Variance, Standard Deviation Counting Techniques

Size: px
Start display at page:

Download "Variance, Standard Deviation Counting Techniques"

Transcription

1 Variance, Standard Deviation Counting Techniques Section 1.3 & 2.1 Cathy Poliak, Ph.D. Department of Mathematics University of Houston 1 / 52

2 Outline 1 Quartiles 2 The 1.5IQR Rule 3 Understanding Standard Deviation 4 Calculating The Standard Deviation 5 Coefficient of Variation 6 Counting Techniques 7 Permutations 8 Combinations 2 / 52

3 Types of Measurements for the Spread Range Percentiles Quartiles IQR; Interquartile range Variance Standard deviation Coefficient of Variation 3 / 52

4 The Quartiles The first quartile is 25th percentile, Q 1. The second quartile is the median and the 50th percentile, Q 2. The third quartile is the 75th percentile, Q 3. 4 / 52

5 Interquartile Range Interquartile range, IQR, is the difference between Q 3 and Q 1 IQR = Q 3 Q 1 5 / 52

6 Example Twelve babies spoke for the first time at the following ages (in months): Find Q 1, Q 2, Q 3, the range and the IQR. 6 / 52

7 Find the Five Number Summary of the Course Scores > stem(grades$score,scale=0.5) The decimal point is 1 digit(s) to the right of the / 52

8 Detecting Outliers: 1.5IQR Rule An outlier is an observation that is "distant" from the rest of the data. Outliers can occur by chance or by measurement errors. Any point that falls outside the interval calculated by Q 1 1.5(IQR) and Q (IQR) is considered an outlier. athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 8 / 52

9 Outliers for Basketball Shoe Prices? Recall: Q 1 = 130, Q 3 = 215, So IQR = = 85. Q 1 1.5(IQR) = (85) = 2.5 Q (IQR) = (85) = Any price that is below $2.50 or above $ is considered an outlier. athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 9 / 52

10 Outliers? The following is information from 91 pairs of basketball shoes: > fivenum(shoes$price) [1] The highest four numbers in the dataset is..., 170, 225, 250, 250. Are there any prices that are considered an outlier? 10 / 52

11 A Graph of the Five Number Summary: Boxplot A central box spans the quartiles. A line inside the box marks the median. Lines extend from the box out to the smallest and largest observations. Asterisks represents any values that are considered to be outliers. Boxplots are most useful for side-by-side comparison of several distributions. Rcode: boxplot(dataset name$variable name) 11 / 52

12 Boxplot of Prices boxplot(shoes$price,horizontal = T) 12 / 52

13 Boxplot of Course Scores / 52

14 Boxplot of Course Scores by Session Fal15 Sp16 Sum boxplot(grades$score~grades$session,horizontal=true) 14 / 52

15 Question about the Graphs Given the first type of plot indicated in each pair, which of the second plots could not always be generated from it? a) dot plot, histogram b) stem and leaf, dot plot c) histogram, stem and leaf d) dot plot, box plot 15 / 52

16 Measuring Spread: The Standard Deviation Measures spread by looking at how far the observations are from their mean. Most common numerical description for the spread of a distribution. A larger standard deviation implies that the values have a wider spread from the mean. Denoted s when used with a sample. This is the one we calculate from a list of values. Denoted σ when used with a population. This is the "idealized" standard deviation. The standard deviation has the same units of measurements as the original observations. 16 / 52

17 Definition of the Standard Deviation The standard deviation is the average distance each observation is from the mean. Using this list of values from a sample: 3, 3, 9, 15, 15 The mean is 9. By definition, the average distance each of these values are from the mean is 6. So the standard deviation is / 52

18 Values of the Standard Deviation The standard deviation is a value that is greater than or equal to zero. It is equal to zero only when all of the observations have the same value. By the definition of standard deviation determine s for the following list of values. 2, 2, 2, 2 : standard deviation = 0 125, 125, 125, 125, 125: standard deviation = 0 18 / 52

