Nonparametric Statistics Notes

Size: px
Start display at page:

Download "Nonparametric Statistics Notes"

Transcription

1 Nonparametric Statistics Notes Chapter 3: Some Tests Based on the Binomial Distribution Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 1 / 29

2 Quantiles Definition Let X be a random variable and 0 p 1. x p is the quantile of order p of X if P(X < x p ) p, and P(X > x p ) 1 p. If more than one number satisfies these conditions, let x p be the midpoint of the interval of numbers satisfying these conditions. Also called the (100p)th percentile. Notation The pth quantile for the N(0, 1) distribution is z p, so P(Z < z p ) = p, and P(Z > z p ) = 1 p. (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 2 / 29

3 Outline 1 Section 3.1: The Binomial Test and Estimation of p 2 Section 3.2: The Quantile Test and Estimation of x p 3 Section 3.4: The Sign Test 4 Section 3.5: Some Variations on the Sign Test (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 3 / 29

4 The Binomial Test Example A machine manufactures parts. p = probability that a part is defective Assume parts are statistically independent. Take a sample of n = 10 parts. Sample contains 4 defective parts. Testing problem: H 0 : p 0.05 vs. H 1 : p > Test statistic T Null distribution of T Decision rule/critical region p-value Power Confidence intervals (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 4 / 29

5 The Binomial Test Data and Assumptions n statistically independent trials Each trial results in class 1 or class 2 p = P(class 1) for a single trial O 1 = number of observations in class 1 Hypothesis Tests H 0 : p = p vs. H 1 : p p H 0 : p p vs. H 1 : p < p H 0 : p p vs. H 1 : p > p (Two-tailed) (Lower-tailed) (Upper-tailed) Test Statistic and Null Distribution Test statistic: T = O 1 Null distribution: T binomial(n, p ) (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 5 / 29

6 Upper-Tailed Binomial Test H 0 : p p vs. H 1 : p > p Test statistic: T = O 1 Null distribution: T binomial(n, p ) Decision rule: Choose t such that P(T t p = p ) 1 α, (Use Table A3 or a normal approximation) Reject H0 if T > t Critical region: [T > t] (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 6 / 29

7 binomial(n = 10, p = 0.05) Significance level = P(T > 2 p = 0.05) = = (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 7 / 29

8 Upper-Tailed Binomial Test H 0 : p p vs. H 1 : p > p Test statistic: T = O 1 Null distribution: T binomial(n, p ) Decision rule: Choose t such that P(T t p = p ) 1 α, (Use Table A3 or a normal approximation) Reject H 0 if T > t Critical region: [T > t] Given T = t obs, the p-value is P(T t obs p = p ). (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 8 / 29

9 binomial(n = 10, p = 0.05) p-value = P(T 4 p = 0.05) = = (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 9 / 29

10 Upper-Tailed Binomial Test H 0 : p p vs. H 1 : p > p Test statistic: T = O 1 Null distribution: T binomial(n, p ) Decision rule: Choose t such that P(T t p = p ) 1 α, (Use Table A3 or a normal approximation) Reject H 0 if T > t Critical region: [T > t] Given T = t obs, the p-value is P(T t obs p = p ). For any value of p, the power is P(T > t p) (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 10 / 29

11 binomial(n = 10, p = 0.3) Power = P(T > 2 p = 0.3) = = (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 11 / 29

12 binomial(n = 10, p = 0.95) Power = P(T > 2 p = 0.95) = = (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 12 / 29

13 Example Normally, at least 50% of men undergoing a prostate cancer operation experience a certain side effect. New method for performing operation. Sample of 19 men. 3 experienced side effect. Is there statistically significant evidence that the new method has a lower chance of producing the side effect? (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 13 / 29

