Finite Potential Well

Size: px
Start display at page:

Download "Finite Potential Well"

Transcription

1 Finite Potential Well These notes are provided as a supplement to the text and a replacement for the lecture on 11/16/17. Make sure you fill in the steps outlined in red. The finite potential well problem is a generalization of the infinite potential well that allows for particles to exist outside of the well region. The standard form of the potential is given graphically as in the text in Figure 8.1 nalytically this can be represented as follows: V = 0 x < a Region I V x a Region II 0 x > a Region III Note that the well width for the standard form finite well is twice that of the infinite well and the well itself has a finite, negative but constant potential and outside the well the potential is zero. In order to solve this problem we must first solve the eigenvalue problem. This is no different than for the infinite well case except for the constant potential term. Thus in the three regions we have Region I x < a Ĥ I = ˆp 2 x 2m =!2 d 2 Ĥ I = E!2 2m = e κ x! 2 κ 2 2m = E > 0 d 2 dx 2 = E Note that we have followed the convention of explicitly making the energy and potential to have negative values so that when we use the symbols E and V these can be positive numbers. We have also excluded the solution with a negative exponent in the exponential function because such a solution, while satisfying the differential equation can be seen to be non-physical since it will become infinite at infinite distance from the origin. Repeating for region III we have the same situation but for positive x. 1

2 Region III x > a Ĥ III = ˆp 2 x 2m =!2 d 2 Ĥ III I = E I!2 2m I = De κ x! 2 κ 2 2m = E > 0 d 2 I dx 2 = E I We can see that this is just the mirror image of Region I. For Region II, the equation is a bit more complicated because the potential is non-zero. Region II x a Ĥ II II = ˆp 2 x 2m V =!2 d 2 2m dx V 2 Ĥ II = E!2 d 2!2 d 2 = ( V E )φ II = Be ikx + e ikx! 2 k 2 V = E 2m = V E > 0 k 2 = 2m V E! 2 We can also combine the results for the energy eigenvalues inside and outside the well to see the following relationship (show): Κ 2 + k 2 = 2mV! 2 t this point we have established the form of the solutions inside and outside the well. Notice that outside the well the wave function takes on the form of a damped exponential, tending to zero at infinity. Inside the well, the solution is oscillatory since it involves an exponential with an imaginary exponent. Next we have to deal with the boundary conditions. These require the wave function and its first derivative to be continuous at the two well edges. In analytic form this requires: 2

3 ( a) = ( a) (a) = I (a) ( a) = ( a) (a) = I (a) Using the forms for the wave functions that we found earlier we may obtain a set of equations governing the constants, B, and D. Show that this reduces to: e κ a = Be ika + e ika Be ika + e ika = De κ a κ e κ a = ik Be ika e ika ik( Be ika e ika ) = κ De κ a In matrix form this set of four linear equations in the four constants, B, and D is DV = e -κa -e -ika e ika 0 0 e ika e -ika -e -κa κe -κa ike -ika ike ika 0 0 ike ika ike -ika κe -κa B D Thus we may obtain a nontrivial set of solutions for the coefficients provided the determinant of the coefficient matrix is zero: det D = 0 Before proceeding it is convenient to rewrite the matrix equation using the following definition: G = ( κ + ik)e ika = G e i( ka+φ) Show that with this definition the following relationships hold. tan( φ) = k κ G = GG * = ( κ 2 + k 2 ) 3

4 To see why this definition is helpful first return to the set of equations and write them in standard order: e κ a Be ika e ika + D 0 = Be ika + e ika De κ a = 0 + D 0 = 0 +κ De κ a = 0 κ e κ a ik Be ika e ika 0 + ik Be ika e ika Next we use the rules of linear algebra that allow us to multiply any line by a constant and add and subtract any line to any other line (since we are just adding and subtracting zero). We can eliminate the and D terms in the first two lines by this method. Show how to do this manipulation to obtain the result: (hint couple the first and third lines and the second and fourth lines): ( κ ik)be ika + ( κ + ik)e ika D 0 = 0 ( κ + ik)be ika + ( κ ik)e ika D 0 = 0 Be ika e ika κ ik e κ a + D 0 = 0 Be ika + e ika + 0 κ ik De κ a = 0 or in matrix form using the definition of G given above: DV = G * G 0 0 G G * 0 0 κ e -ika e ika ik e-κa 0 e ika e ika 0 κ ik e-κa B D Next we need to evaluate the determinant. Use the rules of determinants to show that 4

