r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i

Size: px
Start display at page:

Download "r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i"

Transcription

1 The iformatio required by the mea-variace approach is substatial whe the umber of assets is large; there are mea values, variaces, ad )/2 covariaces - a total of 2 + )/2 parameters. Sigle-factor model: Suppose that there are assets, idexed by i, with rates of retur r i, i =, 2,...,. Suppose the that there is a sigle factor f, a radom quatity, ad assume that the rates of retur ad the factor are related by r i = a i + b i f + e i, ) for i =,...,. I Equatio ), a i ad b i are costats ad e i is a radom quatity that represets the error of the model. b i is termed the factor loadig that measures the sesitivity of the retur to the factor. For the error we assume Ee i ] = 0 i, because ay o-zero mea could be trasferred to a i. Moreover, we assume that the errors are ucorrelated with f ad with reach other; that is, Cove i, e j ] = Ee i ē i )e j ē j )] = Ee i e j ] = 0 i j Covf, e i ] = Ef f)e i ē i )] = Ef f)e i ] = 0 i. The variaces of the error terms, deoted by σ 2 e i, are assumed kow. If we agree to use a sigle-factor model, the stadard parameters for mea-variace aalysis ca be determied as r i = a i + b i f σ 2 i = b 2 i σ 2 f + σ2 e i σ ij = b i b j σ 2 f, i j b i = Covr i, f] σf 2. The oly parameters to be estimated for this model are a i 's, b i 's, σe 2 i 's, ad f ad σf 2 's - a total of just parameters. Suppose that there are assets with rates of retur govered by the sigle-factor model ), ad suppose that a portfolio of these assets is costructed with weights w i, with w i =. The the rate of retur r of the portfolio is r = w i r i = w i a i + w i b i f + w i e i, ad deotig a = w ia i, b = w ib i ad e = w ie i, we ca write the above formula as r = a + bf + e. Similarly to the sigle asset case, a ad b are costats ad e is a radom variable. Because Ee i e j ] = 0, the variace of e is ) ] σe 2 = Ee 2 ] = E w i e i w j e j = E wi 2 e 2 i = wi 2 σe 2 i, 2) ad because Covf, e i ] = 0 i Covf, e] = 0, the overall variace of the portfolio is σ 2 = Vara + bf + e] = b 2 Varf] + 2bCovf, e] + Vare] = b 2 σ 2 f + σ2 e. 3)

2 The CAPM ca be iterpreted as a special case of a sigle-factor model. Suppose we model the excess rates of retur of stocks r i r f where r f is the risk-free rate) with a sigle-factor model, with the factor beig the excess rate of retur of the market r M r f. The the factor model becomes r i r f = α i + β i r M r f ) + e i. Arbitrage Pricig Theory APT) is a alterative theory of asset pricig that ca be derived from the factor model framework. Istead of the strog equilibrium assumptio of the CAPM theory, APT assumes that i) whe returs are certai, ivestors prefer greater retur to lesser retur, ii) the uiverse of assets beig cosidered is large, ad iii) there are o arbitrage opportuities. Specically, APT assumes that all asset rates of retur satisfy a sigle-factor model with o error term, ad hece the ucertaity with a retur is due oly to the ucertaity i the factor f. For assets i ad j, we write r i = a i + b i f r j = a j + b j f. 4) We the select w so that the coeciet of f i this equatio is zero; that is, r = wa i + b i f) + w)a j + b j f) = wa i + w)a j + wb i + w)b j ) f w = }{{} b j b i =0 If there is a risk-free asset r f, the retur of this portfolio must have this same rate, ad eve if there is o explicit risk-free asset, all portfolios costructed this way must have the same rate of retur - otherwise there would be a arbitrage opportuity. We deote this rate by λ 0 ad d that r = wa i + w)a j = λ 0 b ja i b ia j = λ 0 b j b i b j b i λ 0 b j b i ) = a i b j a j b i a j λ 0 b j = a i λ 0 b i = c. The last equatio holds for all i ad j because we could select ay assets i ad j that satisfy 4)), which is why it must be a costat c. We use this iformatio to write a simple formula for the expected rate of retur of asset i as follows: r i = a i + b i f = λ0 + b i c + b i f = λ0 + b i λ, where λ = c+ f is a costat same for all assets i). This statemet ca be geeralized for multiple factors: r i = a i + r i = λ 0 + m b ij f j m b ij λ j, where the value λ j is the price of risk associated with the factor f j, ofte called the factor price. b j