19 Adding or Subtracting a Value to the Observations Adding or subtracting the same value to all the original observations does not change the standard deviation of the list. Using this list of values: 3, 3, 9, 15, 15 mean = 9, standard deviation = 6. If we add 4 to all the values: 7, 7, 13, 19, 19 mean = 13, standard deviation = 6 19 / 52

20 Multiplying or Dividing a Value to the Observations Multiplying or dividing the same value to all the original observations will change the standard deviation by that factor. Using this list of values: 3, 3, 9, 15, 15: mean = 9, standard deviation = 6. If we double all the values: 6, 6, 18, 30, 30 mean = 18, standard deviation = 12 athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 20 / 52

21 Population Variance and Standard Deviation If N is the number of values in a population with mean mu, and x i represents each individual in the population, the the population variance is found by: σ 2 = N i=1 (x i µ) 2 N and the population standard deviation is the square root, σ = σ / 52

22 Sample Variance and Standard Deviation Most of the time we are working with a sample instead of a population. So the sample variance is found by: s 2 = n i=1 (x i x) 2 n 1 and the sample standard deviation is the square root, s = s 2. Where n is the number of observations (samples), x i is the value for the i th observation and x is the sample mean. 22 / 52

23 Calculating the Standard Deviation By Hand When calculating by hand we will calculate s. 1. Find the mean of the observations x. 2. Calculate the difference between the observations and the mean for each observation x i x. This is called the deviations of the observations. 3. Square the deviations for each observation (x i x) Add up the squared deviations together n i=1 (x i x) Divide the sum of the squared deviations by one less than the number of observations n 1. This is the variance s 2 = 1 n 1 n (x i x) 2 i=1 athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 23 / 52

24 Step 6: Standard Deviation 6. Find the square root of the variance. This is the standard deviation s = 1 n (x i x) n 1 2 i=1 24 / 52

25 Example: Section A Determine the sample standard deviation of the test scores for Section A. Section A Scores (X i ) / 52

26 Step 1: Calculate the Mean The sample mean is x = / 52

27 Use Table To Calculate Standard Deviation Variable Deviations Deviations Squared Score (X i ) X i X (X i X) sum 27 / 52

28 Step 2: Calculate Deviations For All Values Variable Deviations Deviations Squared Score (X i ) X i X (X i X) = = = = = = = = = = 5.5 sum 28 / 52

29 Step 3: Calculate Squared Deviations Variable Deviations Deviations Squared Score (X i ) X i X (X i X) = 6.5 ( 6.5) 2 = = 5.5 ( 5.5) 2 = = 4.5 ( 4.5) 2 = = 3.5 ( 3.5) 2 = = 0.5 ( 0.5) 2 = = = = = = = = = = = sum athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 29 / 52

30 Step 4: Calculate the Sum of the Squared Deviations Variable Deviations Deviations Squared Score(X i ) X i X (X i X) = 6.5 ( 6.5) 2 = = 5.5 ( 5.5) 2 = = 4.5 ( 4.5) 2 = = 3.5 ( 3.5) 2 = = 0.5 ( 0.5) 2 = = = = = = = = = = = sum n i=1 (X i X) 2 = athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 30 / 52

31 Step 5: Calculate the Variance variance = s 2 = 1 n 1 n (x i x) 2 i=1 = = / 52

32 Step 6: Take the Square Root of the Variance standard deviation = s = 1 n 1 = = 4.77 n (x i x) 2 i=1 32 / 52

33 Sample Standard Deviation of Section A test scores Sample standard deviation is s = This implies that from the sample of the 10 students from section A the tests scores has a spread, on average, of 4.77 points from the mean of points. athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 33 / 52

34 Example A statistics teacher wants to decide whether or not to curve an exam. From her class of 300 students, she chose a sample of 10 students and their grade were: 72, 88, 85, 81, 60, 54, 70, 72, 63, 43 Determine the sample mean. What is the variance? What is the standard deviation? athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 34 / 52

35 Add 10 Suppose the statistics instructor decides to curve the grade by adding 10 points to each score. What is the new mean, variance and standard deviation? 35 / 52

