Summary. Recap. Last Lecture. .1 If you know MLE of θ, can you also know MLE of τ(θ) for any function τ?

Size: px
Start display at page:

Download "Summary. Recap. Last Lecture. .1 If you know MLE of θ, can you also know MLE of τ(θ) for any function τ?"

Transcription

1 Last Lecture Biostatistics 60 - Statistical Iferece Lecture Cramer-Rao Theorem Hyu Mi Kag February 9th, 03 If you kow MLE of, ca you also kow MLE of τ() for ay fuctio τ? What are plausible ways to compare betwee differet poit estimators? 3 What is the best ubiased estimator or uiformly ubiased miimium variace estimator (UMVUE)? 4 What is the Cramer-Rao boud, ad how ca it be useful to fid UMVUE? Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 / 4 : Cramer-Rao iequality : Cramer-Rao boud i iid case Theorem 739 : Cramer-Rao Theorem Let X,, X be a sample with joit pdf/pmf of f X (x ) Suppose W(X) is a estimator satisfyig EW(X) ] τ(), Ω VarW(X) ] < For h(x) ad h(x) W(x), if the differetiatio ad itegratios are iterchageable, ie d d Eh(x) ] d h(x)f X (x )dx h(x) d x X x X f X(x )dx Corollary 730 If X,, X are iid samples from pdf/pmf f X (x ), ad the assumptios i the above Cramer-Rao theorem hold, the the lower-boud of VarW(X) ] becomes VarW(X) ] τ ()] E { log f X(X )} ] The, a lower boud of VarW(X) ] is τ ()] VarW(X) ] E { log f X(X )} ] Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 3 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 4 / 4

2 : Score Fuctio : Fisher Iformatio Number Defiitio: Score or Score Fuctio for X X,, X iid f X (x ) S(X ) log f X(X ) E S(X )] 0 S (X ) log f X(X ) Defiitio: Fisher Iformatio Number { } ] I() E log f X(X ) E S (X ) ] { } ] I () E log f X(X ) { } ] E log f X(X ) I() The bigger the iformatio umber, the more iformatio we have about, the smaller boud o the variace of ubiased estimates Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 5 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 6 / 4 : Simplified Fisher Iformatio - Normal Distributio Lemma 73 If f X (x ) satisfies the two iterchageability coditios d f X (x )dx d x X x X d d f X(x )dx x X x X f X(x )dx f X(x )dx which are true for expoetial family, the { } ] ] I() E log f X(X ) log f X(X ) X,, X iid N (µ, σ ), where σ is kow I(µ) µ µ ] µ log f X(X µ) { ( µ log exp πσ { log(πσ ) { }] (X µ) σ σ )}] (X µ) σ }] (X µ) σ The Cramer-Rao boud for µ is I(µ)] σ Var(X) Therefore X attais the Cramer-Rao boud ad thus the best ubiased estimator for µ Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 7 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 8 / 4

3 Example of Cramer-Rao lower boud attaimet Solutio (cot d) Problem iid X,, X Beroulli(p) Is X the best ubiased estimator of p? Does it attai the Cramer-Rao lower boud? Solutio E(X) p Var(X) p( p) Var(X) { } ] I(p) E log f X(X ) p ] log f X(X ) p Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 9 / 4 f X (x ) p x ( p) x log f X (x ) x log p + ( x) log( p) p log f X(x p) x p x p p log f X(x p) x p x ( p) I(p) X p X ] ( p) p p p + p ( p) p + p p( p) Therefore, the Cramer-Rao boud is I(p) p( p) VarX, ad X attais the Cramer-Rao lower boud, ad it is the UMVUE Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 0 / 4 Regularity coditio for Cramer-Rao Theorem d h(x)f X (x )dx h(x) d x X x X f X(x )dx This regularity coditio holds for expoetial family How about o-expoetial family, such as iid X,, X Uiform(0, )? Usig Leibitz s Rule Leibitz s Rule d b() f(x )dx f(b() )b () f(a() )a () + d a() Applyig to Uiform Distributio d h(x) d 0 f X (x ) / ) dx h() ( 0 d d h(0)f X(0 ) d0 d + ( ) h(x) dx 0 b() a() f(x )dx ( ) h(x) dx The iterchageability coditio is ot satisfied Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 / 4