3 . L8.) A simple portfolio) Someoe who believes that the collectio of all stocks satises a sigle-factor model with the market portfolio servig as the factor gives you iformatio o three stocks which make up a portfolio. See Table.) I additio, you kow that the market portfolio has a expected rate of retur of 2% ad a stadard deviatio of 8%. The risk-free rate is 5%. a) What is the portfolio's expected rate of retur? b) Assumig the factor model is accurate, what is the stadard deviatio of this rate of retur? Table : Simple Portfolio. Stock Beta Stadard deviatio of radom error term Weight i portfolio A.0 7.0% 20% B % 50% C.00.0% 30% Solutio: r f = 5% r M = 2% σ M = 8% β i σ ei w i A.0 7.0% 20% B % 50% C.00.0% 30% a) The beta of the portfolio is a weighted combiatio of the idividual betas: β p = w A β A + w B β B + w C β C = 0.92 Hece, applyig the CAPM to the portfolio we d r p = r f + β p r M r f ) = ) = 0.44 =.44%. b) Usig formula 2) The variace of the error terms of the portfolio is σe 2 = wi 2 σe 2 i = = The, usig formula 3), the overall variace of the portfolio is σ 2 = b 2 σf 2 + σ2 e = βpσ 2 f 2 + σ2 e = = , ad the stadard deviatio of the portfolio is σ = σ 2 = 0.67 = 6.7%.

4 2. L8.2) APT factors) Two stock are believed to satisfy the two-factor model r = a + 2f + f 2 r 2 = a 2 + 3f + 4f 2. I additio, there is a risk-free asset with a rate of retur r f = 0%. It is kow that r = 5% ad r 2 = 20%. What are the values of λ 0, λ ad λ 2 for this model? Solutio: Whe the rates of retur of the stocks deped o two factors as the expected rate of retur ay asset i is r i = a i + b i f + b i2 f 2, r i = λ 0 + b i λ + b i2 λ 2. Because there is a risk-free asset, λ 0 = r f = 0%. Because we kow the expected rates of retur r i of stocks ad 2, we ca solve λ ad λ 2 from the equatio system 5% = 0% + 2λ + λ 2 Solvig this yields 20% = 0% + 3λ + 4λ 2. λ = 2% λ 2 = %. Hece the prices of risks of factors ad 2 are 2% ad %, respectively.

5 3. L8.4) Variace estimate) Let r i, for i =, 2,...,, be idepedet samples of a retur r of mea r ad variace σ 2. Dee the estimates ˆ r = r i Show that Es 2 ] = σ 2. s 2 = r i ˆ r) 2. Solutio: We show that s 2 is a ubiased estimate of the variace. First we write the formula of the average ˆ r i the formula of the sample variace. The we add ad subtract the true expected rate of retur r iside the squared term. These modicatios yield ] 2 2 Es 2 ] = E r i ˆ r) 2 = E r i r j = E r i r) r j r). Extractig r i from the ier summatio ad movig the factor / ) outside the expected value yields E ) 2 r i r) r j r). We the expad the square iside the summatio to get E ) 2 r i r) 2 2 ) 2 r i r) r j r) + r j r). Movig the expected value iside the summatio ad expadig the term /) 2 r j r)] yields 2 E ) r i r) 2] 2 ) E r i r)r j r)] + 2 E r j r)r k r)]. k i The samples were assumed idepedet ad hece have zero covariace, that is, E r i r)r j r)] = σ ij = 0, i j. Note also that E r i r) 2] = σ 2. These modicatios give the above formula as ) ] 2 σ 2 + )σ2 = σ 2 ) ] 2 + ). 2 2 This ca be simplied ito σ ] 2 = σ 2 ) = σ 2 = σ2 Thus, we have show that Es 2 ] = σ 2. Note that if the true expected value r was kow, the deomiator of the variace estimate would be istead of, because E /) r i r) 2] = /) E r i r) 2] = /)σ 2 = σ 2.