5 D = κ k 2 e ( -2κa G *2 G ) 2. Recall that we need to find the conditions under which this determinant is zero. learly this occurs when G *2 = G 2 Recalling the definition of G, we obtain G * = ±G G e i( ka+φ) = ± G e cos ka + φ i ka+φ + isin( ka + φ) = ± cos( ka + φ) isin( ka + φ) Show that this implies two conditions on the argument of the trig functions: ka + φ = 0 (positive root) and ka + φ = π 2 (negative root) Returning to the definition of the phase angle ϕ we obtain the first condition from the positive root: tan( φ) = tan( ka) k κ κ k = tan( ka) = cot( ka) κ = k cot( ka) Show that the other (negative) root leads to the condition: κ = k tan( ka) lso show that these two roots may be written alternatively: 5

6 G G * = ±1. Following the usual methods of linear algebra, show that these two roots also imply the following relationships between the coefficients of the finite well solutions and the consequent forms of these solutions given below: For the positive root: B = 1, I B = D B = 2isin( ka)e κ a ( x) = 2iBsin( ka)e κ ( x+a) ( x) = 2iBsin( kx) κ x a ( x) = 2iBsin( ka)e Likewise for the negative root: B = +1, I B = D B = 2cos( ka)e κ a ( x) = 2Bcos( ka)e κ ( x+a) ( x) = 2iBcos( kx) κ x a ( x) = 2iBcos( ka)e lso show the following: k cot( ka) = κ k tan( ka) = κ The solutions above satisfy the boundary conditions stated at the beginning of the analysis. The positive root solutions are odd under parity. The negative root solutions are even under parity. 6

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers: P.1 Algebraic Expressions, Mathematical models, and Real numbers If n is a counting number (1, 2, 3, 4,..) then Exponential notation: b n = b b b... b, where n is the Exponent or Power, and b is the base

More information

ACCUPLACER Elementary Algebra Assessment Preparation Guide

ACCUPLACER Elementary Algebra Assessment Preparation Guide ACCUPLACER Elementary Algebra Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

More information

Integrating rational functions (Sect. 8.4)

Integrating rational functions (Sect. 8.4) Integrating rational functions (Sect. 8.4) Integrating rational functions, p m(x) q n (x). Polynomial division: p m(x) The method of partial fractions. p (x) (x r )(x r 2 ) p (n )(x). (Repeated roots).

More information

(Refer Slide Time: 2:20)

(Refer Slide Time: 2:20) Engineering Economic Analysis Professor Dr. Pradeep K Jha Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Lecture 09 Compounding Frequency of Interest: Nominal

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

2-4 Completing the Square

2-4 Completing the Square 2-4 Completing the Square Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Write each expression as a trinomial. 1. (x 5) 2 x 2 10x + 25 2. (3x + 5) 2 9x 2 + 30x + 25 Factor each expression. 3.

More information

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6)

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6) Adding Polynomials Adding & Subtracting Polynomials (Combining Like Terms) Subtracting Polynomials (if your nd polynomial is inside a set of parentheses). (x 8x + ) + (-x -x 7) FIRST, Identify the like

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0,

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0, Parent Graph: How to Tell it's a Quadratic: If the equation's largest exponent is 2 If the graph is a parabola ("U"-Shaped) Opening up or down. QUADRATIC f x = x 2 Domain of Parent Graph:, Range of Parent

More information

Developmental Math An Open Program Unit 12 Factoring First Edition

Developmental Math An Open Program Unit 12 Factoring First Edition Developmental Math An Open Program Unit 12 Factoring First Edition Lesson 1 Introduction to Factoring TOPICS 12.1.1 Greatest Common Factor 1 Find the greatest common factor (GCF) of monomials. 2 Factor