4 Solvig the Uiform Distributio Example Whe is the Cramer-Rao Lower Boud Attaiable? If X,, X iid Uiform(0, ), the ubiased estimator of is T(X) + X () ] + E X () ] + Var X () ( + ) < The Cramer-Rao lower boud (if iterchageability coditio was met) is I() It is possible that the value of Cramer-Rao boud may be strictly smaller tha the variace of ay ubiased estimator Corollary 735 : Attaimet of Cramer-Rao Boud Let X,, X be iid with pdf/pmf f X (x ), where f X (x ) satisfies the assumptios of the Cramer-Rao Theorem Let L( x) i f X(x i ) deote the likelihood fuctio If W(X) is ubiased for τ(), the W(X) attais the Cramer-Rao lower boud if ad oly if log L( x) S (x ) a()w(x) τ()] for some fuctio a() Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 3 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 4 / 4 Proof of Corollary 735 Proof of Corollary 735 (cot d) We used Cauchy-Schwarz iequality to prove that Cov{W(X), ] X(X )}] log f VarW(X)]Var log f X(X ) I Cauchy-Schwarz iequality, the equality satisfies if ad oly if there is a liear relatioship betwee the two variables, that is log f X(x ) log L( x) a()w(x) + b() ] E log f X(X ) E S (X )] 0 E a()w(x) + b()] 0 a()e W(X)] + b() 0 a()τ() + b() 0 b() a()τ() log L( x) a()w(x) a()τ() a() W(x) τ()] Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 5 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 6 / 4

5 Revisitig the Beroulli Example Method Usig Corollary 735 Problem iid X,, X Beroulli(p) Is X the best ubiased estimator of p? Does it attai the Cramer-Rao lower boud? L(p x) p x i ( p) x i i log L(p x) log p x i ( p) x i i logp x i ( p) x i ] i x i log p + ( x i ) log( p)] i log p x i + log( p)( x i ) i i Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 7 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 8 / 4 Method Usig Corollary 735 (cot d) log L(p x) p i x i i x i p p x ( x) p p ( p)x p( x) p( p) (x p) p( p) a(p)w(x) τ(p)] where a(p) p( p), W(x) x, τ(p) p Therefore, X is the best ubiased estimator for p ad attais the Cramer-Rao lower boud Normal distributio example Problem iid X,, X N (µ, σ ) Cosider estimatig σ, assumig µ is kow Is Cramer-Rao boud attaiable? Solutio ] I(σ ) (σ ) log f X(X µ, σ) p ] f(x µ, σ ) πσ exp (x µ) σ log f(x µ, σ ) log(πσ ) (σ ) log f(x µ, σ ) (x µ) + σ (σ ) (x µ) σ Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 9 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 0 / 4

6 Solutio (cot d) Is Cramer-Rao lower-boud for σ attaiable? (σ ) log f(x µ, σ ) (x µ) (σ ) (σ ) 3 ] I(σ (x µ) ) σ4 σ 6 Cramer-Rao lower boud is ˆσ i (x i x), gives σ 4 + σ 6 E(x µ) ] σ 4 + σ 6 σ σ 4 I(σ ) σ4 Var( ˆσ ) The ubiased estimator of σ4 > σ4 So, ˆσ does ot attai the Cramer-Rao lower-boud Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 / 4 L(σ x) i log L(σ x) log(πσ ) log L(σ x) σ exp (x i µ) ] πσ σ π πσ + σ + σ 4 i (x i µ) i (x i µ) (σ ) σ (x i µ) σ 4 i ( i (x i µ) ) σ a(σ )(W(x) σ ) Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 / 4 Is Cramer-Rao lower-boud for σ attaiable? (cot d) Therefore, If µ is kow, the best ubiased estimator for σ is i (x i µ) /, ad it attais the Cramer-Rao lower boud, ie i Var (X i µ) ] σ4 If µ is ot kow, the Cramer-Rao lower-boud caot be attaied At this poit, we do ot kow if ˆσ i (x i x) is the best ubiased estimator for σ or ot Today : Cramero-Rao Theorem of Cramer-Rao Theorem ad Corollary Examples with Simple Distributios Next Lecture Rao-Blackwell Theorem Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 3 / 4 Hyu Mi Kag Biostatistics 60 - Lecture February 9th, 03 4 / 4

5. Best Unbiased Estimators

5. Best Unbiased Estimators Best Ubiased Estimators http://www.math.uah.edu/stat/poit/ubiased.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 5. Best Ubiased Estimators Basic Theory Cosider agai

More information

x satisfying all regularity conditions. Then

x satisfying all regularity conditions. Then AMS570.01 Practice Midterm Exam Sprig, 018 Name: ID: Sigature: Istructio: This is a close book exam. You are allowed oe-page 8x11 formula sheet (-sided). No cellphoe or calculator or computer is allowed.

