Section3-2: Measures of Center

Size: px
Start display at page:

Download "Section3-2: Measures of Center"

Transcription

1 Chapter 3 Section3-: Measures of Center Notation Suppose we are making a series of observations, n of them, to be exact. Then we write x 1, x, x 3,K, x n as the values we observe. Thus n is the total number of data points, and x 4 (say) is the value of the fourth data point. 1 Example Measures of Center and Spread Suppose we ask five people how many hours of television they watch in a week, and get the following data: Observation Data value That is, x =, x = 7, x = 3, x = 38, x = 7 1 3, 4 What is the center of these data, and what is the spread about that value? Mean Median Mode Midrange CENTER SPREAD Range Inter-quartile range (IQR) Variance/Standard deviation Mean Mode Median Midrange Mean Sample Mean x Population Mean µ x-bar mu the average of a set of observations in a sample If the n observations are then x + x + x + K+ x x = n xi i = = n 1 3 n 1 n the average of a set of observation in the population If the N observations are then x + x + x + K+ x x = N xi i = = N 1 3 N 1 N 6 1

2 Example: Sample Mean x =, x = 7, x = 3, x = 38, x = 7 1 3, 4 Mean is the balance point of the distribution The mean is x + x + x + x + x x = = n x = = i= 1 n x i mean Median Median The median M is the midpoint of the distribution (like the median strip in a road) It is the number such that half of the observations fall above and half fall below. Example: Median x =, x = 7, x = 3, x = 38, x = 7 1 3, 4 Step 1: order the data: Example : Median If the data are x =, x = 7, x = 3, x = , 4 Step 1: order the data: Median = 7 Median = + 7 = 6

3 Example Data set A: median is 68 mean is 68.1 Data set B: median is still 68 mean is 16 outlier The mean is very sensitive to outliers, while the median is resistant to outliers. Comparing the mean and the median Mean describes the center as an average value, where the actual values of the data points play an important role Sensitive to outliers Median locates the middle value as the center, and the order of the data is the key to finding it. Not sensitive to outliers Symmetric distributions with no outliers Left-skewed distributions Mean Median Mean < Median Right-skewed distributions Skewness Median=68 Mean=7 Median< Mean 3

4 Which measure of center to use? We will therefore use the mean as a measure of center for symmetric distributions with no outliers. Otherwise, the median will be a more appropriate measure of the center of our data. Another measure of center: Mode Mode is the most frequent value in the data set Data:, 4, 4, 4,,, 6, 7, 8, 10, 1 Mode = 4 Data:, 4, 4, 4,,,, 6, 7, 8, 10, 1 Mode = 4, Data:, 4,, 6, 7, 8, 10, 1 No mode And another measure of center: Midrange Midrange is the value midway between the maximum and the minimum values in the data set. midrange = max+ min Summary: Measures of Center The two main numerical measures for the center of a distribution are the mean x and the median M. The mean is the average value, while the median is the middle value. The mean is very sensitive to outliers, while the median is resistant to outliers. The mean is an appropriate measure of center only for symmetric distributions with no outliers. In all other cases, the median should be used to describe the center of the distribution. The mode is the most frequent value. The midrange is the average of the max and the min values. 1 Range Interquartile range (IQR) Variance/Standard deviation 3 4 4

5 Spread Measures of Spread Spread: how far from the center the data tend range. If all the data points are identical, there would be no spread at all. Numerically, the spread would be zero. Ex.: Center: Spread: 0 Range Inter-quartile range (IQR) Range = max. value min. value the IQR gives the range covered by the MIDDLE 0% of the data Example: Data:, 4, 4, 4,,, 6, 7, 8, 10, 1 Range= max.- min. = 1- = 13 How to find the IQR? How to find the IQR? Step 1: arrange the data in increasing order Step : find the median Step 3: Find the median of the lower 0% of the data. This is called the first quartile of the distribution and is denoted by Q1.