More information

Y t )+υ t. +φ ( Y t. Y t ) Y t. α ( r t. + ρ +θ π ( π t. + ρ

Y t )+υ t. +φ ( Y t. Y t ) Y t. α ( r t. + ρ +θ π ( π t. + ρ Macroeconomics ECON 2204 Prof. Murphy Problem Set 6 Answers Chapter 15 #1, 3, 4, 6, 7, 8, and 9 (on pages 462-63) 1. The five equations that make up the dynamic aggregate demand aggregate supply model

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

CH 39 CREATING THE EQUATION OF A LINE

CH 39 CREATING THE EQUATION OF A LINE 9 CH 9 CREATING THE EQUATION OF A LINE Introduction S ome chapters back we played around with straight lines. We graphed a few, and we learned how to find their intercepts and slopes. Now we re ready to

More information

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7)

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7) 7.1.1.1 Know that every rational number can be written as the ratio of two integers or as a terminating or repeating decimal. Recognize that π is not rational, but that it can be approximated by rational

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

Math 101, Basic Algebra Author: Debra Griffin

Math 101, Basic Algebra Author: Debra Griffin Math 101, Basic Algebra Author: Debra Griffin Name Chapter 5 Factoring 5.1 Greatest Common Factor 2 GCF, factoring GCF, factoring common binomial factor 5.2 Factor by Grouping 5 5.3 Factoring Trinomials

More information

FY2045/TFY4250 Kvantemekanikk I, solution exercise 3 1 SOLUTION EXERCISE 3. Electron in δ well

FY2045/TFY4250 Kvantemekanikk I, solution exercise 3 1 SOLUTION EXERCISE 3. Electron in δ well FY2045/TFY4250 Kvantemekanikk I, solution exercise 3 Solution to Problem 3 SOLUTION EXERCISE 3 Electron in δ well a Since the integral δx)dx = is dimensionless, it follows that the product of the dimensions

More information

Functions - Compound Interest

Functions - Compound Interest 10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When

More information

Chapter DIFFERENTIAL EQUATIONS: PHASE SPACE, NUMERICAL SOLUTIONS

Chapter DIFFERENTIAL EQUATIONS: PHASE SPACE, NUMERICAL SOLUTIONS Chapter 10 10. DIFFERENTIAL EQUATIONS: PHASE SPACE, NUMERICAL SOLUTIONS Abstract Solving differential equations analytically is not always the easiest strategy or even possible. In these cases one may

More information

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since Name Per Algebra IB Unit 9 - Exponential Growth Investigation Investigate Real life situation 1) The National Association Realtors estimates that, on average, the price of a house doubles every ten years

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

Chapter 17 Appendix A

Chapter 17 Appendix A Chapter 17 Appendix A The Interest Parity Condition We can derive all the results in the text with a concept that is widely used in international finance. The interest parity condition shows the relationship

More information

The Macroeconomic Policy Model

The Macroeconomic Policy Model The Macroeconomic Policy Model This lecture provides an expanded framework for determining the inflation rate in a model where the Fed follows a simple nominal interest rate rule. Price Adjustment A. The

More information

The Normal Distribution

The Normal Distribution Will Monroe CS 09 The Normal Distribution Lecture Notes # July 9, 207 Based on a chapter by Chris Piech The single most important random variable type is the normal a.k.a. Gaussian) random variable, parametrized

More information

2.01 Products of Polynomials

2.01 Products of Polynomials 2.01 Products of Polynomials Recall from previous lessons that when algebraic expressions are added (or subtracted) they are called terms, while expressions that are multiplied are called factors. An algebraic

More information

Name Class Date. Adding and Subtracting Polynomials

Name Class Date. Adding and Subtracting Polynomials 8-1 Reteaching Adding and Subtracting Polynomials You can add and subtract polynomials by lining up like terms and then adding or subtracting each part separately. What is the simplified form of (3x 4x

More information

Geometric Brownian Motion (Stochastic Population Growth)