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpeCourseWare http://ocwmitedu 430 Itroductio to Statistical Methods i Ecoomics Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocwmitedu/terms 430 Itroductio

More information

STAT 135 Solutions to Homework 3: 30 points

STAT 135 Solutions to Homework 3: 30 points STAT 35 Solutios to Homework 3: 30 poits Sprig 205 The objective of this Problem Set is to study the Stei Pheomeo 955. Suppose that θ θ, θ 2,..., θ cosists of ukow parameters, with 3. We wish to estimate

More information

Lecture 9: The law of large numbers and central limit theorem

Lecture 9: The law of large numbers and central limit theorem Lecture 9: The law of large umbers ad cetral limit theorem Theorem.4 Let X,X 2,... be idepedet radom variables with fiite expectatios. (i) (The SLLN). If there is a costat p [,2] such that E X i p i i=

More information

ECON 5350 Class Notes Maximum Likelihood Estimation

ECON 5350 Class Notes Maximum Likelihood Estimation ECON 5350 Class Notes Maximum Likelihood Estimatio 1 Maximum Likelihood Estimatio Example #1. Cosider the radom sample {X 1 = 0.5, X 2 = 2.0, X 3 = 10.0, X 4 = 1.5, X 5 = 7.0} geerated from a expoetial

More information

Parametric Density Estimation: Maximum Likelihood Estimation

Parametric Density Estimation: Maximum Likelihood Estimation Parametric Desity stimatio: Maimum Likelihood stimatio C6 Today Itroductio to desity estimatio Maimum Likelihood stimatio Itroducto Bayesia Decisio Theory i previous lectures tells us how to desig a optimal

More information

Topic 14: Maximum Likelihood Estimation

Topic 14: Maximum Likelihood Estimation Toic 4: November, 009 As before, we begi with a samle X = (X,, X of radom variables chose accordig to oe of a family of robabilities P θ I additio, f(x θ, x = (x,, x will be used to deote the desity fuctio

More information

5 Statistical Inference

5 Statistical Inference 5 Statistical Iferece 5.1 Trasitio from Probability Theory to Statistical Iferece 1. We have ow more or less fiished the probability sectio of the course - we ow tur attetio to statistical iferece. I statistical

More information

Asymptotics: Consistency and Delta Method

Asymptotics: Consistency and Delta Method ad Delta Method MIT 18.655 Dr. Kempthore Sprig 2016 1 MIT 18.655 ad Delta Method Outlie Asymptotics 1 Asymptotics 2 MIT 18.655 ad Delta Method Cosistecy Asymptotics Statistical Estimatio Problem X 1,...,

More information

Lecture 5 Point Es/mator and Sampling Distribu/on

Lecture 5 Point Es/mator and Sampling Distribu/on Lecture 5 Poit Es/mator ad Samplig Distribu/o Fall 03 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milto Stewart School of Idustrial Systems & Egieerig Georgia Tech Road map Poit Es/ma/o Cofidece Iterval

More information

Solutions to Problem Sheet 1

Solutions to Problem Sheet 1 Solutios to Problem Sheet ) Use Theorem.4 to prove that p log for all real x 3. This is a versio of Theorem.4 with the iteger N replaced by the real x. Hit Give x 3 let N = [x], the largest iteger x. The,

More information

Exam 1 Spring 2015 Statistics for Applications 3/5/2015

Exam 1 Spring 2015 Statistics for Applications 3/5/2015 8.443 Exam Sprig 05 Statistics for Applicatios 3/5/05. Log Normal Distributio: A radom variable X follows a Logormal(θ, σ ) distributio if l(x) follows a Normal(θ, σ ) distributio. For the ormal radom

More information

Math 312, Intro. to Real Analysis: Homework #4 Solutions

Math 312, Intro. to Real Analysis: Homework #4 Solutions Math 3, Itro. to Real Aalysis: Homework #4 Solutios Stephe G. Simpso Moday, March, 009 The assigmet cosists of Exercises 0.6, 0.8, 0.0,.,.3,.6,.0,.,. i the Ross textbook. Each problem couts 0 poits. 0.6.

More information

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010 Combiig imperfect data, ad a itroductio to data assimilatio Ross Baister, NCEO, September 00 rbaister@readigacuk The probability desity fuctio (PDF prob that x lies betwee x ad x + dx p (x restrictio o

More information

4.5 Generalized likelihood ratio test

4.5 Generalized likelihood ratio test 4.5 Geeralized likelihood ratio test A assumptio that is used i the Athlete Biological Passport is that haemoglobi varies equally i all athletes. We wish to test this assumptio o a sample of k athletes.

More information

Maximum Empirical Likelihood Estimation (MELE)

Maximum Empirical Likelihood Estimation (MELE) Maximum Empirical Likelihood Estimatio (MELE Natha Smooha Abstract Estimatio of Stadard Liear Model - Maximum Empirical Likelihood Estimator: Combiatio of the idea of imum likelihood method of momets,

More information

Topic-7. Large Sample Estimation

Topic-7. Large Sample Estimation Topic-7 Large Sample Estimatio TYPES OF INFERENCE Ò Estimatio: É Estimatig or predictig the value of the parameter É What is (are) the most likely values of m or p? Ò Hypothesis Testig: É Decidig about

More information

Unbiased estimators Estimators

Unbiased estimators Estimators 19 Ubiased estimators I Chapter 17 we saw that a dataset ca be modeled as a realizatio of a radom sample from a probability distributio ad that quatities of iterest correspod to features of the model distributio.

