, Cumulant, Kurtosis and the Characteristics Function of Dagum Distribution Dian Kurniasari 1*,Yucky Anggun Anggrainy 1, Warsono 1, Warsito 2 and Mustofa Usman 1 1 Department of

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -26 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -26 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -26 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Hydrologic data series for frequency

More information

Likelihood-Based Statistical Estimation From Quantized Data

Likelihood-Based Statistical Estimation From Quantized Data Likelihood-Based Statistical Estimation From Quantized Data by Stephen B. Vardeman * Statistics and IMSE Departments Iowa State University Ames, Iowa vardeman@iastate.edu Chiang-Sheng Lee Department of

More information

BICRITERIA OPTIMIZATION IN THE NEWSVENDOR PROBLEM WITH EXPONENTIALLY DISTRIBUTED DEMAND 1

BICRITERIA OPTIMIZATION IN THE NEWSVENDOR PROBLEM WITH EXPONENTIALLY DISTRIBUTED DEMAND 1 MULTIPLE CRITERIA DECISION MAKING Vol. 11 2016 Milena Bieniek * BICRITERIA OPTIMIZATION IN THE NEWSVENDOR PROBLEM WITH EXPONENTIALLY DISTRIBUTED DEMAND 1 DOI: 10.22367/mcdm.2016.11.02 Abstract In this

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Australian Journal of Basic and Applied Sciences. Conditional Maximum Likelihood Estimation For Survival Function Using Cox Model

Australian Journal of Basic and Applied Sciences. Conditional Maximum Likelihood Estimation For Survival Function Using Cox Model AENSI Journals Australian Journal of Basic and Applied Sciences Journal home page: wwwajbaswebcom Conditional Maximum Likelihood Estimation For Survival Function Using Cox Model Khawla Mustafa Sadiq University

More information

Six Sigma Quick Switching Variables Sampling System Indexed by Six Sigma Quality Levels

Six Sigma Quick Switching Variables Sampling System Indexed by Six Sigma Quality Levels Six Sigma Quick Switching Variables Sampling System Indexed by Six Sigma Quality Levels Dr D Senthilkumar Associate Professor Department of Statistics, PSG College of Arts and Science, Coimbatore 64 04

More information

Random variables. Contents

Random variables. Contents Random variables Contents 1 Random Variable 2 1.1 Discrete Random Variable............................ 3 1.2 Continuous Random Variable........................... 5 1.3 Measures of Location...............................

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Survival Analysis APTS 2016/17 Preliminary material

Survival Analysis APTS 2016/17 Preliminary material Survival Analysis APTS 2016/17 Preliminary material Ingrid Van Keilegom KU Leuven (ingrid.vankeilegom@kuleuven.be) August 2017 1 Introduction 2 Common functions in survival analysis 3 Parametric survival

More information

Limits to Arbitrage. George Pennacchi. Finance 591 Asset Pricing Theory

Limits to Arbitrage. George Pennacchi. Finance 591 Asset Pricing Theory Limits to Arbitrage George Pennacchi Finance 591 Asset Pricing Theory I.Example: CARA Utility and Normal Asset Returns I Several single-period portfolio choice models assume constant absolute risk-aversion

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Graduate School of Information Sciences, Tohoku University Aoba-ku, Sendai , Japan

Graduate School of Information Sciences, Tohoku University Aoba-ku, Sendai , Japan POWER LAW BEHAVIOR IN DYNAMIC NUMERICAL MODELS OF STOCK MARKET PRICES HIDEKI TAKAYASU Sony Computer Science Laboratory 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo 141-0022, Japan AKI-HIRO SATO Graduate

More information

FINANCIAL RISK ANALYSIS OF SELECTED AUTOMOBILE INDUSTRIES IN INDIA

FINANCIAL RISK ANALYSIS OF SELECTED AUTOMOBILE INDUSTRIES IN INDIA International Journal of Management (IJM) Volume 8, Issue 6, Nov Dec 2017, pp. 56 61, Article ID: IJM_08_06_006 Available online at http://www.iaeme.com/ijm/issues.asp?jtype=ijm&vtype=8&itype=6 Journal

More information

EX-POST VERIFICATION OF PREDICTION MODELS OF WAGE DISTRIBUTIONS

EX-POST VERIFICATION OF PREDICTION MODELS OF WAGE DISTRIBUTIONS EX-POST VERIFICATION OF PREDICTION MODELS OF WAGE DISTRIBUTIONS LUBOŠ MAREK, MICHAL VRABEC University of Economics, Prague, Faculty of Informatics and Statistics, Department of Statistics and Probability,