Geometric Brownian Motion (Stochastic Population Growth) 2011 Page 1 Analytical Solution of Stochastic Differential Equations Thursday, April 14, 2011 1:58 PM References: Shreve Sec. 4.4 Homework 3 due Monday, April 25. Distinguished mathematical sciences lectures

More information

Option Pricing. Chapter Discrete Time

Option Pricing. Chapter Discrete Time Chapter 7 Option Pricing 7.1 Discrete Time In the next section we will discuss the Black Scholes formula. To prepare for that, we will consider the much simpler problem of pricing options when there are

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = Partial Fractions A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = 3 x 2 x + 5, and h( x) = x + 26 x 2 are rational functions.

More information

Name For those going into. Algebra 1 Honors. School years that begin with an ODD year: do the odds

Name For those going into. Algebra 1 Honors. School years that begin with an ODD year: do the odds Name For those going into LESSON 2.1 Study Guide For use with pages 64 70 Algebra 1 Honors GOAL: Graph and compare positive and negative numbers Date Natural numbers are the numbers 1,2,3, Natural numbers

More information

5.1 Exponents and Scientific Notation

5.1 Exponents and Scientific Notation 5.1 Exponents and Scientific Notation Definition of an exponent a r = Example: Expand and simplify a) 3 4 b) ( 1 / 4 ) 2 c) (0.05) 3 d) (-3) 2 Difference between (-a) r (-a) r = and a r a r = Note: The

More information

Problem Set 4 Answers

Problem Set 4 Answers Business 3594 John H. Cochrane Problem Set 4 Answers ) a) In the end, we re looking for ( ) ( ) + This suggests writing the portfolio as an investment in the riskless asset, then investing in the risky

More information

University of Phoenix Material

University of Phoenix Material 1 University of Phoenix Material Factoring and Radical Expressions The goal of this week is to introduce the algebraic concept of factoring polynomials and simplifying radical expressions. Think of factoring

More information

DEPARTMENT OF ECONOMICS Fall 2013 D. Romer

DEPARTMENT OF ECONOMICS Fall 2013 D. Romer UNIVERSITY OF CALIFORNIA Economics 202A DEPARTMENT OF ECONOMICS Fall 203 D. Romer FORCES LIMITING THE EXTENT TO WHICH SOPHISTICATED INVESTORS ARE WILLING TO MAKE TRADES THAT MOVE ASSET PRICES BACK TOWARD

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

1. The Flexible-Price Monetary Approach Assume uncovered interest rate parity (UIP), which is implied by perfect capital substitutability 1.

1. The Flexible-Price Monetary Approach Assume uncovered interest rate parity (UIP), which is implied by perfect capital substitutability 1. Lecture 2 1. The Flexible-Price Monetary Approach (FPMA) 2. Rational Expectations/Present Value Formulation to the FPMA 3. The Sticky-Price Monetary Approach 4. The Dornbusch Model 1. The Flexible-Price

More information

Section 7.1 Common Factors in Polynomials

Section 7.1 Common Factors in Polynomials Chapter 7 Factoring How Does GPS Work? 7.1 Common Factors in Polynomials 7.2 Difference of Two Squares 7.3 Perfect Trinomial Squares 7.4 Factoring Trinomials: (x 2 + bx + c) 7.5 Factoring Trinomials: (ax

More information

Functions - Interest

Functions - Interest 10.7 Functions - Interest An application of exponential functions is compound interest. When money is invested in an account or given out on loan) a certain amount is added to the balance. This money added

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

CFA. Fundamentals. 2 nd Edition

CFA. Fundamentals. 2 nd Edition CFA Fundamentals 2 nd Edition CFA Fundamentals, 2nd Edition Foreword...3 Chapter 1: Quantitative Methods...6 Chapter 2: Economics...77 Chapter 3: Financial Reporting and Analysis...130 Chapter 4: Corporate

More information

par ( 12). His closest competitor, Ernie Els, finished 3 strokes over par (+3). What was the margin of victory?