6 4. L8.7) Clever, but o cigar) Kalle Virtae gured out a clever way to get 24 samples of mothly returs i just over oe year istead of oly 2 samples; he takes overlappig samples; that is, the rst sample covers Ja to Feb, ad the secod sample covers Ja 5 to Feb 5, ad so forth. He gures that the error i his estimate of r, the mea mothly retur, will be reduced by this method. Aalyse Kalle's idea. How does the variace of his estimate compare with that of the usual method of usig 2 o-overlappig mothly returs? Solutio: First divide the year ito half-moth itervals ad idex these time poits by i. Let r i be the retur over the i-th full moth but some will start midway through the moth). We let r m ad σ 2 deote the mothly expected retur ad variace of that retur. Now let ρ i be the retur over the i-th half-moth period. Assume that these returs are ucorrelated. The retur over ay mothly period is a sum of two half-moth returs; that is, the mothly retur r i is r i = ρ i + ρ i+. It is easy to see that r i = ρ i + ρ i+ r m = 2 ρ ρ = r m /2 σ 2 = Varρ i + ρ i+ ] = Varρ i ] + Varρ i+ ] = 2σ 2 ρ σ 2 ρ = σ 2 /2, where ρ is the expected half-mothly retur ad σ 2 ρ is the variace of that retur. The covariace of two mothly returs r i ad r j is the Covr i, r j ] = Covρ i + ρ i+, ρ j + ρ j+ ] = Covρ i, ρ j ] + Covρ i, ρ j+ ] + Covρ i+, ρ j ] + Covρ i+, ρ j+ ] Varr i ] = σ 2, if i = j Covr i, r j ] = Varρ i ] = σ 2 /2, if i j = 0, otherwise. Now for Kalle's scheme we form the estimate We eed to evaluate Var ˆ r ] ] 24 = Var r i = = 24 2 Varr ] + Covr, r 2 ] ˆ r = 24 Cov r i, r j ] i=2 24 r i. Covr i, r i ] + Varr i ] + Covr i, r i+ ]) + Covr 23, r 24 ] + Varr 24 ] ] Hece we have Var ˆ r ] = σ σ 2 /2 ] = σ σ 2 σ 2] = σ σ2 = 2 σ σ2.

7 For twelve o-overlappig moths of data we would have ] 2 Varˆ r] = Var r i = σ2 = 2 σ2. The dierece σ 2 / σ 2 is caused by the loger estimatio period for the half-moth case; the last sample is actually partly from the followig year, because sample r 24 covers Dec 5 to Ja 5. Hece the estimatio precisio caot be icreased by samplig with half-moth itervals; the gai of greater sample size is lost because of the correlatio of the overlappig samples.

5. Best Unbiased Estimators

5. Best Unbiased Estimators Best Ubiased Estimators http://www.math.uah.edu/stat/poit/ubiased.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 5. Best Ubiased Estimators Basic Theory Cosider agai

More information

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1 Chapter 8 Cofidece Iterval Estimatio Copyright 2015, 2012, 2009 Pearso Educatio, Ic. Chapter 8, Slide 1 Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for

More information

Models of Asset Pricing

Models of Asset Pricing 4 Appedix 1 to Chapter Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

point estimator a random variable (like P or X) whose values are used to estimate a population parameter

point estimator a random variable (like P or X) whose values are used to estimate a population parameter Estimatio We have oted that the pollig problem which attempts to estimate the proportio p of Successes i some populatio ad the measuremet problem which attempts to estimate the mea value µ of some quatity