More information

Rafa l Kulik and Marc Raimondo. University of Ottawa and University of Sydney. Supplementary material

Rafa l Kulik and Marc Raimondo. University of Ottawa and University of Sydney. Supplementary material Statistica Siica 009: Supplemet 1 L p -WAVELET REGRESSION WITH CORRELATED ERRORS AND INVERSE PROBLEMS Rafa l Kulik ad Marc Raimodo Uiversity of Ottawa ad Uiversity of Sydey Supplemetary material This ote

More information

Introduction to Probability and Statistics Chapter 7

Introduction to Probability and Statistics Chapter 7 Itroductio to Probability ad Statistics Chapter 7 Ammar M. Sarha, asarha@mathstat.dal.ca Departmet of Mathematics ad Statistics, Dalhousie Uiversity Fall Semester 008 Chapter 7 Statistical Itervals Based

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

EXERCISE - BINOMIAL THEOREM

EXERCISE - BINOMIAL THEOREM BINOMIAL THOEREM / EXERCISE - BINOMIAL THEOREM LEVEL I SUBJECTIVE QUESTIONS. Expad the followig expressios ad fid the umber of term i the expasio of the expressios. (a) (x + y) 99 (b) ( + a) 9 + ( a) 9

More information

Sequences and Series

Sequences and Series Sequeces ad Series Matt Rosezweig Cotets Sequeces ad Series. Sequeces.................................................. Series....................................................3 Rudi Chapter 3 Exercises........................................

More information

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS Lecture 4: Parameter Estimatio ad Cofidece Itervals GENOME 560 Doug Fowler, GS (dfowler@uw.edu) 1 Review: Probability Distributios Discrete: Biomial distributio Hypergeometric distributio Poisso distributio

More information

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices?

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices? FINM6900 Fiace Theory How Is Asymmetric Iformatio Reflected i Asset Prices? February 3, 2012 Referece S. Grossma, O the Efficiecy of Competitive Stock Markets where Traders Have Diverse iformatio, Joural

More information

1. Suppose X is a variable that follows the normal distribution with known standard deviation σ = 0.3 but unknown mean µ.

1. Suppose X is a variable that follows the normal distribution with known standard deviation σ = 0.3 but unknown mean µ. Chapter 9 Exercises Suppose X is a variable that follows the ormal distributio with kow stadard deviatio σ = 03 but ukow mea µ (a) Costruct a 95% cofidece iterval for µ if a radom sample of = 6 observatios

More information

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013 18.S096 Problem Set 5 Fall 2013 Volatility Modelig Due Date: 10/29/2013 1. Sample Estimators of Diffusio Process Volatility ad Drift Let {X t } be the price of a fiacial security that follows a geometric

More information

AY Term 2 Mock Examination

AY Term 2 Mock Examination AY 206-7 Term 2 Mock Examiatio Date / Start Time Course Group Istructor 24 March 207 / 2 PM to 3:00 PM QF302 Ivestmet ad Fiacial Data Aalysis G Christopher Tig INSTRUCTIONS TO STUDENTS. This mock examiatio

More information

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution Iteratioal Joural of Statistics ad Systems ISSN 0973-675 Volume, Number 4 (07, pp. 7-73 Research Idia Publicatios http://www.ripublicatio.com Bayes Estimator for Coefficiet of Variatio ad Iverse Coefficiet

More information

The Limit of a Sequence (Brief Summary) 1

The Limit of a Sequence (Brief Summary) 1 The Limit of a Sequece (Brief Summary). Defiitio. A real umber L is a it of a sequece of real umbers if every ope iterval cotaiig L cotais all but a fiite umber of terms of the sequece. 2. Claim. A sequece

More information

1 Random Variables and Key Statistics

1 Random Variables and Key Statistics Review of Statistics 1 Radom Variables ad Key Statistics Radom Variable: A radom variable is a variable that takes o differet umerical values from a sample space determied by chace (probability distributio,

More information

A Bayesian perspective on estimating mean, variance, and standard-deviation from data

A Bayesian perspective on estimating mean, variance, and standard-deviation from data Brigham Youg Uiversity BYU ScholarsArchive All Faculty Publicatios 006--05 A Bayesia perspective o estimatig mea, variace, ad stadard-deviatio from data Travis E. Oliphat Follow this ad additioal works

More information

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011 15.075 Exam 2 Istructor: Cythia Rudi TA: Dimitrios Bisias October 25, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 You are i charge of a study