par ( 12). His closest competitor, Ernie Els, finished 3 strokes over par (+3). What was the margin of victory? Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Tiger Woods won the 000 U.S. Open golf tournament with a score of 1 strokes under par

More information

UNIT 11 STUDY GUIDE. Key Features of the graph of

UNIT 11 STUDY GUIDE. Key Features of the graph of UNIT 11 STUDY GUIDE Key Features of the graph of Exponential functions in the form The graphs all cross the y-axis at (0, 1) The x-axis is an asymptote. Equation of the asymptote is y=0 Domain: Range:

More information

Skills Practice Skills Practice for Lesson 10.1

Skills Practice Skills Practice for Lesson 10.1 Skills Practice Skills Practice for Lesson 10.1 Name Date Water Balloons Polynomials and Polynomial Functions Vocabulary Match each key term to its corresponding definition. 1. A polynomial written with

More information

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil]

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil] START HERE: Instructions Thanks a lot to John A.W.B. Constanzo and Shi Zong for providing and allowing to use the latex source files for quick preparation of the HW solution. The homework was due at 9:00am

More information

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice Olivier Blanchard April 2005 14.452. Spring 2005. Topic2. 1 Want to start with a model with two ingredients: Shocks, so uncertainty.

More information

Exponents Unit Notebook v2.notebook. November 09, Exponents. Table Of Contents. Section 1: Zero and Integer Exponents Objective: Nov 1-10:06 AM

Exponents Unit Notebook v2.notebook. November 09, Exponents. Table Of Contents. Section 1: Zero and Integer Exponents Objective: Nov 1-10:06 AM Exponents Nov 1-10:06 AM Table Of Contents Section 1: Zero and Integer Exponents Section 2: Section 3: Multiplication Properties of Exponents Section 4: Division Properties of Exponents Section 5: Geometric

More information

MSM Course 1 Flashcards. Associative Property. base (in numeration) Commutative Property. Distributive Property. Chapter 1 (p.

MSM Course 1 Flashcards. Associative Property. base (in numeration) Commutative Property. Distributive Property. Chapter 1 (p. 1 Chapter 1 (p. 26, 1-5) Associative Property Associative Property: The property that states that for three or more numbers, their sum or product is always the same, regardless of their grouping. 2 3 8

More information

Week 20 Algebra 1 Assignment:

Week 20 Algebra 1 Assignment: Week 0 Algebra 1 Assignment: Day 1: pp. 38-383 #-0 even, 3-7 Day : pp. 385-386 #-18 even, 1-5 Day 3: pp. 388-389 #-4 even, 7-9 Day 4: pp. 39-393 #1-37 odd Day 5: Chapter 9 test Notes on Assignment: Pages

More information

12 The Bootstrap and why it works

12 The Bootstrap and why it works 12 he Bootstrap and why it works For a review of many applications of bootstrap see Efron and ibshirani (1994). For the theory behind the bootstrap see the books by Hall (1992), van der Waart (2000), Lahiri

More information

1. MAPLE. Objective: After reading this chapter, you will solve mathematical problems using Maple

1. MAPLE. Objective: After reading this chapter, you will solve mathematical problems using Maple 1. MAPLE Objective: After reading this chapter, you will solve mathematical problems using Maple 1.1 Maple Maple is an extremely powerful program, which can be used to work out many different types of

More information

5.6 Special Products of Polynomials

5.6 Special Products of Polynomials 5.6 Special Products of Polynomials Learning Objectives Find the square of a binomial Find the product of binomials using sum and difference formula Solve problems using special products of polynomials

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 2014 Quiz #1 March 3, 2014 Name: SOLUTION ID#: PS.:

More information

Exercises * on Independent Component Analysis

Exercises * on Independent Component Analysis Exercises * on Independent Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 2017 Contents 1 Intuition 2 1.1 Mixing and unmixing.........................................

More information

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time 3.1 Simple Interest Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time An example: Find the interest on a boat loan of $5,000 at 16% for

More information

Must be able to divide quickly (at least up to 12).

Must be able to divide quickly (at least up to 12). Math 30 Prealgebra Sec 1.5: Dividing Whole Number Expressions Division is really. Symbols used to represent the division operation: Define divisor, dividend, and quotient. Ex 1 Divide. What can we conclude?

