Correlations in Asynchronous Markets

Size: px
Start display at page:

Download "Correlations in Asynchronous Markets"

Transcription

1 Global Markets Quantitative Research Paris, January 011

2 Outline Motivation Motivation Estimating correlations and volatilities in asynchronous markets : Stoxx50 S&P500 Nikkei Comparison with other heuristic estimators options and correlation swaps Conclusion

3 Motivation Equity derivatives generally involve baskets of stocks/indices traded in different geographical areas Operating hours of: Asian and European exchanges, Asian and American exchanges, usually have no overlap Standard methodology on equity derivatives desks: Use standard multi-asset model based on assumption of continuously traded securities Compute/trade deltas at the close of each market, using stale values for securities not trading at that time Likewise, valuation is done using stale values for securities whose markets are closed How should we estimate volatility and correlation parameters?

4 Consider following situation: Stoxx50 Nikkei ti 1 δ ti 1 ri 1 r1i 1 δ t i r i r 1 i ti t i+ 1 t i+1 δ r i+1 Valuation of the option is done at the close of the Stoxx50 Deltas are computed and traded on the market close of each security Daily P&L: P&L = [f (t i+1, S 1,i+1, S,i+1 ) f (t i, S 1,i, S,i )] + df (t ds i, S 1,i, S,i ) (S 1,i+1 S 1,i ) 1 Note that arguments of df ds + df ds (t i δ, S 1,i 1, S,i ) (S,i+1 S,i ) are different

5 Rewrite delta on S so that arguments are same as f and df ds 1 df (t i δ, S 1,i 1, S,i ) = df (t i, S 1,i, S,i ) ds ds d f (t i, S 1,i, S,i ) (S 1,i S 1,i 1 ) ds 1 ds Other correction terms contribute at higher order in P&L now reads: P&L = [f (t i+1, S 1,i+1, S,i+1 ) f (t i, S 1,i, S,i )] + df [ df (S 1,i+1 S 1,i ) + d ] f (S 1,i S 1,i 1 ) (S,i+1 S,i ) ds 1 ds ds 1 ds Expanding at nd order in δs 1, δs : P&L = df dt [ 1 d f ds1 δs d f ds1 δs+ + d ] f δs 1+ δs + ds 1 ds d f δs 1 δs + ds 1 ds

6 Assume f is given by a Black-Scholes equation: df dt + σ 1 S 1 d f ds1 + σ S d f ds + ρσ 1 σ S 1 S d f ds 1 ds = 0 P&L now reads: [ ( P&L = 1 S 1 d f δs + 1 ds1 S 1 d f S 1 S ds 1 ds ) ] σ 1 [( δs 1 S 1 + δs + 1 S 1 [ ( 1 S d f δs + ds S ) δs + ] ρσ 1 σ S ) ] σ Prescription for estimating volatilities & correlations so that P&L vanishes on average: σ 1 = 1 ( δs + 1 S 1 ) σ 1 = 1 ( δs + S ) ρ σ 1σ = 1 ( δs 1 S 1 + δs + 1 S 1 ) δs + S Volatility estimators are the usual ones, involving daily returns The correlation estimator involves daily returns as well

7 Define r i = δs + i S i σ1 = 1 r 1i. At lowest order in, δs i S i σ = 1 r i δs i S i 1 ρ = (r 1i 1 + r 1i ) r i r 1i r i Stoxx50 ti 1 r1i 1 r 1 i ti t i+ 1 Nikkei ti 1 δ ri 1 δ t i r i t i+1 δ Had we chosen the close of the Nikkei for valuing the option: symmetrical estimator: σ1 = 1 r 1i σ = 1 r i ρ = r 1i (r i + r i+1 ) r 1i r i r i+1 If returns are time-homogeneous r 1i 1 r i = r 1i r i+1 In practice 1 N N 1 (r 1i 1 + r 1i ) r i r 1i (r i + r i+1 ) = 1 N (r 10r 1 r 1N r N +1 ) Difference between two estimators of ρ : finite size effect of order 1 N

8 In conclusion, in asynchronous markets: correlations ρ S, ρ A : ρ S = r 1i r i r ρ A = r 1i r i+1 1i r r i 1i r i S A and derivatives should be priced with ρ : ρ = ρ S + ρ A Does ρ depend on the particular delta strategy used in derivation? Is ρ in [ 1, 1]? How does ρ compare to standard correlations estimators evaluated with 3-day, 5-day, n-day returns?