More information

SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION

SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION 1 SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION Hyue-Ju Kim 1,, Bibig Yu 2, ad Eric J. Feuer 3 1 Syracuse Uiversity, 2 Natioal Istitute of Agig, ad 3 Natioal Cacer Istitute Supplemetary

More information

0.1 Valuation Formula:

0.1 Valuation Formula: 0. Valuatio Formula: 0.. Case of Geeral Trees: q = er S S S 3 S q = er S S 4 S 5 S 4 q 3 = er S 3 S 6 S 7 S 6 Therefore, f (3) = e r [q 3 f (7) + ( q 3 ) f (6)] f () = e r [q f (5) + ( q ) f (4)] = f ()

More information

Monetary Economics: Problem Set #5 Solutions

Monetary Economics: Problem Set #5 Solutions Moetary Ecoomics oblem Set #5 Moetary Ecoomics: oblem Set #5 Solutios This problem set is marked out of 1 poits. The weight give to each part is idicated below. Please cotact me asap if you have ay questios.

More information

Estimating Proportions with Confidence

Estimating Proportions with Confidence Aoucemets: Discussio today is review for midterm, o credit. You may atted more tha oe discussio sectio. Brig sheets of otes ad calculator to midterm. We will provide Scatro form. Homework: (Due Wed Chapter

More information

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1 Chapter 8 Cofidece Iterval Estimatio Copyright 2015, 2012, 2009 Pearso Educatio, Ic. Chapter 8, Slide 1 Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for

More information

INTERVAL GAMES. and player 2 selects 1, then player 2 would give player 1 a payoff of, 1) = 0.

INTERVAL GAMES. and player 2 selects 1, then player 2 would give player 1 a payoff of, 1) = 0. INTERVAL GAMES ANTHONY MENDES Let I ad I 2 be itervals of real umbers. A iterval game is played i this way: player secretly selects x I ad player 2 secretly ad idepedetly selects y I 2. After x ad y are

More information

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty,

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty, Iferetial Statistics ad Probability a Holistic Approach Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike 4.0

More information

1 Estimating sensitivities

1 Estimating sensitivities Copyright c 27 by Karl Sigma 1 Estimatig sesitivities Whe estimatig the Greeks, such as the, the geeral problem ivolves a radom variable Y = Y (α) (such as a discouted payoff) that depeds o a parameter

More information

Chapter 10 - Lecture 2 The independent two sample t-test and. confidence interval

Chapter 10 - Lecture 2 The independent two sample t-test and. confidence interval Assumptios Idepedet Samples - ukow σ 1, σ - 30 or m 30 - Upooled case Idepedet Samples - ukow σ 1, σ - 30 or m 30 - Pooled case Idepedet samples - Pooled variace - Large samples Chapter 10 - Lecture The

More information

Outline. Populations. Defs: A (finite) population is a (finite) set P of elements e. A variable is a function v : P IR. Population and Characteristics

Outline. Populations. Defs: A (finite) population is a (finite) set P of elements e. A variable is a function v : P IR. Population and Characteristics Outlie Populatio Characteristics Types of Samples Sample Characterstics Sample Aalogue Estimatio Populatios Defs: A (fiite) populatio is a (fiite) set P of elemets e. A variable is a fuctio v : P IR. Examples

More information

Simulation Efficiency and an Introduction to Variance Reduction Methods

Simulation Efficiency and an Introduction to Variance Reduction Methods Mote Carlo Simulatio: IEOR E4703 Columbia Uiversity c 2017 by Marti Haugh Simulatio Efficiecy ad a Itroductio to Variace Reductio Methods I these otes we discuss the efficiecy of a Mote-Carlo estimator.

More information

The material in this chapter is motivated by Experiment 9.

The material in this chapter is motivated by Experiment 9. Chapter 5 Optimal Auctios The material i this chapter is motivated by Experimet 9. We wish to aalyze the decisio of a seller who sets a reserve price whe auctioig off a item to a group of bidders. We begi

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Cotets 40 Samplig Distributios ad Estimatio 40.1 Samplig Distributios 40. Iterval Estimatio for the Variace 13 Learig outcomes You will lear about the distributios which are created whe a populatio is

More information

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i The iformatio required by the mea-variace approach is substatial whe the umber of assets is large; there are mea values, variaces, ad )/2 covariaces - a total of 2 + )/2 parameters. Sigle-factor model:

More information

Problem Set 1a - Oligopoly

Problem Set 1a - Oligopoly Advaced Idustrial Ecoomics Sprig 2014 Joha Steek 6 may 2014 Problem Set 1a - Oligopoly 1 Table of Cotets 2 Price Competitio... 3 2.1 Courot Oligopoly with Homogeous Goods ad Differet Costs... 3 2.2 Bertrad