More information

CAPITAL ASSET PRICING MODEL

CAPITAL ASSET PRICING MODEL CAPITAL ASSET PRICING MODEL RETURN. Retur i respect of a observatio is give by the followig formula R = (P P 0 ) + D P 0 Where R = Retur from the ivestmet durig this period P 0 = Curret market price P

More information

Models of Asset Pricing

Models of Asset Pricing APPENDIX 1 TO CHAPTER 4 Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

Models of Asset Pricing

Models of Asset Pricing APPENDIX 1 TO CHAPTER4 Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

Appendix 1 to Chapter 5

Appendix 1 to Chapter 5 Appedix 1 to Chapter 5 Models of Asset Pricig I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy a asset, we are

More information

Statistics for Economics & Business

Statistics for Economics & Business Statistics for Ecoomics & Busiess Cofidece Iterval Estimatio Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for the mea ad the proportio How to determie

More information

of Asset Pricing R e = expected return

of Asset Pricing R e = expected return Appedix 1 to Chapter 5 Models of Asset Pricig EXPECTED RETURN I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy

More information

1 Random Variables and Key Statistics

1 Random Variables and Key Statistics Review of Statistics 1 Radom Variables ad Key Statistics Radom Variable: A radom variable is a variable that takes o differet umerical values from a sample space determied by chace (probability distributio,

More information

AY Term 2 Mock Examination

AY Term 2 Mock Examination AY 206-7 Term 2 Mock Examiatio Date / Start Time Course Group Istructor 24 March 207 / 2 PM to 3:00 PM QF302 Ivestmet ad Fiacial Data Aalysis G Christopher Tig INSTRUCTIONS TO STUDENTS. This mock examiatio

More information

Parametric Density Estimation: Maximum Likelihood Estimation

Parametric Density Estimation: Maximum Likelihood Estimation Parametric Desity stimatio: Maimum Likelihood stimatio C6 Today Itroductio to desity estimatio Maimum Likelihood stimatio Itroducto Bayesia Decisio Theory i previous lectures tells us how to desig a optimal

More information

Standard Deviations for Normal Sampling Distributions are: For proportions For means _

Standard Deviations for Normal Sampling Distributions are: For proportions For means _ Sectio 9.2 Cofidece Itervals for Proportios We will lear to use a sample to say somethig about the world at large. This process (statistical iferece) is based o our uderstadig of samplig models, ad will

More information

of Asset Pricing APPENDIX 1 TO CHAPTER EXPECTED RETURN APPLICATION Expected Return

of Asset Pricing APPENDIX 1 TO CHAPTER EXPECTED RETURN APPLICATION Expected Return APPENDIX 1 TO CHAPTER 5 Models of Asset Pricig I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy a asset, we are

More information

Introduction to Probability and Statistics Chapter 7

Introduction to Probability and Statistics Chapter 7 Itroductio to Probability ad Statistics Chapter 7 Ammar M. Sarha, asarha@mathstat.dal.ca Departmet of Mathematics ad Statistics, Dalhousie Uiversity Fall Semester 008 Chapter 7 Statistical Itervals Based

More information

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS Lecture 4: Parameter Estimatio ad Cofidece Itervals GENOME 560 Doug Fowler, GS (dfowler@uw.edu) 1 Review: Probability Distributios Discrete: Biomial distributio Hypergeometric distributio Poisso distributio

More information

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010 Combiig imperfect data, ad a itroductio to data assimilatio Ross Baister, NCEO, September 00 rbaister@readigacuk The probability desity fuctio (PDF prob that x lies betwee x ad x + dx p (x restrictio o

More information

Dr. Maddah ENMG 624 Financial Eng g I 03/22/06. Chapter 6 Mean-Variance Portfolio Theory

Dr. Maddah ENMG 624 Financial Eng g I 03/22/06. Chapter 6 Mean-Variance Portfolio Theory Dr Maddah ENMG 64 Fiacial Eg g I 03//06 Chapter 6 Mea-Variace Portfolio Theory Sigle Period Ivestmets Typically, i a ivestmet the iitial outlay of capital is kow but the retur is ucertai A sigle-period