14 Lower-Tailed Binomial Test H 0 : p p vs. H 1 : p < p Test statistic: T = O 1 Null distribution: T binomial(n, p ) Decision rule: Choose t such that P(T t p = p ) α, (Use Table A3 or a normal approximation) Reject H0 if T t Critical region: [T t] Given T = t obs, the p-value is P(T t obs p = p ). For any value of p, the power is P(T t p) (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 14 / 29

15 Normal Approximation for Binomial Quantiles Suppose X binomial(n, p). If np 5, and n(1 p) 5, then the qth quantile of X is approximately x q np + z q np(1 p) Normal Approximation for p-values ( P(T t obs p = p ) P P(T t obs p = p ) P ( Z t obs np np (1 p ) Z t obs np 0.5 np (1 p ) ) ) (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 15 / 29

16 Two-Tailed Binomial Test H 0 : p = p vs. H 1 : p p Test statistic: T = O 1 Null distribution: T binomial(n, p ) Decision rule: Choose t1 and t 2 such that P(T t 1 p = p ) α/2 P(T t 2 p = p ) 1 α/2 (Use Table A3 or a normal approximation) Reject H 0 if T t 1 or T > t 2 Critical region: [T t 1 or T > t 2 ] The p-value is 2 min[p(t t obs p ), P(T t obs p )]. For any value of p, the power is P(T t 1 or T > t 2 p) (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 16 / 29

17 Binomial Distribution: Confidence Interval for p Suppose Y binomial(n, p) If n 30 and the confidence level is 0.9, 0.95, or 0.99, the exact Clopper Pearson confidence interval is given in table A4. If np 5 and n(1 p) 5, we can use the normal approximation Y Y (n Y ) n ± z 1 α/2 n 3 Note that this is the same as where ˆp = Y /n. ˆp(1 ˆp) ˆp ± z 1 α/2, n (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 17 / 29

18 Outline 1 Section 3.1: The Binomial Test and Estimation of p 2 Section 3.2: The Quantile Test and Estimation of x p 3 Section 3.4: The Sign Test 4 Section 3.5: Some Variations on the Sign Test (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 18 / 29

19 The Quantile Test Example Random sample of standardized test scores: Test whether the 75th percentile of the scores in the population is equal to 193. H 0 : x 0.75 = 193 vs. H 1 : x (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 19 / 29

20 Two-Tailed Quantile Test Assumption: X 1,..., X p is a random sample (they are IID) from a distribution whose measurement scale is at least ordinal. H 0 : x p = x vs. H 1 : x p x Test statistics: T 1 = # of X i s less than or equal to x T 2 = # of X i s less than x Null distributions for both T 1 and T 2 : binomial(n, p ) Decision rule: Let Y represent a binomial(n, p ) random variable. Choose t 1 and t 2 such that P(Y t 1 ) α/2 P(Y t 2 ) 1 α/2 (Use Table A3 or a normal approximation) Reject H0 if T 1 t 1 or T 2 > t 2. Critical region: [T 1 t 1 or T 2 > t 2 ] (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 20 / 29

21 Example Random sample of standardized test scores: H 0 : x 0.75 = 193 vs. H 1 : x T 1 = # of X i s less than or equal to x T 2 = # of X i s less than x Choose t 1 and t 2 such that P(Y t 1 ) α/2 P(Y t 2 ) 1 α/2 Reject H 0 if T 1 t 1 or T 2 > t 2 (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 21 / 29

22 Lower-Tailed Quantile Test H 0 : x p x vs. H 1 : x p > x Test statistic: T 1 = # of X i s less than or equal to x Null distribution: T 1 binomial(n, p ) Decision rule: Let Y represent a binomial(n, p ) random variable. Choose t 1 such that P(Y t 1 ) α (Use Table A3 or a normal approximation) Reject H0 if T 1 t 1 Critical region: [T 1 t 1 ] (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 22 / 29