36 Multiply by 2 For the following dataset the mean is x = 4.5, the variance is s 2 = 3.5 and the standard deviation is s = , 6, 2, 7, 4, 5 Now, multiply each value by 2. What is the new variance and the new standard deviation? 36 / 52

37 Calculating Standard Deviation For larger data sets use a calculator or computer software. Each calculator is different if you cannot determine how to compute standard deviation from your calculator ask your instructor. For this course we will be using R as the software. The function for the sample standard deviation in R is sd(data name$variable name). athy Poliak, Ph.D. cathy@math.uh.edu (Department of Mathematics Section 1.3 University & 2.1 of Houston ) 37 / 52

38 Coefficient of Variation This is to compare the variation between two groups. The coefficient of variation (cv) is the ratio of the standard deviation to the mean. cv = sd mean A smaller ratio will indicate less variation in the data. 38 / 52

39 CV of test scores Section A Section B Sample Size Sample Mean Sample Standard Deviation CV 71.5 = = / 52

40 CV Example The following statistics were collected on two different groups of stock prices: Portfolio A Portfolio B Sample size Sample mean $52.65 $49.80 Sample standard deviation $6.50 $2.95 What can be said about the variability of each portfolio? 40 / 52

41 Beginning Example In the city of Milford, applications for zoning changes go through a two-step process: 1. A review by the panning commission. 2. A final decision by the city council. At step 1 the planning commission reviews the zoning change request and makes a positive or negative recommendation concerning the change. At step 2 the city council reviews the planning commission s recommendation and then votes to approve or to disapprove the zoning change. How many possible decisions can be made for a zoning change in Milford? 41 / 52

42 Counting Rules If an experiment can be described as a sequence of k steps with n 1 possible outcomes on the first step, n 2 possible outcomes on the second step, and so on, then the total number of experimental outcomes is given by (n 1 )(n 2 )... (n k ). A tree diagram can be used as a graphical representation in visualizing a multiple-step experiment. 42 / 52

43 Tree diagram Step 1 Planning Commission Step 2 City Council approve Sample Points (positive, approve) positive disapprove (positive, disapprove) negative approve (negative, approve) disapprove (negative, disapprove) 43 / 52

44 Examples How many ways can you create a pizza choosing a meat and two veggies if you have 3 choices of meats and 4 choices for veggies? In how many ways can 6 people be seated in a row? How many possible outcomes can we have when rolling a pair of 6-sided die? 44 / 52

45 Permutations It allows one to compute the number of outcomes when r objects are to be selected from a set of n objects where the order of selection is important. The number of permutations is given by P n r = n! (n r)! Where n! = n(n 1)(n 2) (2)(1) Rocode for n!: factorial(n) 45 / 52

46 Allowing Repeated Values When we allow repeated values, The number of orderings of n objects taken r at a time, with repetition is n r. Example: In how many ways can you write 4 letters on a tag using each of the letters C O U G A R with repetition? 46 / 52

47 Several Objects At Once The number of permutations, P, of n objects taken n at a time with r objects alike, s of another kind alike, and t of another kind alike is P = n! r!s!t! Example: How many different words (they do not have to be real words) can be formed from the letters in the word MISSISSIPPI? 47 / 52

48 Objects Taken of Circular The number of circular permutations of n objects is (n 1)!. Example: In how many ways can 12 people be seated around a circular table? 48 / 52

49 Combinations Counts the number of experimental outcomes when the experiment involves selecting r objects from a (usually larger) set of n objects. The number of combinations of n objects taken r unordered at a time is Rcode: choose(n,r) C n r = ( ) n r = n! r!(n r)! 49 / 52

50 Difference Between Combinations and Permutations 50 / 52

51 Examples In how many ways can a committee of 5 be chosen from a group of 12 people? In a manufacturing company they have to choose 5 out of 50 boxes to be sent to a store. How many ways can they choose the 5 boxes? 51 / 52