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Cofidece Itervals Itroductio A poit estimate provides o iformatio about the precisio ad reliability of estimatio. For example, the sample mea X is a poit estimate of the populatio mea μ but because of

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpeCourseWare http://ocwmitedu 430 Itroductio to Statistical Methods i Ecoomics Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocwmitedu/terms 430 Itroductio

More information

Monetary Economics: Problem Set #5 Solutions

Monetary Economics: Problem Set #5 Solutions Moetary Ecoomics oblem Set #5 Moetary Ecoomics: oblem Set #5 Solutios This problem set is marked out of 1 poits. The weight give to each part is idicated below. Please cotact me asap if you have ay questios.

More information

Chapter 8: Estimation of Mean & Proportion. Introduction

Chapter 8: Estimation of Mean & Proportion. Introduction Chapter 8: Estimatio of Mea & Proportio 8.1 Estimatio, Poit Estimate, ad Iterval Estimate 8.2 Estimatio of a Populatio Mea: σ Kow 8.3 Estimatio of a Populatio Mea: σ Not Kow 8.4 Estimatio of a Populatio

More information

Estimating Proportions with Confidence

Estimating Proportions with Confidence Aoucemets: Discussio today is review for midterm, o credit. You may atted more tha oe discussio sectio. Brig sheets of otes ad calculator to midterm. We will provide Scatro form. Homework: (Due Wed Chapter

More information

. (The calculated sample mean is symbolized by x.)

. (The calculated sample mean is symbolized by x.) Stat 40, sectio 5.4 The Cetral Limit Theorem otes by Tim Pilachowski If you have t doe it yet, go to the Stat 40 page ad dowload the hadout 5.4 supplemet Cetral Limit Theorem. The homework (both practice

More information

4.5 Generalized likelihood ratio test

4.5 Generalized likelihood ratio test 4.5 Geeralized likelihood ratio test A assumptio that is used i the Athlete Biological Passport is that haemoglobi varies equally i all athletes. We wish to test this assumptio o a sample of k athletes.

More information

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices?

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices? FINM6900 Fiace Theory How Is Asymmetric Iformatio Reflected i Asset Prices? February 3, 2012 Referece S. Grossma, O the Efficiecy of Competitive Stock Markets where Traders Have Diverse iformatio, Joural

More information

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty,

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty, Iferetial Statistics ad Probability a Holistic Approach Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike 4.0

More information

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge Biomial Model Stock Price Dyamics The value of a optio at maturity depeds o the price of the uderlyig stock at maturity. The value of the optio today depeds o the expected value of the optio at maturity

More information

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3)

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3) Today: Fiish Chapter 9 (Sectios 9.6 to 9.8 ad 9.9 Lesso 3) ANNOUNCEMENTS: Quiz #7 begis after class today, eds Moday at 3pm. Quiz #8 will begi ext Friday ad ed at 10am Moday (day of fial). There will be

More information

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013 18.S096 Problem Set 5 Fall 2013 Volatility Modelig Due Date: 10/29/2013 1. Sample Estimators of Diffusio Process Volatility ad Drift Let {X t } be the price of a fiacial security that follows a geometric

More information

Online appendices from Counterparty Risk and Credit Value Adjustment a continuing challenge for global financial markets by Jon Gregory

Online appendices from Counterparty Risk and Credit Value Adjustment a continuing challenge for global financial markets by Jon Gregory Olie appedices from Couterparty Risk ad Credit Value Adjustmet a APPENDIX 8A: Formulas for EE, PFE ad EPE for a ormal distributio Cosider a ormal distributio with mea (expected future value) ad stadard

More information

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011 15.075 Exam 2 Istructor: Cythia Rudi TA: Dimitrios Bisias October 25, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 You are i charge of a study

More information

ii. Interval estimation:

ii. Interval estimation: 1 Types of estimatio: i. Poit estimatio: Example (1) Cosider the sample observatios 17,3,5,1,18,6,16,10 X 8 X i i1 8 17 3 5 118 6 16 10 8 116 8 14.5 14.5 is a poit estimate for usig the estimator X ad

More information

Unbiased estimators Estimators

Unbiased estimators Estimators 19 Ubiased estimators I Chapter 17 we saw that a dataset ca be modeled as a realizatio of a radom sample from a probability distributio ad that quatities of iterest correspod to features of the model distributio.