More information

MTH 110-College Algebra

MTH 110-College Algebra MTH 110-College Algebra Chapter R-Basic Concepts of Algebra R.1 I. Real Number System Please indicate if each of these numbers is a W (Whole number), R (Real number), Z (Integer), I (Irrational number),

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

3.1 Solutions to Exercises

3.1 Solutions to Exercises .1 Solutions to Exercises 1. (a) f(x) will approach + as x approaches. (b) f(x) will still approach + as x approaches -, because any negative integer x will become positive if it is raised to an even exponent,

More information

B) 2x3-5x D) 2x3 + 5x

B) 2x3-5x D) 2x3 + 5x Pre Calculus Final Review 2010 (April) Name Divide f(x) by d(x), and write a summary statement in the form indicated. 1) f x = x - 4; d x = x + 7 (Write answer in polynomial form) 1) A) f x = x + 7 x2-7x

More information

Algebra I EOC 10-Day STAAR Review. Hedgehog Learning

Algebra I EOC 10-Day STAAR Review. Hedgehog Learning Algebra I EOC 10-Day STAAR Review Hedgehog Learning Day 1 Day 2 STAAR Reporting Category Number and Algebraic Methods Readiness Standards 60% - 65% of STAAR A.10(E) - factor, if possible, trinomials with

More information

Solution Week 60 (11/3/03) Cereal box prizes

Solution Week 60 (11/3/03) Cereal box prizes Solution Wee 60 /3/03 Cereal box prizes First Solution: Assume that you have collected c of the colors, and let B c be the number of boxes it taes to get the next color. The average value of B c, which

More information

Unit 8: Polynomials Chapter Test. Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each.

Unit 8: Polynomials Chapter Test. Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each. Unit 8: Polynomials Chapter Test Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each. 1. 9x 2 2 2. 3 3. 2x 2 + 3x + 1 4. 9y -1 Part 2: Simplify each

More information

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School Arithmetic Mathematics Help Sheet The University of Sydney Business School Common Arithmetic Symbols is not equal to is approximately equal to is identically equal to infinity, which is a non-finite number

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions COMMON CORE 4 Locker LESSON 9. Multiplying and Dividing Rational Expressions Name Class Date 9. Multiplying and Dividing Rational Expressions Essential Question: How can you multiply and divide rational

More information

Phys. Lett. A, 372/17, (2008),

Phys. Lett. A, 372/17, (2008), Phys. Lett. A, 372/17, (2008), 3064-3070. 1 Wave scattering by many small particles embedded in a medium. A. G. Ramm (Mathematics Department, Kansas State University, Manhattan, KS66506, USA and TU Darmstadt,

More information

Lecture Notes Simplifying Algebraic Expressions page 1

Lecture Notes Simplifying Algebraic Expressions page 1 Lecture Notes Simplifying Algebraic Expressions page This handout will provide a quick review of operations with algebraic expressions. For a more thorough review, please see an introductory algebra book..

More information

Notation for the Derivative:

Notation for the Derivative: Notation for the Derivative: MA 15910 Lesson 13 Notes Section 4.1 (calculus part of textbook, page 196) Techniques for Finding Derivatives The derivative of a function y f ( x) may be written in any of

More information

3.1 Solutions to Exercises

3.1 Solutions to Exercises .1 Solutions to Exercises 1. (a) f(x) will approach + as x approaches. (b) f(x) will still approach + as x approaches -, because any negative integer x will become positive if it is raised to an even exponent,

More information

True_ The Lagrangian method is one way to solve constrained maximization problems.