More information

Do investors dislike kurtosis? Abstract

Do investors dislike kurtosis? Abstract Do investors dislike kurtosis? Markus Haas University of Munich Abstract We show that decreasing absolute prudence implies kurtosis aversion. The ``proof'' of this relation is usually based on the identification

More information

Determination of Market Clearing Price in Pool Markets with Elastic Demand

Determination of Market Clearing Price in Pool Markets with Elastic Demand Determination of Market Clearing Price in Pool Markets with Elastic Demand ijuna Kunju K and P S Nagendra Rao Department of Electrical Engineering Indian Institute of Science, angalore 560012 kbijuna@gmail.com,

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

On the Use of Stock Index Returns from Economic Scenario Generators in ERM Modeling

On the Use of Stock Index Returns from Economic Scenario Generators in ERM Modeling On the Use of Stock Index Returns from Economic Scenario Generators in ERM Modeling Michael G. Wacek, FCAS, CERA, MAAA Abstract The modeling of insurance company enterprise risks requires correlated forecasts

More information

A Skewed Truncated Cauchy Logistic. Distribution and its Moments

A Skewed Truncated Cauchy Logistic. Distribution and its Moments International Mathematical Forum, Vol. 11, 2016, no. 20, 975-988 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6791 A Skewed Truncated Cauchy Logistic Distribution and its Moments Zahra

More information

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report Author (s): B. L. S. Prakasa Rao Title of the Report: Option pricing for processes driven by mixed fractional

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Improved Inference for Signal Discovery Under Exceptionally Low False Positive Error Rates

Improved Inference for Signal Discovery Under Exceptionally Low False Positive Error Rates Improved Inference for Signal Discovery Under Exceptionally Low False Positive Error Rates (to appear in Journal of Instrumentation) Igor Volobouev & Alex Trindade Dept. of Physics & Astronomy, Texas Tech

More information

Dynamic - Cash Flow Based - Inventory Management

Dynamic - Cash Flow Based - Inventory Management INFORMS Applied Probability Society Conference 2013 -Costa Rica Meeting Dynamic - Cash Flow Based - Inventory Management Michael N. Katehakis Rutgers University July 15, 2013 Talk based on joint work with

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Week 1 Quantitative Analysis of Financial Markets Distributions B

Week 1 Quantitative Analysis of Financial Markets Distributions B Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Hand and Spreadsheet Simulations

Hand and Spreadsheet Simulations 1 / 34 Hand and Spreadsheet Simulations Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 9/8/16 2 / 34 Outline 1 Stepping Through a Differential Equation 2 Monte

More information

Finance Mathematics. Part 1: Terms and their meaning.

Finance Mathematics. Part 1: Terms and their meaning. Finance Mathematics Part 1: Terms and their meaning. Watch the video describing call and put options at http://www.youtube.com/watch?v=efmtwu2yn5q and use http://www.investopedia.com or a search. Look

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Symmetricity of the Sampling Distribution of CV r for Exponential Samples

Symmetricity of the Sampling Distribution of CV r for Exponential Samples World Applied Sciences Journal 17 (Special Issue of Applied Math): 60-65, 2012 ISSN 1818-4952 IDOSI Publications, 2012 Symmetricity of the Sampling Distribution of CV r for Exponential Samples Fauziah

More information

Estimating the Parameters of Closed Skew-Normal Distribution Under LINEX Loss Function

Estimating the Parameters of Closed Skew-Normal Distribution Under LINEX Loss Function Australian Journal of Basic Applied Sciences, 5(7): 92-98, 2011 ISSN 1991-8178 Estimating the Parameters of Closed Skew-Normal Distribution Under LINEX Loss Function 1 N. Abbasi, 1 N. Saffari, 2 M. Salehi

More information

Week 1 Quantitative Analysis of Financial Markets Probabilities

Week 1 Quantitative Analysis of Financial Markets Probabilities Week 1 Quantitative Analysis of Financial Markets Probabilities Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

New Proposed Uniform-Exponential Distribution

New Proposed Uniform-Exponential Distribution Applied Mathematical Sciences, Vol. 7, 2013, no. 141, 7015-7026 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.39526 New Proposed Uniform-Exponential Distribution Kareema Abed AL Kadim

More information