More information

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

A random variable is a variable whose value is a numerical outcome of a random phenomenon. The Practice of Statistics, d ed ates, Moore, ad Stares Itroductio We are ofte more iterested i the umber of times a give outcome ca occur tha i the possible outcomes themselves For example, if we toss

More information

Lecture 16 Investment, Time, and Risk (Basic issues in Finance)

Lecture 16 Investment, Time, and Risk (Basic issues in Finance) Lecture 16 Ivestmet, Time, ad Risk (Basic issues i Fiace) 1. Itertemporal Ivestmet Decisios: The Importace o Time ad Discoutig 1) Time as oe o the most importat actors aectig irm s ivestmet decisios: A

More information

Exam 1 Spring 2015 Statistics for Applications 3/5/2015

Exam 1 Spring 2015 Statistics for Applications 3/5/2015 8.443 Exam Sprig 05 Statistics for Applicatios 3/5/05. Log Normal Distributio: A radom variable X follows a Logormal(θ, σ ) distributio if l(x) follows a Normal(θ, σ ) distributio. For the ormal radom

More information

Math 124: Lecture for Week 10 of 17

Math 124: Lecture for Week 10 of 17 What we will do toight 1 Lecture for of 17 David Meredith Departmet of Mathematics Sa Fracisco State Uiversity 2 3 4 April 8, 2008 5 6 II Take the midterm. At the ed aswer the followig questio: To be revealed

More information

Lecture 5 Point Es/mator and Sampling Distribu/on

Lecture 5 Point Es/mator and Sampling Distribu/on Lecture 5 Poit Es/mator ad Samplig Distribu/o Fall 03 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milto Stewart School of Idustrial Systems & Egieerig Georgia Tech Road map Poit Es/ma/o Cofidece Iterval

More information

NPTEL DEPARTMENT OF INDUSTRIAL AND MANAGEMENT ENGINEERING IIT KANPUR QUANTITATIVE FINANCE END-TERM EXAMINATION (2015 JULY-AUG ONLINE COURSE)

NPTEL DEPARTMENT OF INDUSTRIAL AND MANAGEMENT ENGINEERING IIT KANPUR QUANTITATIVE FINANCE END-TERM EXAMINATION (2015 JULY-AUG ONLINE COURSE) NPTEL DEPARTMENT OF INDUSTRIAL AND MANAGEMENT ENGINEERING IIT KANPUR QUANTITATIVE FINANCE END-TERM EXAMINATION (2015 JULY-AUG ONLINE COURSE) READ THE INSTRUCTIONS VERY CAREFULLY 1) Time duratio is 2 hours

More information

Lecture 4: Probability (continued)

Lecture 4: Probability (continued) Lecture 4: Probability (cotiued) Desity Curves We ve defied probabilities for discrete variables (such as coi tossig). Probabilities for cotiuous or measuremet variables also are evaluated usig relative

More information

CHAPTER 8 Estimating with Confidence

CHAPTER 8 Estimating with Confidence CHAPTER 8 Estimatig with Cofidece 8.2 Estimatig a Populatio Proportio The Practice of Statistics, 5th Editio Stares, Tabor, Yates, Moore Bedford Freema Worth Publishers Estimatig a Populatio Proportio

More information

Subject CT1 Financial Mathematics Core Technical Syllabus

Subject CT1 Financial Mathematics Core Technical Syllabus Subject CT1 Fiacial Mathematics Core Techical Syllabus for the 2018 exams 1 Jue 2017 Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig

More information

ECON 5350 Class Notes Maximum Likelihood Estimation

ECON 5350 Class Notes Maximum Likelihood Estimation ECON 5350 Class Notes Maximum Likelihood Estimatio 1 Maximum Likelihood Estimatio Example #1. Cosider the radom sample {X 1 = 0.5, X 2 = 2.0, X 3 = 10.0, X 4 = 1.5, X 5 = 7.0} geerated from a expoetial