More information

Statistics for Economics & Business

Statistics for Economics & Business Statistics for Ecoomics & Busiess Cofidece Iterval Estimatio Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for the mea ad the proportio How to determie

More information

Chpt 5. Discrete Probability Distributions. 5-3 Mean, Variance, Standard Deviation, and Expectation

Chpt 5. Discrete Probability Distributions. 5-3 Mean, Variance, Standard Deviation, and Expectation Chpt 5 Discrete Probability Distributios 5-3 Mea, Variace, Stadard Deviatio, ad Expectatio 1/23 Homework p252 Applyig the Cocepts Exercises p253 1-19 2/23 Objective Fid the mea, variace, stadard deviatio,

More information

EVEN NUMBERED EXERCISES IN CHAPTER 4

EVEN NUMBERED EXERCISES IN CHAPTER 4 Joh Riley 7 July EVEN NUMBERED EXERCISES IN CHAPTER 4 SECTION 4 Exercise 4-: Cost Fuctio of a Cobb-Douglas firm What is the cost fuctio of a firm with a Cobb-Douglas productio fuctio? Rather tha miimie

More information

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 2

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 2 Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd- Numbered Ed- of- Chapter Exercises: Chapter 2 (This versio August 7, 204) Stock/Watso - Itroductio to

More information

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3)

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3) Today: Fiish Chapter 9 (Sectios 9.6 to 9.8 ad 9.9 Lesso 3) ANNOUNCEMENTS: Quiz #7 begis after class today, eds Moday at 3pm. Quiz #8 will begi ext Friday ad ed at 10am Moday (day of fial). There will be

More information

= α e ; x 0. Such a random variable is said to have an exponential distribution, with parameter α. [Here, view X as time-to-failure.

= α e ; x 0. Such a random variable is said to have an exponential distribution, with parameter α. [Here, view X as time-to-failure. 1 Homewor 1 AERE 573 Fall 018 DUE 8/9 (W) Name ***NOTE: A wor MUST be placed directly beeath the associated part of a give problem.*** PROBEM 1. (5pts) [Boo 3 rd ed. 1.1 / 4 th ed. 1.13] et ~Uiform[0,].

More information

Hopscotch and Explicit difference method for solving Black-Scholes PDE

Hopscotch and Explicit difference method for solving Black-Scholes PDE Mälardale iversity Fiacial Egieerig Program Aalytical Fiace Semiar Report Hopscotch ad Explicit differece method for solvig Blac-Scholes PDE Istructor: Ja Röma Team members: A Gog HaiLog Zhao Hog Cui 0

More information

. (The calculated sample mean is symbolized by x.)

. (The calculated sample mean is symbolized by x.) Stat 40, sectio 5.4 The Cetral Limit Theorem otes by Tim Pilachowski If you have t doe it yet, go to the Stat 40 page ad dowload the hadout 5.4 supplemet Cetral Limit Theorem. The homework (both practice

More information

Kernel Density Estimation. Let X be a random variable with continuous distribution F (x) and density f(x) = d

Kernel Density Estimation. Let X be a random variable with continuous distribution F (x) and density f(x) = d Kerel Desity Estimatio Let X be a radom variable wit cotiuous distributio F (x) ad desity f(x) = d dx F (x). Te goal is to estimate f(x). Wile F (x) ca be estimated by te EDF ˆF (x), we caot set ˆf(x)

More information

. The firm makes different types of furniture. Let x ( x1,..., x n. If the firm produces nothing it rents out the entire space and so has a profit of

. The firm makes different types of furniture. Let x ( x1,..., x n. If the firm produces nothing it rents out the entire space and so has a profit of Joh Riley F Maimizatio with a sigle costrait F3 The Ecoomic approach - - shadow prices Suppose that a firm has a log term retal of uits of factory space The firm ca ret additioal space at a retal rate

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL A SULEMENTAL MATERIAL Theorem (Expert pseudo-regret upper boud. Let us cosider a istace of the I-SG problem ad apply the FL algorithm, where each possible profile A is a expert ad receives, at roud, a

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: I this chapter we wat to fid out the value of a parameter for a populatio. We do t kow the value of this parameter for the etire

More information

Notes on Expected Revenue from Auctions

Notes on Expected Revenue from Auctions Notes o Epected Reveue from Auctios Professor Bergstrom These otes spell out some of the mathematical details about first ad secod price sealed bid auctios that were discussed i Thursday s lecture You

More information

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion Basic formula for the Chi-square test (Observed - Expected ) Expected Basic formula for cofidece itervals sˆ x ± Z ' Sample size adjustmet for fiite populatio (N * ) (N + - 1) Formulas for estimatig populatio