52 Examples 1. A researcher selects 3 fish from a tank of 12 and puts each of the 3 fish into different containers. How many ways can this be done? 2. Among 10 electrical components 2 are known not to function. If 5 components are randomly selected, how many ways can we have only one of components not functioning? 52 / 52

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

1 Describing Distributions with numbers

1 Describing Distributions with numbers 1 Describing Distributions with numbers Only for quantitative variables!! 1.1 Describing the center of a data set The mean of a set of numerical observation is the familiar arithmetic average. To write

More information

Some estimates of the height of the podium

Some estimates of the height of the podium Some estimates of the height of the podium 24 36 40 40 40 41 42 44 46 48 50 53 65 98 1 5 number summary Inter quartile range (IQR) range = max min 2 1.5 IQR outlier rule 3 make a boxplot 24 36 40 40 40

More information

Section3-2: Measures of Center

Section3-2: Measures of Center Chapter 3 Section3-: Measures of Center Notation Suppose we are making a series of observations, n of them, to be exact. Then we write x 1, x, x 3,K, x n as the values we observe. Thus n is the total number

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Empirical Rule (P148)

Empirical Rule (P148) Interpreting the Standard Deviation Numerical Descriptive Measures for Quantitative data III Dr. Tom Ilvento FREC 408 We can use the standard deviation to express the proportion of cases that might fall

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data.

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data. -3: Measure of Central Tendency Chapter : Descriptive Statistics The value at the center or middle of a data set. It is a tool for analyzing data. Part 1: Basic concepts of Measures of Center Ex. Data

More information

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25 Handout 4 numerical descriptive measures part Calculating Mean for Grouped Data mf Mean for population data: µ mf Mean for sample data: x n where m is the midpoint and f is the frequency of a class. Example

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information

Dot Plot: A graph for displaying a set of data. Each numerical value is represented by a dot placed above a horizontal number line.

Dot Plot: A graph for displaying a set of data. Each numerical value is represented by a dot placed above a horizontal number line. Introduction We continue our study of descriptive statistics with measures of dispersion, such as dot plots, stem and leaf displays, quartiles, percentiles, and box plots. Dot plots, a stem-and-leaf display,

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Frequency Distribution and Summary Statistics

Frequency Distribution and Summary Statistics Frequency Distribution and Summary Statistics Dongmei Li Department of Public Health Sciences Office of Public Health Studies University of Hawai i at Mānoa Outline 1. Stemplot 2. Frequency table 3. Summary

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

Math 140 Introductory Statistics. First midterm September

Math 140 Introductory Statistics. First midterm September Math 140 Introductory Statistics First midterm September 23 2010 Box Plots Graphical display of 5 number summary Q1, Q2 (median), Q3, max, min Outliers If a value is more than 1.5 times the IQR from the

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Section 6-1 : Numerical Summaries

Section 6-1 : Numerical Summaries MAT 2377 (Winter 2012) Section 6-1 : Numerical Summaries With a random experiment comes data. In these notes, we learn techniques to describe the data. Data : We will denote the n observations of the random

More information

STAT 113 Variability

STAT 113 Variability STAT 113 Variability Colin Reimer Dawson Oberlin College September 14, 2017 1 / 48 Outline Last Time: Shape and Center Variability Boxplots and the IQR Variance and Standard Deviaton Transformations 2

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

DATA HANDLING Five-Number Summary

DATA HANDLING Five-Number Summary DATA HANDLING Five-Number Summary The five-number summary consists of the minimum and maximum values, the median, and the upper and lower quartiles. The minimum and the maximum are the smallest and greatest

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Chapter 3 Descriptive Statistics: Numerical Measures Part A Slides Prepared by JOHN S. LOUCKS St. Edward s University Slide 1 Chapter 3 Descriptive Statistics: Numerical Measures Part A Measures of Location Measures of Variability Slide Measures of Location Mean

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

CHAPTER 2 Describing Data: Numerical

CHAPTER 2 Describing Data: Numerical CHAPTER Multiple-Choice Questions 1. A scatter plot can illustrate all of the following except: A) the median of each of the two variables B) the range of each of the two variables C) an indication of