9 What if had computed deltas differently for example "predicting" the value of the stock not trading at the time of computation? Option delta-hedged one way minus option delta-hedged the other way. Final P&L is: ( a t b t )(S t+ S t ) Price of pure delta strategy is zero: correlation estimator is independent on delta strategy used in derivation Imagine processes are continuous yet observations are asynchronous: assume that ρσ 1 σ, σ 1, σ are periodic functions with period = 1 day: ρ S = 1 1 t+ δ t ρσ 1 σ ds σ 1 ds 1 t+ t t+ δ t δ σ ds ρ A = 1 1 t+ t+ δ ρσ 1σ ds σ 1 ds 1 t+ t t+ δ t δ σ ds ρ = ρ S + ρ A S A Recovers value of "synchronous correlation": no bias

10 ρ S (blue), ρ A (pink), ρ = ρ S + ρ A (green) 6-month EWMA 10 Stoxx50 / SP Nikkei / Stoxx Dec-99 3-Dec-01 3-Dec-03 -Dec-05 -Dec-07 1-Dec-09 4-Dec-99 3-Dec-01 3-Dec-03 -Dec-05 -Dec-07 1-Dec Nikkei / SP Dec-99 3-Dec-01 3-Dec-03 -Dec-05 -Dec-07 1-Dec-09

11 Is the signal for ρ A in the Stoxx50/S&P500 case real? Switch time series of Stoxx50 and S&P500 and redo computation: 10 Stoxx50 / SP500 - normal 10 Stoxx50 / SP500 - reversed Dec-99 3-Dec-01 3-Dec-03 -Dec-05 -Dec-07 1-Dec-09 4-Dec-99 3-Dec-01 3-Dec-03 -Dec-05 -Dec-07 1-Dec In the reversed situation, ρ A hovers around 0.

12 ρ S, ρ A seem to move antithetically Imagine σ 1 (s) = σ 1 λ(s), σ (s) = σ λ(s), ρ constant, with λ(s) such that 1 0 λ (s)ds = 1. Then: and ρ is given by: ρ S = ρ 1 δ λ (s) ds 0 ρ A = ρ 1 λ (s) ds δ ρ = ρ S + ρ A = ρ By changing λ(s) we can change ρ S, ρ A, while ρ stays fixed. The relative sizes of ρ S, ρ A are given by the intra-day distribution of the realized covariance.

13 Comparison with heuristic estimators Trading desks have long ago realized that merely using ρ S is inadequate Standard fix: compute standard correlation using 3-day, 5-day, you-name-it, rather than daily returns How do these estimators differ from ρ? Connected issue: how do we price an n-day correlation swap? S A An n day correlation swap should be priced with ρ n given by: ρ n = ρ S + n 1 ρ n A For n = 3, ρ 3 = ρ S + 3 ρ A If no serial correlation in historical sample, standard correlation estimator applied to n-day returns yields ρ n

14 Historical n-day correlations n-day correlations evaluated on with: n-day returns (dark blue) using ρ S + n 1 n ρ A (light blue) compared to ρ (purple line) 10 Stoxx50 / SP Nikkei / Stoxx50 10 Nikkei / SP Common estimators ρ 3, ρ 5 underestimate ρ

15 The S&P500 and Stoxx50 as synchronous securities European and American exchanges have some overlap. We can either: delta-hedge asynchronously the S&P500 at 4pm New York time and the Stoxx50 at 5:30pm Paris time delta-hedge simultaneously both futures at say 4pm Paris time 1st case: use ρ, nd case: use standard correlation for synchronous securities are they different? ρ (light blue), standard sync. correlation (dark blue) 3-month EWMA Dec-05 -Dec-06 -Dec-07 1-Dec-08 1-Dec-09 Matches well, but not identical: difference stems from residual realized serial correlations.