23 Upper-Tailed Quantile Test H 0 : x p x vs. H 1 : x p < x Test statistic: T2 = # of X i s less than x Null distribution: T 2 binomial(n, p ) Decision rule: Let Y represent a binomial(n, p ) random variable. Choose t 2 such that P(Y t 2 ) 1 α (Use Table A3 or a normal approximation) Reject H 0 if T 2 > t 2 Critical region: [T 2 > t 2 ] (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 23 / 29

24 Outline 1 Section 3.1: The Binomial Test and Estimation of p 2 Section 3.2: The Quantile Test and Estimation of x p 3 Section 3.4: The Sign Test 4 Section 3.5: Some Variations on the Sign Test (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 24 / 29

25 The Sign Test 81 ties H 0 : P(+) = P( ) vs. H 1 : P(+) P( ) Example 100 people tested two products. 15 people preferred product A to product B 4 people preferred product B to product A 81 people had no preference Summary: 15 + s 4 s (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 25 / 29

26 Two-Tailed Sign Test H 0 : P(+) = P( ) vs. H 1 : P(+) P( ) n = [# of + s] + [# of s] Test statistic: T = [# of + s] Null distribution: T binomial(n, 1 2 ) Decision rule: Let Y represent a binomial(n, 1 2 ) random variable. Choose t 1 and t 2 such that P(Y t 1 ) α/2 P(Y t 2 ) 1 α/2 (Use Table A3 or a normal approximation) Reject H 0 if T t 1 or T > t 2 Critical region: [T t 1 or T > t 2 ] (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 26 / 29

27 Outline 1 Section 3.1: The Binomial Test and Estimation of p 2 Section 3.2: The Quantile Test and Estimation of x p 3 Section 3.4: The Sign Test 4 Section 3.5: Some Variations on the Sign Test (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 27 / 29

28 The McNemar Test for Significance of Changes Example Presidential Debate Summary of voter intentions Test whether a statistically significant difference in voter intentions exists before and after the debate. (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 28 / 29

29 Cox-Stuart Test for Trend Example Precipitation readings for 19 years: Test whether a trend in this data exists. (Tarleton State University) Ch 3: Tests Based on the Binomial Dist. 29 / 29

The binomial distribution p314

The binomial distribution p314 The binomial distribution p314 Example: A biased coin (P(H) = p = 0.6) ) is tossed 5 times. Let X be the number of H s. Fine P(X = 2). This X is a binomial r. v. The binomial setting p314 1. There are

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Lecture 18. Ingo Ruczinski. October 31, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 18. Ingo Ruczinski. October 31, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 18 Department of Bios Johns Hopkins Bloomberg School of Public Health Johns Hopkins University October 31, 2015 1 2 3 4 5 6 1 Tests for a binomial proportion 2 Score test versus Wald 3 Exact binomial

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

Copyright 2005 Pearson Education, Inc. Slide 6-1

Copyright 2005 Pearson Education, Inc. Slide 6-1 Copyright 2005 Pearson Education, Inc. Slide 6-1 Chapter 6 Copyright 2005 Pearson Education, Inc. Measures of Center in a Distribution 6-A The mean is what we most commonly call the average value. It is

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions Bernoulli and Binomial Distributions Bernoulli Distribution a flipped coin turns up either heads or tails an item on an assembly line is either defective or not defective a piece of fruit is either damaged

More information

The Bernoulli distribution

The Bernoulli distribution This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43 chapter 13: Binomial Distribution ch13-links binom-tossing-4-coins binom-coin-example ch13 image Exercises (binomial)13.6, 13.12, 13.22, 13.43 CHAPTER 13: Binomial Distributions The Basic Practice of Statistics

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

Confidence Interval and Hypothesis Testing: Exercises and Solutions

Confidence Interval and Hypothesis Testing: Exercises and Solutions Confidence Interval and Hypothesis Testing: Exercises and Solutions You can use the graphical representation of the normal distribution to solve the problems. Exercise 1: Confidence Interval A sample of

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 41

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 41 STA258H5 Al Nosedal and Alison Weir Winter 2017 Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 41 NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION. Al Nosedal and Alison Weir STA258H5 Winter 2017