6 How to find the IQR? IQR Step 4: Repeat this again for the top 0% of the data. Find the median of the top 0% of the data. This is called the third quartile of the distribution and is denoted by Q3. The middle 0% of the data falls between Q1 and Q3, and therefore: IQR = Q3 - Q1 IQR Example Weights of 10 students: 10, 118, 10, 136, 138, 149, 17, 17, 161, M = = 143. IQR = = 37 Note Using the IQR to detect outliers The IQR should be used as a measure of spread of a distribution only when the median is used as a measure of center. Median IQR The 1.(IQR) Criterion for Outliers An observation is considered a suspected outlier if it is below Q1-1.(IQR) or above Q3 + 1.(IQR) 6

7 The 1.(IQR) Criterion for Outliers Example 1 Weights of 10 students: 10, 118, 10, 136, 138, 149, 17, 17, 161, 1 + M = = 143. IQR = = 37 Q IQR = ( 37) = 1. Anything above 1.? YES. 1 IS an outlier. Example Outlier! Data: -1, 8, 9, 1, 14, 19,, 3, 3, 4, 0 M IQR= 3-9 = (IQR)= 1. (14) =1 Anything below Q1-1.(IQR)=9 1 = -1? Outliers! YES! Five-number summary To get a quick summary of both center and spread, we consider these five numbers: Mininum value Q1 Median Q3 Maximum value Five-number summary Anything above Q3+1.(IQR)=3 +1 = 44? YES! Boxplot John Tukey invented another kind of display to show off the five-number summary. It s called boxplot. Example 1 Weights of 10 students: 10, 118, 10, 136, 138, 149, 17, 17, 161, 180 Min. + M = = 143. Max

8 Example Outlier Weights of 10 students: 10, 118, 10, 136, 138, 149, 17, 17, 161, 1 Min. + M = = 143. Max. Comparing distributions Boxplots are best used for side-byside comparison of more than one distribution. * Variance and Standard Deviation The standard deviation gives the average (or typical distance) between a data point and the mean, x. Variance: Standard deviation: s ( x x) + ( x x) + K+ ( xn x) = n 1 1 s = ( x1 x) + ( x x) + K+ ( xn x) n 1 Facts about the standard deviation (s) s measures the spread about the mean and should be used only when the mean is chosen as the measure of center. That is, when the distribution of the data is roughly symmetric with no outliers. Mean Standard deviation 4 46 Facts about the Standard Deviation (s) Standard Deviation s is always zero or greater than 0. s = 0 only when there is no spread, i.e., the data values are identical. s gets larger as the spread increases. s has the same units of measurements as the original observations. Like the mean, s is not resistant. It is very sensitive to outliers. Sample s.d.: s s = ( x1 x) + ( x x) + K+ ( xn x) n 1 Population s.d.: σ σ = ( x1 x) + ( x x) + K+ ( x N x) N

9 The rule (Empirical Rule) The Empirical Rule for Data with a Bell-Shaped Distribution Measures of Relative Standing 0 The Empirical Rule Standard Normal Distribution is a Normal distribution with mean 0 and standard deviation 1. Notation: N (0,1). How to standardize? Need to change x to z-scores: z = x µ σ Ordinary/Unusual Values A z-score measures the number of standard deviations that a data value x is from the mean µ. When x is larger than the mean, z is positive. When x is smaller than the mean, z is negative. When x is equal to the mean, z is zero. Ordinary values: - z-score Unusual values: z-score < -, or z-score > 3 4 9

10 Percentiles are measures of location. There are 99 percentiles denoted P 1, P,... P 99, which divide a set of data into 100 groups with about 1% of the values in each group. number of values less than x Percentile of value x = 100 total number of values Summary Measures of the center of distributions: Mean Median Mode Measures of spread of distributions: Range IQR Using IQR to detect outliers the 1.(IQR) rule Boxplots Variance/Standard deviation 10

Center and Spread. Measures of Center and Spread. Example: Mean. Mean: the balance point 2/22/2009. Describing Distributions with Numbers.

Center and Spread. Measures of Center and Spread. Example: Mean. Mean: the balance point 2/22/2009. Describing Distributions with Numbers. Chapter 3 Section3-: Measures of Center Section 3-3: Measurers of Variation Section 3-4: Measures of Relative Standing Section 3-5: Exploratory Data Analysis Describing Distributions with Numbers The overall

More information

Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean

Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean Measure of Center Measures of Center The value at the center or middle of a data set 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) 1 2 Mean Notation The measure of center obtained by adding the values

More information

Some estimates of the height of the podium

Some estimates of the height of the podium Some estimates of the height of the podium 24 36 40 40 40 41 42 44 46 48 50 53 65 98 1 5 number summary Inter quartile range (IQR) range = max min 2 1.5 IQR outlier rule 3 make a boxplot 24 36 40 40 40

More information

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data.