16 Example of RBS/Citigroup correlations: ρ S (blue), ρ A (pink), ρ (green) 3-month EWMA Dec-04 1-Dec-05 1-Dec-06 1-Dec Nov Nov-09 Are instances when ρ > 1 an artifact? Do they have financial significance?

17 Consider a situation when no serial correlation is present. The global correlation matrix is positive, by construction. How large can ρ S + ρ A be? S A S A S A S Compute eigenvalues of full correlation matrix: assume both ladder uprights consist of N segments, with periodic boundary conditions assume eigenvalues have components e ikθ on higher upright, αe ikθ on lower upright express that λ is an eigenvalue: yields: αρ S αe i θ = λ ρ S + α + e i θ ρ A = λα λ = 1 ± (ρ S + ρ A cos θ) + ρ A sin θ

18 Periodic boundary conditions impose θ = nπ N, where n = 0... N 1 λ (θ) extremal for θ = 0, π. For these values λ = 1 ± ρ S ± ρ A λ > 0 implies: 1 A 1 ρ S + ρ A 1 1 ρ S ρ A 1 1 S If no serial correlations ρ [ 1, 1] Instances when ρ > 1: evidence of serial correlations Impact of ρ > 1 on trading desk: price with the right realized volatilities, 10 correlation lose money!!

19 Example with basket option Sell 6-month basket option on basket of Japanese stock & French stock. ( ) + S1 Payoff is T S T S1 0S 1 0 Basket is lognormal with volatility given by σ = σ 1 + σ + ρσ 1σ Use following "historical" data: Paris stock Tokyo stock Realized vols are 1.8% for S 1, 3.6% for S. Realized correlations are ρ S = 63.3%, ρ A = 57.6%: ρ = 11%.

20 Backtest delta-hedging of option with: implied vols = realized vols different implied correlations Initial option price and final P&L: P&L / Price 8% 6% 4% Final P&L Initial option price % % -4% Correlation Final P&L vanishes when one prices and risk-manages option with an implied correlation ρ 15%.

21 Conclusion Motivation It is possible to price and risk-manage options on asynchronous securities using the standard synchronous framework, provided special correlation estimator is used. Correlation estimator quantifies correlation that is materialized as cross-gamma P&L. Correlation swaps and options have to be priced with different correlations. Serial correlations may push realized value of ρ above 1: a short correlation position will lose money, even though one uses the right vols and 10 correlation.

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Market risk measurement in practice

Market risk measurement in practice Lecture notes on risk management, public policy, and the financial system Allan M. Malz Columbia University 2018 Allan M. Malz Last updated: October 23, 2018 2/32 Outline Nonlinearity in market risk Market

More information

Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull)

Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull) Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull) One use of derivation is for investors or investment banks to manage the risk of their investments. If an investor buys a stock for price S 0,

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 Interest Rate Modelling UTS Business School University of Technology Sydney Chapter 19. Allowing for Stochastic Interest Rates in the Black-Scholes Model May 15, 2014 1/33 Chapter 19. Allowing for

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Approximation Methods in Derivatives Pricing

Approximation Methods in Derivatives Pricing Approximation Methods in Derivatives Pricing Minqiang Li Bloomberg LP September 24, 2013 1 / 27 Outline of the talk A brief overview of approximation methods Timer option price approximation Perpetual

More information

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is $60. (ii) The call option currently sells for $0.15 more

More information

Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae

Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae Katja Ignatieva, Eckhard Platen Bachelier Finance Society World Congress 22-26 June 2010, Toronto K. Ignatieva, E.