More information

point estimator a random variable (like P or X) whose values are used to estimate a population parameter

point estimator a random variable (like P or X) whose values are used to estimate a population parameter Estimatio We have oted that the pollig problem which attempts to estimate the proportio p of Successes i some populatio ad the measuremet problem which attempts to estimate the mea value µ of some quatity

More information

Solution to Tutorial 6

Solution to Tutorial 6 Solutio to Tutorial 6 2012/2013 Semester I MA4264 Game Theory Tutor: Xiag Su October 12, 2012 1 Review Static game of icomplete iformatio The ormal-form represetatio of a -player static Bayesia game: {A

More information

ST 305: Exam 2 Fall 2014

ST 305: Exam 2 Fall 2014 ST 305: Exam Fall 014 By hadig i this completed exam, I state that I have either give or received assistace from aother perso durig the exam period. I have used o resources other tha the exam itself ad

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Samplig Distributios ad Estimatio T O P I C # Populatio Proportios, π π the proportio of the populatio havig some characteristic Sample proportio ( p ) provides a estimate of π : x p umber of successes

More information

CHAPTER 8 Estimating with Confidence

CHAPTER 8 Estimating with Confidence CHAPTER 8 Estimatig with Cofidece 8.2 Estimatig a Populatio Proportio The Practice of Statistics, 5th Editio Stares, Tabor, Yates, Moore Bedford Freema Worth Publishers Estimatig a Populatio Proportio

More information

Lecture 5: Sampling Distribution

Lecture 5: Sampling Distribution Lecture 5: Samplig Distributio Readigs: Sectios 5.5, 5.6 Itroductio Parameter: describes populatio Statistic: describes the sample; samplig variability Samplig distributio of a statistic: A probability

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Online appendices from Counterparty Risk and Credit Value Adjustment a continuing challenge for global financial markets by Jon Gregory

Online appendices from Counterparty Risk and Credit Value Adjustment a continuing challenge for global financial markets by Jon Gregory Olie appedices from Couterparty Risk ad Credit Value Adjustmet a APPENDIX 8A: Formulas for EE, PFE ad EPE for a ormal distributio Cosider a ormal distributio with mea (expected future value) ad stadard

More information

Sampling Distributions & Estimators

Sampling Distributions & Estimators API-209 TF Sessio 2 Teddy Svoroos September 18, 2015 Samplig Distributios & Estimators I. Estimators The Importace of Samplig Radomly Three Properties of Estimators 1. Ubiased 2. Cosistet 3. Efficiet I

More information

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions A Empirical Study of the Behaviour of the Sample Kurtosis i Samples from Symmetric Stable Distributios J. Marti va Zyl Departmet of Actuarial Sciece ad Mathematical Statistics, Uiversity of the Free State,

More information

Monopoly vs. Competition in Light of Extraction Norms. Abstract

Monopoly vs. Competition in Light of Extraction Norms. Abstract Moopoly vs. Competitio i Light of Extractio Norms By Arkadi Koziashvili, Shmuel Nitza ad Yossef Tobol Abstract This ote demostrates that whether the market is competitive or moopolistic eed ot be the result

More information

1 Basic Growth Models

1 Basic Growth Models UCLA Aderso MGMT37B: Fudametals i Fiace Fall 015) Week #1 rofessor Eduardo Schwartz November 9, 015 Hadout writte by Sheje Hshieh 1 Basic Growth Models 1.1 Cotiuous Compoudig roof: lim 1 + i m = expi)

More information

ii. Interval estimation:

ii. Interval estimation: 1 Types of estimatio: i. Poit estimatio: Example (1) Cosider the sample observatios 17,3,5,1,18,6,16,10 X 8 X i i1 8 17 3 5 118 6 16 10 8 116 8 14.5 14.5 is a poit estimate for usig the estimator X ad

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

Standard Deviations for Normal Sampling Distributions are: For proportions For means _

Standard Deviations for Normal Sampling Distributions are: For proportions For means _ Sectio 9.2 Cofidece Itervals for Proportios We will lear to use a sample to say somethig about the world at large. This process (statistical iferece) is based o our uderstadig of samplig models, ad will

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

Estimation of Parameters of Three Parameter Esscher Transformed Laplace Distribution

Estimation of Parameters of Three Parameter Esscher Transformed Laplace Distribution Iteratioal Joural of Statistics ad Systems ISSN 0973-675 Volume 1, Number (017), pp. 669-675 Research Idia Publicatios http://www.ripublicatio.com Estimatio of Parameters of Three Parameter Esscher Trasformed

More information

Control Charts for Mean under Shrinkage Technique

Control Charts for Mean under Shrinkage Technique Helderma Verlag Ecoomic Quality Cotrol ISSN 0940-5151 Vol 24 (2009), No. 2, 255 261 Cotrol Charts for Mea uder Shrikage Techique J. R. Sigh ad Mujahida Sayyed Abstract: I this paper a attempt is made to