More information

Numerical Descriptions of Data

Numerical Descriptions of Data Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =

More information

Applications of Data Dispersions

Applications of Data Dispersions 1 Applications of Data Dispersions Key Definitions Standard Deviation: The standard deviation shows how far away each value is from the mean on average. Z-Scores: The distance between the mean and a given

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

appstats5.notebook September 07, 2016 Chapter 5

appstats5.notebook September 07, 2016 Chapter 5 Chapter 5 Describing Distributions Numerically Chapter 5 Objective: Students will be able to use statistics appropriate to the shape of the data distribution to compare of two or more different data sets.

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

Describing Data: One Quantitative Variable

Describing Data: One Quantitative Variable STAT 250 Dr. Kari Lock Morgan The Big Picture Describing Data: One Quantitative Variable Population Sampling SECTIONS 2.2, 2.3 One quantitative variable (2.2, 2.3) Statistical Inference Sample Descriptive

More information

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.)

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.) Starter Ch. 6: A z-score Analysis Starter Ch. 6 Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and an 85 on test 2. You re all set to drop

More information

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s).

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). We will look the three common and useful measures of spread. The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). 1 Ameasure of the center

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Lecture 1: Review and Exploratory Data Analysis (EDA) Ani Manichaikul amanicha@jhsph.edu 16 April 2007 1 / 40 Course Information I Office hours For questions and help When? I ll announce this tomorrow

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Descriptive Statistics (Devore Chapter One)

Descriptive Statistics (Devore Chapter One) Descriptive Statistics (Devore Chapter One) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 0 Perspective 1 1 Pictorial and Tabular Descriptions of Data 2 1.1 Stem-and-Leaf

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Categorical. A general name for non-numerical data; the data is separated into categories of some kind.

Categorical. A general name for non-numerical data; the data is separated into categories of some kind. Chapter 5 Categorical A general name for non-numerical data; the data is separated into categories of some kind. Nominal data Categorical data with no implied order. Eg. Eye colours, favourite TV show,

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Description of Data I

Description of Data I Description of Data I (Summary and Variability measures) Objectives: Able to understand how to summarize the data Able to understand how to measure the variability of the data Able to use and interpret

More information

Lecture 2 Describing Data

Lecture 2 Describing Data Lecture 2 Describing Data Thais Paiva STA 111 - Summer 2013 Term II July 2, 2013 Lecture Plan 1 Types of data 2 Describing the data with plots 3 Summary statistics for central tendency and spread 4 Histograms

More information

Chapter 3. Descriptive Measures. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1

Chapter 3. Descriptive Measures. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1 Chapter 3 Descriptive Measures Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1 Chapter 3 Descriptive Measures Mean, Median and Mode Copyright 2016, 2012, 2008 Pearson Education, Inc.

More information

Diploma in Financial Management with Public Finance

Diploma in Financial Management with Public Finance Diploma in Financial Management with Public Finance Cohort: DFM/09/FT Jan Intake Examinations for 2009 Semester II MODULE: STATISTICS FOR FINANCE MODULE CODE: QUAN 1103 Duration: 2 Hours Reading time:

More information

Chapter 4-Describing Data: Displaying and Exploring Data

Chapter 4-Describing Data: Displaying and Exploring Data Chapter 4-Describing Data: Displaying and Exploring Data Jie Zhang, Ph.D. Student Account and Information Systems Department College of Business Administration The University of Texas at El Paso jzhang6@utep.edu

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Measures of Dispersion (Range, standard deviation, standard error) Introduction

Measures of Dispersion (Range, standard deviation, standard error) Introduction Measures of Dispersion (Range, standard deviation, standard error) Introduction We have already learnt that frequency distribution table gives a rough idea of the distribution of the variables in a sample