More information

Assessing Value-at-Risk

Assessing Value-at-Risk Lecture notes on risk management, public policy, and the financial system Allan M. Malz Columbia University 2018 Allan M. Malz Last updated: April 1, 2018 2 / 18 Outline 3/18 Overview Unconditional coverage

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

Completeness and Hedging. Tomas Björk

Completeness and Hedging. Tomas Björk IV Completeness and Hedging Tomas Björk 1 Problems around Standard Black-Scholes We assumed that the derivative was traded. How do we price OTC products? Why is the option price independent of the expected

More information

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Our exam is Wednesday, December 19, at the normal class place and time. You may bring two sheets of notes (8.5

More information

Rho and Delta. Paul Hollingsworth January 29, Introduction 1. 2 Zero coupon bond 1. 3 FX forward 2. 5 Rho (ρ) 4. 7 Time bucketing 6

Rho and Delta. Paul Hollingsworth January 29, Introduction 1. 2 Zero coupon bond 1. 3 FX forward 2. 5 Rho (ρ) 4. 7 Time bucketing 6 Rho and Delta Paul Hollingsworth January 29, 2012 Contents 1 Introduction 1 2 Zero coupon bond 1 3 FX forward 2 4 European Call under Black Scholes 3 5 Rho (ρ) 4 6 Relationship between Rho and Delta 5

More information

Naked & Covered Positions

Naked & Covered Positions The Greek Letters 1 Example A bank has sold for $300,000 a European call option on 100,000 shares of a nondividend paying stock S 0 = 49, K = 50, r = 5%, σ = 20%, T = 20 weeks, μ = 13% The Black-Scholes

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 and Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 06: March 26, 2015 1 / 47 Remember and Previous chapters: introduction to the theory of options put-call parity fundamentals

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY Exploring Volatility Derivatives: New Advances in Modelling Bruno Dupire Bloomberg L.P. NY bdupire@bloomberg.net Global Derivatives 2005, Paris May 25, 2005 1. Volatility Products Historical Volatility

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS Erasmus Mundus Master in Complex Systems STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS June 25, 2012 Esteban Guevara Hidalgo esteban guevarah@yahoo.es

More information

INTEREST RATES AND FX MODELS

INTEREST RATES AND FX MODELS INTEREST RATES AND FX MODELS 7. Risk Management Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York March 8, 2012 2 Interest Rates & FX Models Contents 1 Introduction

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Hedging Default Risks of CDOs in Markovian Contagion Models

Hedging Default Risks of CDOs in Markovian Contagion Models Hedging Default Risks of CDOs in Markovian Contagion Models Second Princeton Credit Risk Conference 24 May 28 Jean-Paul LAURENT ISFA Actuarial School, University of Lyon, http://laurent.jeanpaul.free.fr

More information

Risk Measurement and Management of Operational Risk in Insurance Companies under Solvency II

Risk Measurement and Management of Operational Risk in Insurance Companies under Solvency II Risk Measurement and Management of Operational Risk in Insurance Companies under Solvency II AFIR/ERM Colloquium 2012, Mexico City October 2 nd, 2012 Nadine Gatzert and Andreas Kolb Friedrich-Alexander-University

More information

Lecture 11: Stochastic Volatility Models Cont.

Lecture 11: Stochastic Volatility Models Cont. E4718 Spring 008: Derman: Lecture 11:Stochastic Volatility Models Cont. Page 1 of 8 Lecture 11: Stochastic Volatility Models Cont. E4718 Spring 008: Derman: Lecture 11:Stochastic Volatility Models Cont.

More information

Multiscale Stochastic Volatility Models

Multiscale Stochastic Volatility Models Multiscale Stochastic Volatility Models Jean-Pierre Fouque University of California Santa Barbara 6th World Congress of the Bachelier Finance Society Toronto, June 25, 2010 Multiscale Stochastic Volatility

More information

A Lower Bound for Calls on Quadratic Variation

A Lower Bound for Calls on Quadratic Variation A Lower Bound for Calls on Quadratic Variation PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Chicago,

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Lecture 7: Computation of Greeks

Lecture 7: Computation of Greeks Lecture 7: Computation of Greeks Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris Outline 1 The log-likelihood approach Motivation The pathwise method requires some restrictive regularity assumptions

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Modelling Credit Spread Behaviour. FIRST Credit, Insurance and Risk. Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent

Modelling Credit Spread Behaviour. FIRST Credit, Insurance and Risk. Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent Modelling Credit Spread Behaviour Insurance and Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent ICBI Counterparty & Default Forum 29 September 1999, Paris Overview Part I Need for Credit Models Part II

More information

In this lecture we will solve the final-value problem derived in the previous lecture 4, V (1) + rs = rv (t < T )

In this lecture we will solve the final-value problem derived in the previous lecture 4, V (1) + rs = rv (t < T ) MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 5: THE BLACK AND SCHOLES FORMULA AND ITS GREEKS RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this lecture we will solve the final-value problem

More information

Heterogeneous Firm, Financial Market Integration and International Risk Sharing

Heterogeneous Firm, Financial Market Integration and International Risk Sharing Heterogeneous Firm, Financial Market Integration and International Risk Sharing Ming-Jen Chang, Shikuan Chen and Yen-Chen Wu National DongHwa University Thursday 22 nd November 2018 Department of Economics,

More information

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility Simple Arbitrage Relations Payoffs to Call and Put Options Black-Scholes Model Put-Call Parity Implied Volatility Option Pricing Options: Definitions A call option gives the buyer the right, but not the

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

Calculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the

Calculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the VaR Pro and Contra Pro: Easy to calculate and to understand. It is a common language of communication within the organizations as well as outside (e.g. regulators, auditors, shareholders). It is not really

More information

Bachelier Finance Society, Fifth World Congress London 19 July 2008

Bachelier Finance Society, Fifth World Congress London 19 July 2008 Hedging CDOs in in Markovian contagion models Bachelier Finance Society, Fifth World Congress London 19 July 2008 Jean-Paul LAURENT Professor, ISFA Actuarial School, University of Lyon & scientific consultant

More information

7.1 Volatility Simile and Defects in the Black-Scholes Model

7.1 Volatility Simile and Defects in the Black-Scholes Model Chapter 7 Beyond Black-Scholes Model 7.1 Volatility Simile and Defects in the Black-Scholes Model Before pointing out some of the flaws in the assumptions of the Black-Scholes world, we must emphasize

More information

Pricing Methods and Hedging Strategies for Volatility Derivatives

Pricing Methods and Hedging Strategies for Volatility Derivatives Pricing Methods and Hedging Strategies for Volatility Derivatives H. Windcliff P.A. Forsyth, K.R. Vetzal April 21, 2003 Abstract In this paper we investigate the behaviour and hedging of discretely observed

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Asset Allocation. Cash Flow Matching and Immunization CF matching involves bonds to match future liabilities Immunization involves duration matching

Asset Allocation. Cash Flow Matching and Immunization CF matching involves bonds to match future liabilities Immunization involves duration matching Asset Allocation Strategic Asset Allocation Combines investor s objectives, risk tolerance and constraints with long run capital market expectations to establish asset allocations Create the policy portfolio

More information

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model.

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model. Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model Henrik Brunlid September 16, 2005 Abstract When we introduce transaction costs

More information

ISSN BWPEF Variance Dispersion and Correlation Swaps. Antoine Jacquier Birkbeck, University of London. Saad Slaoui AXA IM, Paris

ISSN BWPEF Variance Dispersion and Correlation Swaps. Antoine Jacquier Birkbeck, University of London. Saad Slaoui AXA IM, Paris ISSN 745-8587 Birkbeck Working Papers in Economics & Finance School of Economics, Mathematics and Statistics BWPEF 7 Variance Dispersion and Correlation Swaps Antoine Jacquier Birkbeck, University of London

More information

Analysis of pricing American options on the maximum (minimum) of two risk assets

Analysis of pricing American options on the maximum (minimum) of two risk assets Interfaces Free Boundaries 4, (00) 7 46 Analysis of pricing American options on the maximum (minimum) of two risk assets LISHANG JIANG Institute of Mathematics, Tongji University, People s Republic of

More information

Principal Component Analysis of the Volatility Smiles and Skews. Motivation

Principal Component Analysis of the Volatility Smiles and Skews. Motivation Principal Component Analysis of the Volatility Smiles and Skews Professor Carol Alexander Chair of Risk Management ISMA Centre University of Reading www.ismacentre.rdg.ac.uk 1 Motivation Implied volatilities