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data. -3: Measure of Central Tendency Chapter : Descriptive Statistics The value at the center or middle of a data set. It is a tool for analyzing data. Part 1: Basic concepts of Measures of Center Ex. Data

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

1 Describing Distributions with numbers

1 Describing Distributions with numbers 1 Describing Distributions with numbers Only for quantitative variables!! 1.1 Describing the center of a data set The mean of a set of numerical observation is the familiar arithmetic average. To write

More information

appstats5.notebook September 07, 2016 Chapter 5

appstats5.notebook September 07, 2016 Chapter 5 Chapter 5 Describing Distributions Numerically Chapter 5 Objective: Students will be able to use statistics appropriate to the shape of the data distribution to compare of two or more different data sets.

More information

Describing Data: One Quantitative Variable

Describing Data: One Quantitative Variable STAT 250 Dr. Kari Lock Morgan The Big Picture Describing Data: One Quantitative Variable Population Sampling SECTIONS 2.2, 2.3 One quantitative variable (2.2, 2.3) Statistical Inference Sample Descriptive

More information

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence Measures of Variation Section -5 1 Waiting Times of Bank Customers at Different Banks in minutes Jefferson Valley Bank 6.5 6.6 6.7 6.8 7.1 7.3 7.4 Bank of Providence 4. 5.4 5.8 6. 6.7 8.5 9.3 10.0 Mean

More information

Lecture 2 Describing Data

Lecture 2 Describing Data Lecture 2 Describing Data Thais Paiva STA 111 - Summer 2013 Term II July 2, 2013 Lecture Plan 1 Types of data 2 Describing the data with plots 3 Summary statistics for central tendency and spread 4 Histograms

More information

Mini-Lecture 3.1 Measures of Central Tendency

Mini-Lecture 3.1 Measures of Central Tendency Mini-Lecture 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data 3. Explain what it means for a

More information

Numerical Descriptions of Data

Numerical Descriptions of Data Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =

More information

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25 Handout 4 numerical descriptive measures part Calculating Mean for Grouped Data mf Mean for population data: µ mf Mean for sample data: x n where m is the midpoint and f is the frequency of a class. Example

More information

Chapter 3. Descriptive Measures. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1

Chapter 3. Descriptive Measures. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1 Chapter 3 Descriptive Measures Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1 Chapter 3 Descriptive Measures Mean, Median and Mode Copyright 2016, 2012, 2008 Pearson Education, Inc.

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s).

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). We will look the three common and useful measures of spread. The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). 1 Ameasure of the center

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

STAT 113 Variability

STAT 113 Variability STAT 113 Variability Colin Reimer Dawson Oberlin College September 14, 2017 1 / 48 Outline Last Time: Shape and Center Variability Boxplots and the IQR Variance and Standard Deviaton Transformations 2

More information

Math 140 Introductory Statistics. First midterm September

Math 140 Introductory Statistics. First midterm September Math 140 Introductory Statistics First midterm September 23 2010 Box Plots Graphical display of 5 number summary Q1, Q2 (median), Q3, max, min Outliers If a value is more than 1.5 times the IQR from the

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.)

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.) Starter Ch. 6: A z-score Analysis Starter Ch. 6 Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and an 85 on test 2. You re all set to drop

More information

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Lecture 1: Review and Exploratory Data Analysis (EDA) Ani Manichaikul amanicha@jhsph.edu 16 April 2007 1 / 40 Course Information I Office hours For questions and help When? I ll announce this tomorrow

More information

Statistics vs. statistics

Statistics vs. statistics Statistics vs. statistics Question: What is Statistics (with a capital S)? Definition: Statistics is the science of collecting, organizing, summarizing and interpreting data. Note: There are 2 main ways

More information

NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS

NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS A box plot is a pictorial representation of the data and can be used to get a good idea and a clear picture about the distribution of the data. It shows

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

Applications of Data Dispersions

Applications of Data Dispersions 1 Applications of Data Dispersions Key Definitions Standard Deviation: The standard deviation shows how far away each value is from the mean on average. Z-Scores: The distance between the mean and a given

More information

Frequency Distribution and Summary Statistics

Frequency Distribution and Summary Statistics Frequency Distribution and Summary Statistics Dongmei Li Department of Public Health Sciences Office of Public Health Studies University of Hawai i at Mānoa Outline 1. Stemplot 2. Frequency table 3. Summary