More information

Test Bank Elementary Statistics 2nd Edition William Navidi

Test Bank Elementary Statistics 2nd Edition William Navidi Test Bank Elementary Statistics 2nd Edition William Navidi Completed downloadable package TEST BANK for Elementary Statistics 2nd Edition by William Navidi, Barry Monk: https://testbankreal.com/download/elementary-statistics-2nd-edition-test-banknavidi-monk/

More information

Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12)

Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12) Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12) Descriptive statistics: - Measures of centrality (Mean, median, mode, trimmed mean) - Measures of spread (MAD, Standard deviation, variance) -

More information

Statistics (This summary is for chapters 18, 29 and section H of chapter 19)

Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x n =

More information

Chapter 3. Lecture 3 Sections

Chapter 3. Lecture 3 Sections Chapter 3 Lecture 3 Sections 3.4 3.5 Measure of Position We would like to compare values from different data sets. We will introduce a z score or standard score. This measures how many standard deviation

More information

6.2.1 Linear Transformations

6.2.1 Linear Transformations 6.2.1 Linear Transformations In Chapter 2, we studied the effects of transformations on the shape, center, and spread of a distribution of data. Recall what we discovered: 1. Adding (or subtracting) a

More information

Chapter 4-Describing Data: Displaying and Exploring Data

Chapter 4-Describing Data: Displaying and Exploring Data Chapter 4-Describing Data: Displaying and Exploring Data Jie Zhang, Ph.D. Student Account and Information Systems Department College of Business Administration The University of Texas at El Paso jzhang6@utep.edu

More information

Edexcel past paper questions

Edexcel past paper questions Edexcel past paper questions Statistics 1 Chapters 2-4 (Discrete) Statistics 1 Chapters 2-4 (Discrete) Page 1 Stem and leaf diagram Stem-and-leaf diagrams are used to represent data in its original form.

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Descriptive Statistics

Descriptive Statistics Chapter 3 Descriptive Statistics Chapter 2 presented graphical techniques for organizing and displaying data. Even though such graphical techniques allow the researcher to make some general observations

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

Exam 1 Review. 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse.

Exam 1 Review. 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse. Exam 1 Review 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse. 2) Identify the population being studied and the sample chosen. The

More information

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source: Page 1 of 39

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source:   Page 1 of 39 Source: www.mathwords.com The Greek Alphabet Page 1 of 39 Some Miscellaneous Tips on Calculations Examples: Round to the nearest thousandth 0.92431 0.75693 CAUTION! Do not truncate numbers! Example: 1

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

STATISTICAL DISTRIBUTIONS AND THE CALCULATOR

STATISTICAL DISTRIBUTIONS AND THE CALCULATOR STATISTICAL DISTRIBUTIONS AND THE CALCULATOR 1. Basic data sets a. Measures of Center - Mean ( ): average of all values. Characteristic: non-resistant is affected by skew and outliers. - Median: Either

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

5.3 Standard Deviation

5.3 Standard Deviation Math 2201 Date: 5.3 Standard Deviation Standard Deviation We looked at range as a measure of dispersion, or spread of a data set. The problem with using range is that it is only a measure of how spread

More information

Measures of Variability

Measures of Variability Sample I: 30, 35, 40, 45, 50, 55, 60, 65, 70 Sample II: 30, 41, 48, 49, 50, 51, 52, 59, 70 Sample III: 41, 45, 48, 49, 50, 51, 52, 55, 59 Sample I: 30, 35, 40, 45, 50, 55, 60, 65, 70 Sample II: 30, 41,

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Inverse Normal Distribution and Approximation to Binomial

Inverse Normal Distribution and Approximation to Binomial Inverse Normal Distribution and Approximation to Binomial Section 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 16-3339 Cathy Poliak,

More information

YEAR 12 Trial Exam Paper FURTHER MATHEMATICS. Written examination 1. Worked solutions

YEAR 12 Trial Exam Paper FURTHER MATHEMATICS. Written examination 1. Worked solutions YEAR 12 Trial Exam Paper 2018 FURTHER MATHEMATICS Written examination 1 Worked solutions This book presents: worked solutions explanatory notes tips on how to approach the exam. This trial examination