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Studio 8: NHST: t-tests and Rejection Regions Spring 2014

Studio 8: NHST: t-tests and Rejection Regions Spring 2014 Studio 8: NHST: t-tests and Rejection Regions 18.05 Spring 2014 You should have downloaded studio8.zip and unzipped it into your 18.05 working directory. January 2, 2017 2 / 12 Left-side vs Right-side

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

STAT Mathematical Statistics

STAT Mathematical Statistics STAT 6201 - Mathematical Statistics Chapter 3 : Random variables 5, Event, Prc ) Random variables and distributions Let S be the sample space associated with a probability experiment Assume that we have

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Confidence Intervals for One-Sample Specificity

Confidence Intervals for One-Sample Specificity Chapter 7 Confidence Intervals for One-Sample Specificity Introduction This procedures calculates the (whole table) sample size necessary for a single-sample specificity confidence interval, based on a

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at

Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at Solutions for practice questions: Chapter 15, Probability Distributions If you find any errors, please let me know at mailto:msfrisbie@pfrisbie.com. 1. Let X represent the savings of a resident; X ~ N(3000,

More information

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics.

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics. ENM 207 Lecture 12 Some Useful Continuous Distributions Normal Distribution The most important continuous probability distribution in entire field of statistics. Its graph, called the normal curve, is

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance

3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance 3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler 3.2 Hypergeometric Distribution Math 186 / Winter 2017 1 / 15 Sampling from an urn c() 0 10 20

More information

Examples of continuous probability distributions: The normal and standard normal

Examples of continuous probability distributions: The normal and standard normal Examples of continuous probability distributions: The normal and standard normal The Normal Distribution f(x) Changing μ shifts the distribution left or right. Changing σ increases or decreases the spread.

More information

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5)

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) Fall 2011 Lecture 10 (Fall 2011) Estimation Lecture 10 1 / 23 Review: Sampling Distributions Sample

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Ramesh Yapalparvi Week 4 à Midterm Week 5 woohoo Chapter 9 Sampling Distributions ß today s lecture Sampling distributions of the mean and p. Difference between means. Central

More information

guessing Bluman, Chapter 5 2

guessing Bluman, Chapter 5 2 Bluman, Chapter 5 1 guessing Suppose there is multiple choice quiz on a subject you don t know anything about. 15 th Century Russian Literature; Nuclear physics etc. You have to guess on every question.

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop Minitab 14 1 GETTING STARTED To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop The Minitab session will come up like this 2 To SAVE FILE 1. Click File>Save Project

More information

ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section

ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section 10.1-10.3 Fall 2011 Lecture 9 (Fall 2011) Sampling Distributions Lecture 9 1 / 15 Sampling Distributions

More information

Financial Economics. Runs Test

Financial Economics. Runs Test Test A simple statistical test of the random-walk theory is a runs test. For daily data, a run is defined as a sequence of days in which the stock price changes in the same direction. For example, consider

More information

Chapter Four: Introduction To Inference 1/50

Chapter Four: Introduction To Inference 1/50 Chapter Four: Introduction To Inference 1/50 4.1 Introduction 2/50 4.1 Introduction In this chapter you will learn the rationale underlying inference. You will also learn to apply certain inferential techniques.

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

1/2 2. Mean & variance. Mean & standard deviation

1/2 2. Mean & variance. Mean & standard deviation Question # 1 of 10 ( Start time: 09:46:03 PM ) Total Marks: 1 The probability distribution of X is given below. x: 0 1 2 3 4 p(x): 0.73? 0.06 0.04 0.01 What is the value of missing probability? 0.54 0.16

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 13 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 017 by D.B. Rowe 1 Agenda: Recap Chapter 6.3 6.5 Lecture Chapter 7.1 7. Review Chapter 5 for Eam 3.