More information

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis Descriptive Statistics (Part 2) 4 Chapter Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis McGraw-Hill/Irwin Copyright 2009 by The McGraw-Hill Companies, Inc. Chebyshev s Theorem

More information

Unit 2 Statistics of One Variable

Unit 2 Statistics of One Variable Unit 2 Statistics of One Variable Day 6 Summarizing Quantitative Data Summarizing Quantitative Data We have discussed how to display quantitative data in a histogram It is useful to be able to describe

More information

Math 243 Lecture Notes

Math 243 Lecture Notes Assume the average annual rainfall for in Portland is 36 inches per year with a standard deviation of 9 inches. Also assume that the average wind speed in Chicago is 10 mph with a standard deviation of

More information

Copyright 2005 Pearson Education, Inc. Slide 6-1

Copyright 2005 Pearson Education, Inc. Slide 6-1 Copyright 2005 Pearson Education, Inc. Slide 6-1 Chapter 6 Copyright 2005 Pearson Education, Inc. Measures of Center in a Distribution 6-A The mean is what we most commonly call the average value. It is

More information

A LEVEL MATHEMATICS ANSWERS AND MARKSCHEMES SUMMARY STATISTICS AND DIAGRAMS. 1. a) 45 B1 [1] b) 7 th value 37 M1 A1 [2]

A LEVEL MATHEMATICS ANSWERS AND MARKSCHEMES SUMMARY STATISTICS AND DIAGRAMS. 1. a) 45 B1 [1] b) 7 th value 37 M1 A1 [2] 1. a) 45 [1] b) 7 th value 37 [] n c) LQ : 4 = 3.5 4 th value so LQ = 5 3 n UQ : 4 = 9.75 10 th value so UQ = 45 IQR = 0 f.t. d) Median is closer to upper quartile Hence negative skew [] Page 1 . a) Orders

More information

Lecture Week 4 Inspecting Data: Distributions

Lecture Week 4 Inspecting Data: Distributions Lecture Week 4 Inspecting Data: Distributions Introduction to Research Methods & Statistics 2013 2014 Hemmo Smit So next week No lecture & workgroups But Practice Test on-line (BB) Enter data for your

More information

Descriptive Statistics

Descriptive Statistics Petra Petrovics Descriptive Statistics 2 nd seminar DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs

More information

Empirical Rule (P148)

Empirical Rule (P148) Interpreting the Standard Deviation Numerical Descriptive Measures for Quantitative data III Dr. Tom Ilvento FREC 408 We can use the standard deviation to express the proportion of cases that might fall

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Variance, Standard Deviation Counting Techniques

Variance, Standard Deviation Counting Techniques Variance, Standard Deviation Counting Techniques Section 1.3 & 2.1 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston 1 / 52 Outline 1 Quartiles 2 The 1.5IQR Rule 3 Understanding

More information

Descriptive Analysis

Descriptive Analysis Descriptive Analysis HERTANTO WAHYU SUBAGIO Univariate Analysis Univariate analysis involves the examination across cases of one variable at a time. There are three major characteristics of a single variable

More information

Simple Descriptive Statistics

Simple Descriptive Statistics Simple Descriptive Statistics These are ways to summarize a data set quickly and accurately The most common way of describing a variable distribution is in terms of two of its properties: Central tendency

More information

Putting Things Together Part 2

Putting Things Together Part 2 Frequency Putting Things Together Part These exercise blend ideas from various graphs (histograms and boxplots), differing shapes of distributions, and values summarizing the data. Data for, and are in

More information

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011 Standard Deviation Lecture 18 Section 5.3.4 Robb T. Koether Hampden-Sydney College Mon, Sep 26, 2011 Robb T. Koether (Hampden-Sydney College) Standard Deviation Mon, Sep 26, 2011 1 / 42 Outline 1 Variability

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Chapter 3 Descriptive Statistics: Numerical Measures Part A Slides Prepared by JOHN S. LOUCKS St. Edward s University Slide 1 Chapter 3 Descriptive Statistics: Numerical Measures Part A Measures of Location Measures of Variability Slide Measures of Location Mean

More information

NOTES: Chapter 4 Describing Data

NOTES: Chapter 4 Describing Data NOTES: Chapter 4 Describing Data Intro to Statistics COLYER Spring 2017 Student Name: Page 2 Section 4.1 ~ What is Average? Objective: In this section you will understand the difference between the three