More information

( ) P = = =

( ) P = = = 1. On a lunch counter, there are 5 oranges and 6 apples. If 3 pieces of fruit are selected, find the probability that 1 orange and apples are selected. Order does not matter Combinations: 5C1 (1 ) 6C P

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean

Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean Measure of Center Measures of Center The value at the center or middle of a data set 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) 1 2 Mean Notation The measure of center obtained by adding the values

More information

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda,

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda, MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE Dr. Bijaya Bhusan Nanda, CONTENTS What is measures of dispersion? Why measures of dispersion? How measures of dispersions are calculated? Range Quartile

More information

NOTES: Chapter 4 Describing Data

NOTES: Chapter 4 Describing Data NOTES: Chapter 4 Describing Data Intro to Statistics COLYER Spring 2017 Student Name: Page 2 Section 4.1 ~ What is Average? Objective: In this section you will understand the difference between the three

More information

A.REPRESENTATION OF DATA

A.REPRESENTATION OF DATA A.REPRESENTATION OF DATA (a) GRAPHS : PART I Q: Why do we need a graph paper? Ans: You need graph paper to draw: (i) Histogram (ii) Cumulative Frequency Curve (iii) Frequency Polygon (iv) Box-and-Whisker

More information

Section 6.2 Transforming and Combining Random Variables. Linear Transformations

Section 6.2 Transforming and Combining Random Variables. Linear Transformations Section 6.2 Transforming and Combining Random Variables Linear Transformations In Section 6.1, we learned that the mean and standard deviation give us important information about a random variable. In

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

Simple Descriptive Statistics

Simple Descriptive Statistics Simple Descriptive Statistics These are ways to summarize a data set quickly and accurately The most common way of describing a variable distribution is in terms of two of its properties: Central tendency

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

POLI 300 PROBLEM SET #7 due 11/08/10 MEASURES OF DISPERSION AND THE NORMAL DISTRIBUTION

POLI 300 PROBLEM SET #7 due 11/08/10 MEASURES OF DISPERSION AND THE NORMAL DISTRIBUTION POLI 300 PROBLEM SET #7 due 11/08/10 MEASURES OF DISPERSION AND THE NORMAL DISTRIBUTION NAME Put all your answers directly on these pages 1. Refer to the continuous frequency density provided with Problem

More information

22.2 Shape, Center, and Spread

22.2 Shape, Center, and Spread Name Class Date 22.2 Shape, Center, and Spread Essential Question: Which measures of center and spread are appropriate for a normal distribution, and which are appropriate for a skewed distribution? Eplore

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.2 Transforming and Combining Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers 6.2 Reading Quiz (T or F)

More information

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017 SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017 TODAY S OBJECTIVES Describe the effects of transforming a random variable by: adding or subtracting a constant multiplying or dividing

More information

SAMPLE. HSC formula sheet. Sphere V = 4 πr. Volume. A area of base

SAMPLE. HSC formula sheet. Sphere V = 4 πr. Volume. A area of base Area of an annulus A = π(r 2 r 2 ) R radius of the outer circle r radius of the inner circle HSC formula sheet Area of an ellipse A = πab a length of the semi-major axis b length of the semi-minor axis

More information

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis Descriptive Statistics (Part 2) 4 Chapter Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis McGraw-Hill/Irwin Copyright 2009 by The McGraw-Hill Companies, Inc. Chebyshev s Theorem

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Stemplots (or Stem-and-leaf plots) Stemplot and Boxplot T -- leading digits are called stems T -- final digits are called leaves STAT 74 Descriptive Statistics 2 Example: (number

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

MSM Course 1 Flashcards. Associative Property. base (in numeration) Commutative Property. Distributive Property. Chapter 1 (p.

MSM Course 1 Flashcards. Associative Property. base (in numeration) Commutative Property. Distributive Property. Chapter 1 (p. 1 Chapter 1 (p. 26, 1-5) Associative Property Associative Property: The property that states that for three or more numbers, their sum or product is always the same, regardless of their grouping. 2 3 8

More information