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

Section 7-2 Estimating a Population Proportion

Section 7-2 Estimating a Population Proportion Section 7- Estimating a Population Proportion 1 Key Concept In this section we present methods for using a sample proportion to estimate the value of a population proportion. The sample proportion is the

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

Math 361. Day 8 Binomial Random Variables pages 27 and 28 Inv Do you have ESP? Inv. 1.3 Tim or Bob?

Math 361. Day 8 Binomial Random Variables pages 27 and 28 Inv Do you have ESP? Inv. 1.3 Tim or Bob? Math 361 Day 8 Binomial Random Variables pages 27 and 28 Inv. 1.2 - Do you have ESP? Inv. 1.3 Tim or Bob? Inv. 1.1: Friend or Foe Review Is a particular study result consistent with the null model? Learning

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate.

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate. Chapter 7 Confidence Intervals and Sample Sizes 7. Estimating a Proportion p 7.3 Estimating a Mean µ (σ known) 7.4 Estimating a Mean µ (σ unknown) 7.5 Estimating a Standard Deviation σ In a recent poll,

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Continuous RVs (Normal); Confidence Intervals Outline Continuous random variables Normal distribution CLT Point estimation Confidence intervals http://www.isrec.isb-sib.ch/~darlene/geneve/

More information

15.063: Communicating with Data Summer Recitation 4 Probability III

15.063: Communicating with Data Summer Recitation 4 Probability III 15.063: Communicating with Data Summer 2003 Recitation 4 Probability III Today s Content Normal RV Central Limit Theorem (CLT) Statistical Sampling 15.063, Summer '03 2 Normal Distribution Any normal RV

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions 1999 Prentice-Hall, Inc. Chap. 6-1 Chapter Topics The Normal Distribution The Standard

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Binomial distribution

Binomial distribution Binomial distribution Jon Michael Gran Department of Biostatistics, UiO MF9130 Introductory course in statistics Tuesday 24.05.2010 1 / 28 Overview Binomial distribution (Aalen chapter 4, Kirkwood and

More information

Math : Spring 2008

Math : Spring 2008 Math 1070-2: Spring 2008 Lecture 7 Davar Khoshnevisan Department of Mathematics University of Utah http://www.math.utah.edu/ davar February 27, 2008 An example A WHO study of health: In Canada, the systolic

More information

(# of die rolls that satisfy the criteria) (# of possible die rolls)

(# of die rolls that satisfy the criteria) (# of possible die rolls) BMI 713: Computational Statistics for Biomedical Sciences Assignment 2 1 Random variables and distributions 1. Assume that a die is fair, i.e. if the die is rolled once, the probability of getting each

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

the number of correct answers on question i. (Note that the only possible values of X i

the number of correct answers on question i. (Note that the only possible values of X i 6851_ch08_137_153 16/9/02 19:48 Page 137 8 8.1 (a) No: There is no fixed n (i.e., there is no definite upper limit on the number of defects). (b) Yes: It is reasonable to believe that all responses are

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Mean Note: Weights were measured to the nearest 0.1 kg.

Mean Note: Weights were measured to the nearest 0.1 kg. Purpose of the Sign Test Supplement 16A: Sign Test The sign test is a simple and versatile test that requires few assumptions. It is based on the binomial distribution. The test involves simply counting

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1

8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions 8-1 8.2 The Standard Deviation as a Ruler Chapter 8 The Normal and Other Continuous Distributions For Example: On August 8, 2011, the Dow dropped 634.8 points, sending shock waves through the financial community.

More information

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Ch 8 The Binomial and Geometric Distributions Ch 8.1 The Binomial Distributions The Binomial Setting A situation where these four conditions are satisfied is called a binomial setting. 1. Each observation falls into one of just two categories, which

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Inverse Normal Distribution and Approximation to Binomial

Inverse Normal Distribution and Approximation to Binomial Inverse Normal Distribution and Approximation to Binomial Section 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 16-3339 Cathy Poliak,

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information