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Risk Management. Exercises

Risk Management. Exercises Risk Management Exercises Exercise Value at Risk calculations Problem Consider a stock S valued at $1 today, which after one period can be worth S T : $2 or $0.50. Consider also a convertible bond B, which

More information

Consumption- Savings, Portfolio Choice, and Asset Pricing

Consumption- Savings, Portfolio Choice, and Asset Pricing Finance 400 A. Penati - G. Pennacchi Consumption- Savings, Portfolio Choice, and Asset Pricing I. The Consumption - Portfolio Choice Problem We have studied the portfolio choice problem of an individual

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Chapter 14. The Multi-Underlying Black-Scholes Model and Correlation

Chapter 14. The Multi-Underlying Black-Scholes Model and Correlation Chapter 4 The Multi-Underlying Black-Scholes Model and Correlation So far we have discussed single asset options, the payoff function depended only on one underlying. Now we want to allow multiple underlyings.

More information

Relationship between Correlation and Volatility. in Closely-Related Assets

Relationship between Correlation and Volatility. in Closely-Related Assets Relationship between Correlation and Volatility in Closely-Related Assets Systematic Alpha Management, LLC April 26, 2016 The purpose of this mini research paper is to address in a more quantitative fashion

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

1 Introduction. 2 Old Methodology BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM DIVISION OF RESEARCH AND STATISTICS

1 Introduction. 2 Old Methodology BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM DIVISION OF RESEARCH AND STATISTICS BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM DIVISION OF RESEARCH AND STATISTICS Date: October 6, 3 To: From: Distribution Hao Zhou and Matthew Chesnes Subject: VIX Index Becomes Model Free and Based

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

BASIS RISK AND SEGREGATED FUNDS

BASIS RISK AND SEGREGATED FUNDS BASIS RISK AND SEGREGATED FUNDS Capital oversight of financial institutions June 2017 June 2017 1 INTRODUCTION The view expressed in this presentation are those of the author. No responsibility for them

More information

PORTFOLIO OPTIMIZATION: ANALYTICAL TECHNIQUES

PORTFOLIO OPTIMIZATION: ANALYTICAL TECHNIQUES PORTFOLIO OPTIMIZATION: ANALYTICAL TECHNIQUES Keith Brown, Ph.D., CFA November 22 nd, 2007 Overview of the Portfolio Optimization Process The preceding analysis demonstrates that it is possible for investors

More information

Dynamic hedging of synthetic CDO tranches

Dynamic hedging of synthetic CDO tranches ISFA, Université Lyon 1 Young Researchers Workshop on Finance 2011 TMU Finance Group Tokyo, March 2011 Introduction In this presentation, we address the hedging issue of CDO tranches in a market model

More information

Problems; the Smile. Options written on the same underlying asset usually do not produce the same implied volatility.

Problems; the Smile. Options written on the same underlying asset usually do not produce the same implied volatility. Problems; the Smile Options written on the same underlying asset usually do not produce the same implied volatility. A typical pattern is a smile in relation to the strike price. The implied volatility

More information

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance WITH SKETCH ANSWERS BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance SCHOOL OF ECONOMICS,

More information

Modeling the Real Term Structure

Modeling the Real Term Structure Modeling the Real Term Structure (Inflation Risk) Chris Telmer May 2013 1 / 23 Old school Old school Prices Goods? Real Return Real Interest Rate TIPS Real yields : Model The Fisher equation defines the

More information

Differential Pricing Effects of Volatility on Individual Equity Options

Differential Pricing Effects of Volatility on Individual Equity Options Differential Pricing Effects of Volatility on Individual Equity Options Mobina Shafaati Abstract This study analyzes the impact of volatility on the prices of individual equity options. Using the daily

More information

Stochastic Volatility (Working Draft I)

Stochastic Volatility (Working Draft I) Stochastic Volatility (Working Draft I) Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu 1 Introduction When using the Black-Scholes-Merton model to price derivative