True_ The Lagrangian method is one way to solve constrained maximization problems. LECTURE 4: CONSTRAINED OPTIMIZATION ANSWERS AND SOLUTIONS Answers to True/False Questions True_ The Lagrangian method is one way to solve constrained maximization problems. False_ The substitution method

More information

CCAC ELEMENTARY ALGEBRA

CCAC ELEMENTARY ALGEBRA CCAC ELEMENTARY ALGEBRA Sample Questions TOPICS TO STUDY: Evaluate expressions Add, subtract, multiply, and divide polynomials Add, subtract, multiply, and divide rational expressions Factor two and three

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 )

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 ) APPM/MATH 450 Problem Set 5 s This assignment is due by 4pm on Friday, October 25th. You may either turn it in to me in class or in the box outside my office door (ECOT 235). Minimal credit will be given

More information

Economics 2010c: -theory

Economics 2010c: -theory Economics 2010c: -theory David Laibson 10/9/2014 Outline: 1. Why should we study investment? 2. Static model 3. Dynamic model: -theory of investment 4. Phase diagrams 5. Analytic example of Model (optional)

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Computational Electromagnetics and Applications Professor Krish Sankaran Indian Institute of Technology Bombay Lecture 06/Exercise 03 Finite Difference Methods 1 The Example which we are going to look

More information

9/16/ (1) Review of Factoring trinomials. (2) Develop the graphic significance of factors/roots. Math 2 Honors - Santowski

9/16/ (1) Review of Factoring trinomials. (2) Develop the graphic significance of factors/roots. Math 2 Honors - Santowski (1) Review of Factoring trinomials (2) Develop the graphic significance of factors/roots (3) Solving Eqn (algebra/graphic connection) 1 2 To expand means to write a product of expressions as a sum or difference

More information

Finding the Sum of Consecutive Terms of a Sequence

Finding the Sum of Consecutive Terms of a Sequence Mathematics 451 Finding the Sum of Consecutive Terms of a Sequence In a previous handout we saw that an arithmetic sequence starts with an initial term b, and then each term is obtained by adding a common

More information

The two meanings of Factor

The two meanings of Factor Name Lesson #3 Date: Factoring Polynomials Using Common Factors Common Core Algebra 1 Factoring expressions is one of the gateway skills necessary for much of what we do in algebra for the rest of the

More information

MAC Learning Objectives. Learning Objectives (Cont.)

MAC Learning Objectives. Learning Objectives (Cont.) MAC 1140 Module 12 Introduction to Sequences, Counting, The Binomial Theorem, and Mathematical Induction Learning Objectives Upon completing this module, you should be able to 1. represent sequences. 2.

More information

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx 1 Cumulants 1.1 Definition The rth moment of a real-valued random variable X with density f(x) is µ r = E(X r ) = x r f(x) dx for integer r = 0, 1,.... The value is assumed to be finite. Provided that

More information

Chapter 2 Rocket Launch: AREA BETWEEN CURVES

Chapter 2 Rocket Launch: AREA BETWEEN CURVES ANSWERS Mathematics (Mathematical Analysis) page 1 Chapter Rocket Launch: AREA BETWEEN CURVES RL-. a) 1,.,.; $8, $1, $18, $0, $, $6, $ b) x; 6(x ) + 0 RL-. a), 16, 9,, 1, 0; 1,,, 7, 9, 11 c) D = (-, );

More information

Name. 5. Simplify. a) (6x)(2x 2 ) b) (5pq 2 )( 4p 2 q 2 ) c) (3ab)( 2ab 2 )(2a 3 ) d) ( 6x 2 yz)( 5y 3 z)

Name. 5. Simplify. a) (6x)(2x 2 ) b) (5pq 2 )( 4p 2 q 2 ) c) (3ab)( 2ab 2 )(2a 3 ) d) ( 6x 2 yz)( 5y 3 z) 3.1 Polynomials MATHPOWER TM 10, Ontario Edition, pp. 128 133 To add polynomials, collect like terms. To subtract a polynomial, add its opposite. To multiply monomials, multiply the numerical coefficients.