More information

Numerical Measurements

Numerical Measurements El-Shorouk Academy Acad. Year : 2013 / 2014 Higher Institute for Computer & Information Technology Term : Second Year : Second Department of Computer Science Statistics & Probabilities Section # 3 umerical

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

Section 6-1 : Numerical Summaries

Section 6-1 : Numerical Summaries MAT 2377 (Winter 2012) Section 6-1 : Numerical Summaries With a random experiment comes data. In these notes, we learn techniques to describe the data. Data : We will denote the n observations of the random

More information

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA. Name: ID# Section

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA. Name: ID# Section KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA STAT 11: BUSINESS STATISTICS I Semester 04 Major Exam #1 Sunday March 7, 005 Please circle your instructor

More information

Introduction to Computational Finance and Financial Econometrics Descriptive Statistics

Introduction to Computational Finance and Financial Econometrics Descriptive Statistics You can t see this text! Introduction to Computational Finance and Financial Econometrics Descriptive Statistics Eric Zivot Summer 2015 Eric Zivot (Copyright 2015) Descriptive Statistics 1 / 28 Outline

More information

The Standard Deviation as a Ruler and the Normal Model. Copyright 2009 Pearson Education, Inc.

The Standard Deviation as a Ruler and the Normal Model. Copyright 2009 Pearson Education, Inc. The Standard Deviation as a Ruler and the Normal Mol Copyright 2009 Pearson Education, Inc. The trick in comparing very different-looking values is to use standard viations as our rulers. The standard

More information

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source: Page 1 of 39

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source:   Page 1 of 39 Source: www.mathwords.com The Greek Alphabet Page 1 of 39 Some Miscellaneous Tips on Calculations Examples: Round to the nearest thousandth 0.92431 0.75693 CAUTION! Do not truncate numbers! Example: 1

More information

Statistics I Chapter 2: Analysis of univariate data

Statistics I Chapter 2: Analysis of univariate data Statistics I Chapter 2: Analysis of univariate data Numerical summary Central tendency Location Spread Form mean quartiles range coeff. asymmetry median percentiles interquartile range coeff. kurtosis

More information

Description of Data I

Description of Data I Description of Data I (Summary and Variability measures) Objectives: Able to understand how to summarize the data Able to understand how to measure the variability of the data Able to use and interpret

More information

Numerical Descriptive Measures. Measures of Center: Mean and Median

Numerical Descriptive Measures. Measures of Center: Mean and Median Steve Sawin Statistics Numerical Descriptive Measures Having seen the shape of a distribution by looking at the histogram, the two most obvious questions to ask about the specific distribution is where

More information

4. DESCRIPTIVE STATISTICS

4. DESCRIPTIVE STATISTICS 4. DESCRIPTIVE STATISTICS Descriptive Statistics is a body of techniques for summarizing and presenting the essential information in a data set. Eg: Here are daily high temperatures for Jan 16, 2009 in

More information

Putting Things Together Part 1

Putting Things Together Part 1 Putting Things Together Part 1 These exercise blend ideas from various graphs (histograms and boxplots), differing shapes of distributions, and values summarizing the data. Data for 1, 5, and 6 are in

More information

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2.

More information

Statistics I Final Exam, 24 June Degrees in ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER.

Statistics I Final Exam, 24 June Degrees in ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER. Statistics I Final Exam, June. Degrees in ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER. EXAM RULES: Use separate booklets for each problem. Perform the calculations with at least two significant decimal places.

More information

SOLUTIONS TO THE LAB 1 ASSIGNMENT

SOLUTIONS TO THE LAB 1 ASSIGNMENT SOLUTIONS TO THE LAB 1 ASSIGNMENT Question 1 Excel produces the following histogram of pull strengths for the 100 resistors: 2 20 Histogram of Pull Strengths (lb) Frequency 1 10 0 9 61 63 6 67 69 71 73

More information

Measures of Central Tendency Lecture 5 22 February 2006 R. Ryznar

Measures of Central Tendency Lecture 5 22 February 2006 R. Ryznar Measures of Central Tendency 11.220 Lecture 5 22 February 2006 R. Ryznar Today s Content Wrap-up from yesterday Frequency Distributions The Mean, Median and Mode Levels of Measurement and Measures of Central