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Market models for the smile Local volatility, local-stochastic volatility

Market models for the smile Local volatility, local-stochastic volatility Market models for the smile Local volatility, local-stochastic volatility Lorenzo Bergomi lorenzo.bergomi@sgcib.com Global Markets Quantitative Research European Summer School in Financial Mathematics

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

SOLUTION Fama Bliss and Risk Premiums in the Term Structure

SOLUTION Fama Bliss and Risk Premiums in the Term Structure SOLUTION Fama Bliss and Risk Premiums in the Term Structure Question (i EH Regression Results Holding period return year 3 year 4 year 5 year Intercept 0.0009 0.0011 0.0014 0.0015 (std err 0.003 0.0045

More information

MAKING OPTIMISATION TECHNIQUES ROBUST WITH AGNOSTIC RISK PARITY

MAKING OPTIMISATION TECHNIQUES ROBUST WITH AGNOSTIC RISK PARITY Technical Note May 2017 MAKING OPTIMISATION TECHNIQUES ROBUST WITH AGNOSTIC RISK PARITY Introduction The alternative investment industry is becoming ever more accessible to those wishing to diversify away

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

The investment game in incomplete markets.

The investment game in incomplete markets. The investment game in incomplete markets. M. R. Grasselli Mathematics and Statistics McMaster University RIO 27 Buzios, October 24, 27 Successes and imitations of Real Options Real options accurately

More information

SUPPLEMENT TO THE LUCAS ORCHARD (Econometrica, Vol. 81, No. 1, January 2013, )

SUPPLEMENT TO THE LUCAS ORCHARD (Econometrica, Vol. 81, No. 1, January 2013, ) Econometrica Supplementary Material SUPPLEMENT TO THE LUCAS ORCHARD (Econometrica, Vol. 81, No. 1, January 2013, 55 111) BY IAN MARTIN FIGURE S.1 shows the functions F γ (z),scaledby2 γ so that they integrate

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

Financial Risk Measurement/Management

Financial Risk Measurement/Management 550.446 Financial Risk Measurement/Management Week of September 23, 2013 Interest Rate Risk & Value at Risk (VaR) 3.1 Where we are Last week: Introduction continued; Insurance company and Investment company

More information

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 Modeling the Implied Volatility Surface Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 This presentation represents only the personal opinions of the author and not those

More information

Combining Real Options and game theory in incomplete markets.

Combining Real Options and game theory in incomplete markets. Combining Real Options and game theory in incomplete markets. M. R. Grasselli Mathematics and Statistics McMaster University Further Developments in Quantitative Finance Edinburgh, July 11, 2007 Successes

More information

Financial Risk Measurement/Management

Financial Risk Measurement/Management 550.446 Financial Risk Measurement/Management Week of September 23, 2013 Interest Rate Risk & Value at Risk (VaR) 3.1 Where we are Last week: Introduction continued; Insurance company and Investment company

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Hedging. MATH 472 Financial Mathematics. J. Robert Buchanan

Hedging. MATH 472 Financial Mathematics. J. Robert Buchanan Hedging MATH 472 Financial Mathematics J. Robert Buchanan 2018 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in market variables. There

More information

Optimal Portfolio Liquidation and Macro Hedging

Optimal Portfolio Liquidation and Macro Hedging Bloomberg Quant Seminar, October 15, 2015 Optimal Portfolio Liquidation and Macro Hedging Marco Avellaneda Courant Institute, YU Joint work with Yilun Dong and Benjamin Valkai Liquidity Risk Measures Liquidity

More information

Option Trading and Positioning Professor Bodurtha

Option Trading and Positioning Professor Bodurtha 1 Option Trading and Positioning Pooya Tavana Option Trading and Positioning Professor Bodurtha 5/7/2011 Pooya Tavana 2 Option Trading and Positioning Pooya Tavana I. Executive Summary Financial options

More information

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013 University of California, Los Angeles Department of Statistics Statistics C183/C283 Instructor: Nicolas Christou Final exam 07 June 2013 Name: Problem 1 (20 points) a. Suppose the variable X follows the

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information