More information

FOUNDATION ACTED COURSE (FAC)

FOUNDATION ACTED COURSE (FAC) FOUNDATION ACTED COURSE (FAC) What is the Foudatio ActEd Course (FAC)? FAC is desiged to help studets improve their mathematical skills i preparatio for the Core Techical subjects. It is a referece documet

More information

Policy Improvement for Repeated Zero-Sum Games with Asymmetric Information

Policy Improvement for Repeated Zero-Sum Games with Asymmetric Information Policy Improvemet for Repeated Zero-Sum Games with Asymmetric Iformatio Malachi Joes ad Jeff S. Shamma Abstract I a repeated zero-sum game, two players repeatedly play the same zero-sum game over several

More information

B = A x z

B = A x z 114 Block 3 Erdeky == Begi 6.3 ============================================================== 1 / 8 / 2008 1 Correspodig Areas uder a ormal curve ad the stadard ormal curve are equal. Below: Area B = Area

More information

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge Biomial Model Stock Price Dyamics The value of a optio at maturity depeds o the price of the uderlyig stock at maturity. The value of the optio today depeds o the expected value of the optio at maturity

More information

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME All Right Reserved No. of Pages - 10 No of Questios - 08 SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME YEAR I SEMESTER I (Group B) END SEMESTER EXAMINATION

More information

ASYMPTOTIC MEAN SQUARE ERRORS OF VARIANCE ESTIMATORS FOR U-STATISTICS AND THEIR EDGEWORTH EXPANSIONS

ASYMPTOTIC MEAN SQUARE ERRORS OF VARIANCE ESTIMATORS FOR U-STATISTICS AND THEIR EDGEWORTH EXPANSIONS J. Japa Statist. Soc. Vol. 8 No. 1 1998 1 19 ASYMPTOTIC MEAN SQUARE ERRORS OF VARIANCE ESTIMATORS FOR U-STATISTICS AND THEIR EDGEWORTH EXPANSIONS Yoshihiko Maesoo* This paper studies variace estimators

More information

11.7 (TAYLOR SERIES) NAME: SOLUTIONS 31 July 2018

11.7 (TAYLOR SERIES) NAME: SOLUTIONS 31 July 2018 .7 (TAYLOR SERIES NAME: SOLUTIONS 3 July 08 TAYLOR SERIES ( The power series T(x f ( (c (x c is called the Taylor Series for f(x cetered at x c. If c 0, this is called a Maclauri series. ( The N-th partial

More information

Chapter 3 - Lecture 4 Moments and Moment Generating Funct

Chapter 3 - Lecture 4 Moments and Moment Generating Funct Chapter 3 - Lecture 4 and s October 7th, 2009 Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness The expected value of

More information

Math 124: Lecture for Week 10 of 17

Math 124: Lecture for Week 10 of 17 What we will do toight 1 Lecture for of 17 David Meredith Departmet of Mathematics Sa Fracisco State Uiversity 2 3 4 April 8, 2008 5 6 II Take the midterm. At the ed aswer the followig questio: To be revealed

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because

More information

CAUCHY'S FORMULA AND EIGENVAULES (PRINCIPAL STRESSES) IN 3-D

CAUCHY'S FORMULA AND EIGENVAULES (PRINCIPAL STRESSES) IN 3-D GG303 Lecture 19 11/5/0 1 CAUCHY'S FRMULA AN EIGENVAULES (PRINCIPAL STRESSES) IN 3- I II Mai Topics A Cauchy s formula Pricipal stresses (eigevectors ad eigevalues) Cauchy's formula A Relates tractio vector

More information

The Valuation of the Catastrophe Equity Puts with Jump Risks

The Valuation of the Catastrophe Equity Puts with Jump Risks The Valuatio of the Catastrophe Equity Puts with Jump Risks Shih-Kuei Li Natioal Uiversity of Kaohsiug Joit work with Chia-Chie Chag Outlie Catastrophe Isurace Products Literatures ad Motivatios Jump Risk

More information

1 The Power of Compounding

1 The Power of Compounding 1 The Power of Compoudig 1.1 Simple vs Compoud Iterest You deposit $1,000 i a bak that pays 5% iterest each year. At the ed of the year you will have eared $50. The bak seds you a check for $50 dollars.

More information

A New Constructive Proof of Graham's Theorem and More New Classes of Functionally Complete Functions

A New Constructive Proof of Graham's Theorem and More New Classes of Functionally Complete Functions A New Costructive Proof of Graham's Theorem ad More New Classes of Fuctioally Complete Fuctios Azhou Yag, Ph.D. Zhu-qi Lu, Ph.D. Abstract A -valued two-variable truth fuctio is called fuctioally complete,

More information