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Lecture 3 Reading: Sections 5.7 54 Remember, when you finish a chapter make sure not to miss the last couple of boxes: What Can Go

More information

Test Bank Elementary Statistics 2nd Edition William Navidi

Test Bank Elementary Statistics 2nd Edition William Navidi Test Bank Elementary Statistics 2nd Edition William Navidi Completed downloadable package TEST BANK for Elementary Statistics 2nd Edition by William Navidi, Barry Monk: https://testbankreal.com/download/elementary-statistics-2nd-edition-test-banknavidi-monk/

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Midterm Test 1 (Sample) Student Name (PRINT):... Student Signature:... Use pencil, so that you can erase and rewrite if necessary.

Midterm Test 1 (Sample) Student Name (PRINT):... Student Signature:... Use pencil, so that you can erase and rewrite if necessary. MA 180/418 Midterm Test 1 (Sample) Student Name (PRINT):............................................. Student Signature:................................................... Use pencil, so that you can erase

More information

Chapter 3: Displaying and Describing Quantitative Data Quiz A Name

Chapter 3: Displaying and Describing Quantitative Data Quiz A Name Chapter 3: Displaying and Describing Quantitative Data Quiz A Name 3.1.1 Find summary statistics; create displays; describe distributions; determine 1. Following is a histogram of salaries (in $) for a

More information

Lecture 18 Section Mon, Feb 16, 2009

Lecture 18 Section Mon, Feb 16, 2009 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Feb 16, 2009 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

Lecture 18 Section Mon, Sep 29, 2008

Lecture 18 Section Mon, Sep 29, 2008 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Sep 29, 2008 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

3.5 Applying the Normal Distribution (Z-Scores)

3.5 Applying the Normal Distribution (Z-Scores) 3.5 Applying the Normal Distribution (Z-Scores) The Graph: Review of the Normal Distribution Properties: - it is symmetrical; the mean, median and mode are equal and fall at the line of symmetry - it is

More information

Descriptive Statistics

Descriptive Statistics Chapter 3 Descriptive Statistics Chapter 2 presented graphical techniques for organizing and displaying data. Even though such graphical techniques allow the researcher to make some general observations

More information

CHAPTER 2 Describing Data: Numerical

CHAPTER 2 Describing Data: Numerical CHAPTER Multiple-Choice Questions 1. A scatter plot can illustrate all of the following except: A) the median of each of the two variables B) the range of each of the two variables C) an indication of

More information

MEASURES OF CENTRAL TENDENCY & VARIABILITY + NORMAL DISTRIBUTION

MEASURES OF CENTRAL TENDENCY & VARIABILITY + NORMAL DISTRIBUTION MEASURES OF CENTRAL TENDENCY & VARIABILITY + NORMAL DISTRIBUTION 1 Day 3 Summer 2017.07.31 DISTRIBUTION Symmetry Modality 单峰, 双峰 Skewness 正偏或负偏 Kurtosis 2 3 CHAPTER 4 Measures of Central Tendency 集中趋势

More information

Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12)

Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12) Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12) Descriptive statistics: - Measures of centrality (Mean, median, mode, trimmed mean) - Measures of spread (MAD, Standard deviation, variance) -

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda,

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda, MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE Dr. Bijaya Bhusan Nanda, CONTENTS What is measures of dispersion? Why measures of dispersion? How measures of dispersions are calculated? Range Quartile

More information

Chapter 3. Lecture 3 Sections

Chapter 3. Lecture 3 Sections Chapter 3 Lecture 3 Sections 3.4 3.5 Measure of Position We would like to compare values from different data sets. We will introduce a z score or standard score. This measures how many standard deviation

More information

Categorical. A general name for non-numerical data; the data is separated into categories of some kind.

Categorical. A general name for non-numerical data; the data is separated into categories of some kind. Chapter 5 Categorical A general name for non-numerical data; the data is separated into categories of some kind. Nominal data Categorical data with no implied order. Eg. Eye colours, favourite TV show,

More information

Edexcel past paper questions

Edexcel past paper questions Edexcel past paper questions Statistics 1 Chapters 2-4 (Discrete) Statistics 1 Chapters 2-4 (Discrete) Page 1 Stem and leaf diagram Stem-and-leaf diagrams are used to represent data in its original form.