More information

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product At the end of Packet #1we worked on multiplying monomials, binomials, and trinomials. What we have to learn now is how to go backwards and do what is called factoring. The two meanings of Factor 1. Factor

More information

Equalities. Equalities

Equalities. Equalities Equalities Working with Equalities There are no special rules to remember when working with equalities, except for two things: When you add, subtract, multiply, or divide, you must perform the same operation

More information

UNIT 1 RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS Lesson 1: Working with Radicals and Properties of Real Numbers

UNIT 1 RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS Lesson 1: Working with Radicals and Properties of Real Numbers Guided Practice Example 1 Reduce the radical expression result rational or irrational? 80. If the result has a root in the denominator, rationalize it. Is the 1. Rewrite each number in the expression as

More information

Chapter 4 Partial Fractions

Chapter 4 Partial Fractions Chapter 4 8 Partial Fraction Chapter 4 Partial Fractions 4. Introduction: A fraction is a symbol indicating the division of integers. For example,, are fractions and are called Common 9 Fraction. The dividend

More information

A comparison of optimal and dynamic control strategies for continuous-time pension plan models

A comparison of optimal and dynamic control strategies for continuous-time pension plan models A comparison of optimal and dynamic control strategies for continuous-time pension plan models Andrew J.G. Cairns Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Riccarton,

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016

Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016 Economics 101 Fall 2016 Answers to Homework #1 Due Thursday, September 29, 2016 Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number

More information

A REVIEW OF ELEMENTARY MATHEMATICS: ALGEBRA AND SOLVING EQUATIONS CHAPTER THREE. 3.1 ALGEBRAIC MANIPULATIONS (Background reading: section 2.

A REVIEW OF ELEMENTARY MATHEMATICS: ALGEBRA AND SOLVING EQUATIONS CHAPTER THREE. 3.1 ALGEBRAIC MANIPULATIONS (Background reading: section 2. QRMC03 9/17/01 4:40 PM Page 5 CHAPTER THREE A REVIEW OF ELEMENTARY MATHEMATICS: ALGEBRA AND SOLVING EQUATIONS 3.1 ALGEBRAIC MANIPULATIONS (Background reading: section.4) Algebraic manipulations are series

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying polynomials working with complex numbers Introduction 2 b 2 A trinomial of the form x + bx + that can be written as

More information

Rational Expressions: Multiplying and Dividing Rational Expressions

Rational Expressions: Multiplying and Dividing Rational Expressions OpenStax-CNX module: m2964 Rational Expressions: Multiplying and Dividing Rational Expressions Wade Ellis Denny Burzynski This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Chapter 6: Quadratic Functions & Their Algebra

Chapter 6: Quadratic Functions & Their Algebra Chapter 6: Quadratic Functions & Their Algebra Topics: 1. Quadratic Function Review. Factoring: With Greatest Common Factor & Difference of Two Squares 3. Factoring: Trinomials 4. Complete Factoring 5.

More information

Finding Mixed-strategy Nash Equilibria in 2 2 Games ÙÛ

Finding Mixed-strategy Nash Equilibria in 2 2 Games ÙÛ Finding Mixed Strategy Nash Equilibria in 2 2 Games Page 1 Finding Mixed-strategy Nash Equilibria in 2 2 Games ÙÛ Introduction 1 The canonical game 1 Best-response correspondences 2 A s payoff as a function

More information

Sandringham School Sixth Form. AS Maths. Bridging the gap

Sandringham School Sixth Form. AS Maths. Bridging the gap Sandringham School Sixth Form AS Maths Bridging the gap Section 1 - Factorising be able to factorise simple expressions be able to factorise quadratics The expression 4x + 8 can be written in factor form,

More information

3: Balance Equations

3: Balance Equations 3.1 Balance Equations Accounts with Constant Interest Rates 15 3: Balance Equations Investments typically consist of giving up something today in the hope of greater benefits in the future, resulting in

More information

1 SE = Student Edition - TG = Teacher s Guide

1 SE = Student Edition - TG = Teacher s Guide Mathematics State Goal 6: Number Sense Standard 6A Representations and Ordering Read, Write, and Represent Numbers 6.8.01 Read, write, and recognize equivalent representations of integer powers of 10.

More information

6.1 Simple Interest page 243

6.1 Simple Interest page 243 page 242 6 Students learn about finance as it applies to their daily lives. Two of the most important types of financial decisions for many people involve either buying a house or saving for retirement.

More information