More information

The Normal Distribution

The Normal Distribution Stat 6 Introduction to Business Statistics I Spring 009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:300:50 a.m. Chapter, Section.3 The Normal Distribution Density Curves So far we

More information

(a) salary of a bank executive (measured in dollars) quantitative. (c) SAT scores of students at Millersville University quantitative

(a) salary of a bank executive (measured in dollars) quantitative. (c) SAT scores of students at Millersville University quantitative Millersville University Name Answer Key Department of Mathematics MATH 130, Elements of Statistics I, Test 1 February 8, 2010, 10:00AM-10:50AM Please answer the following questions. Your answers will be

More information

Honors Statistics. 3. Discuss homework C2# Discuss standard scores and percentiles. Chapter 2 Section Review day 2016s Notes.

Honors Statistics. 3. Discuss homework C2# Discuss standard scores and percentiles. Chapter 2 Section Review day 2016s Notes. Honors Statistics Aug 23-8:26 PM 3. Discuss homework C2#11 4. Discuss standard scores and percentiles Aug 23-8:31 PM 1 Feb 8-7:44 AM Sep 6-2:27 PM 2 Sep 18-12:51 PM Chapter 2 Modeling Distributions of

More information

FINALS REVIEW BELL RINGER. Simplify the following expressions without using your calculator. 1) 6 2/3 + 1/2 2) 2 * 3(1/2 3/5) 3) 5/ /2 4

FINALS REVIEW BELL RINGER. Simplify the following expressions without using your calculator. 1) 6 2/3 + 1/2 2) 2 * 3(1/2 3/5) 3) 5/ /2 4 FINALS REVIEW BELL RINGER Simplify the following expressions without using your calculator. 1) 6 2/3 + 1/2 2) 2 * 3(1/2 3/5) 3) 5/3 + 7 + 1/2 4 4) 3 + 4 ( 7) + 3 + 4 ( 2) 1) 36/6 4/6 + 3/6 32/6 + 3/6 35/6

More information

22.2 Shape, Center, and Spread

22.2 Shape, Center, and Spread Name Class Date 22.2 Shape, Center, and Spread Essential Question: Which measures of center and spread are appropriate for a normal distribution, and which are appropriate for a skewed distribution? Eplore

More information

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range

1) 3 points Which of the following is NOT a measure of central tendency? a) Median b) Mode c) Mean d) Range February 19, 2004 EXAM 1 : Page 1 All sections : Geaghan Read Carefully. Give an answer in the form of a number or numeric expression where possible. Show all calculations. Use a value of 0.05 for any

More information

Math Take Home Quiz on Chapter 2

Math Take Home Quiz on Chapter 2 Math 116 - Take Home Quiz on Chapter 2 Show the calculations that lead to the answer. Due date: Tuesday June 6th Name Time your class meets Provide an appropriate response. 1) A newspaper surveyed its

More information

Introduction to Descriptive Statistics

Introduction to Descriptive Statistics Introduction to Descriptive Statistics 17.871 Types of Variables ~Nominal (Quantitative) Nominal (Qualitative) categorical Ordinal Interval or ratio Describing data Moment Non-mean based measure Center

More information

Shifting and rescaling data distributions

Shifting and rescaling data distributions Shifting and rescaling data distributions It is useful to consider the effect of systematic alterations of all the values in a data set. The simplest such systematic effect is a shift by a fixed constant.

More information

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 05 Normal Distribution So far we have looked at discrete distributions

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

DATA ANALYSIS EXAM QUESTIONS

DATA ANALYSIS EXAM QUESTIONS DATA ANALYSIS EXAM QUESTIONS Question 1 (**) The number of phone text messages send by 11 different students is given below. 14, 25, 31, 36, 37, 41, 51, 52, 55, 79, 112. a) Find the lower quartile, the

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Terms & Characteristics

Terms & Characteristics NORMAL CURVE Knowledge that a variable is distributed normally can be helpful in drawing inferences as to how frequently certain observations are likely to occur. NORMAL CURVE A Normal distribution: Distribution

More information

STATS DOESN T SUCK! ~ CHAPTER 4

STATS DOESN T SUCK! ~ CHAPTER 4 CHAPTER 4 QUESTION 1 The Geometric Mean Suppose you make a 2-year investment of $5,000 and it grows by 100% to $10,000 during the first year. During the second year, however, the investment suffers a 50%

More information