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Cotets 40 Samplig Distributios ad Estimatio 40.1 Samplig Distributios 40. Iterval Estimatio for the Variace 13 Learig outcomes You will lear about the distributios which are created whe a populatio is

More information

Notes on Expected Revenue from Auctions

Notes on Expected Revenue from Auctions Notes o Epected Reveue from Auctios Professor Bergstrom These otes spell out some of the mathematical details about first ad secod price sealed bid auctios that were discussed i Thursday s lecture You

More information

Topic-7. Large Sample Estimation

Topic-7. Large Sample Estimation Topic-7 Large Sample Estimatio TYPES OF INFERENCE Ò Estimatio: É Estimatig or predictig the value of the parameter É What is (are) the most likely values of m or p? Ò Hypothesis Testig: É Decidig about

More information

1 Estimating sensitivities

1 Estimating sensitivities Copyright c 27 by Karl Sigma 1 Estimatig sesitivities Whe estimatig the Greeks, such as the, the geeral problem ivolves a radom variable Y = Y (α) (such as a discouted payoff) that depeds o a parameter

More information

Lecture 5: Sampling Distribution

Lecture 5: Sampling Distribution Lecture 5: Samplig Distributio Readigs: Sectios 5.5, 5.6 Itroductio Parameter: describes populatio Statistic: describes the sample; samplig variability Samplig distributio of a statistic: A probability

More information

BIOSTATS 540 Fall Estimation Page 1 of 72. Unit 6. Estimation. Use at least twelve observations in constructing a confidence interval

BIOSTATS 540 Fall Estimation Page 1 of 72. Unit 6. Estimation. Use at least twelve observations in constructing a confidence interval BIOSTATS 540 Fall 015 6. Estimatio Page 1 of 7 Uit 6. Estimatio Use at least twelve observatios i costructig a cofidece iterval - Gerald va Belle What is the mea of the blood pressures of all the studets

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: I this chapter we wat to fid out the value of a parameter for a populatio. We do t kow the value of this parameter for the etire

More information

Calculation of the Annual Equivalent Rate (AER)

Calculation of the Annual Equivalent Rate (AER) Appedix to Code of Coduct for the Advertisig of Iterest Bearig Accouts. (31/1/0) Calculatio of the Aual Equivalet Rate (AER) a) The most geeral case of the calculatio is the rate of iterest which, if applied

More information

43. A 000 par value 5-year bod with 8.0% semiaual coupos was bought to yield 7.5% covertible semiaually. Determie the amout of premium amortized i the 6 th coupo paymet. (A).00 (B).08 (C).5 (D).5 (E).34

More information

CAPITAL PROJECT SCREENING AND SELECTION

CAPITAL PROJECT SCREENING AND SELECTION CAPITAL PROJECT SCREEIG AD SELECTIO Before studyig the three measures of ivestmet attractiveess, we will review a simple method that is commoly used to scree capital ivestmets. Oe of the primary cocers

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Samplig Distributios ad Estimatio T O P I C # Populatio Proportios, π π the proportio of the populatio havig some characteristic Sample proportio ( p ) provides a estimate of π : x p umber of successes

More information

0.1 Valuation Formula:

0.1 Valuation Formula: 0. Valuatio Formula: 0.. Case of Geeral Trees: q = er S S S 3 S q = er S S 4 S 5 S 4 q 3 = er S 3 S 6 S 7 S 6 Therefore, f (3) = e r [q 3 f (7) + ( q 3 ) f (6)] f () = e r [q f (5) + ( q ) f (4)] = f ()

More information

Math 312, Intro. to Real Analysis: Homework #4 Solutions

Math 312, Intro. to Real Analysis: Homework #4 Solutions Math 3, Itro. to Real Aalysis: Homework #4 Solutios Stephe G. Simpso Moday, March, 009 The assigmet cosists of Exercises 0.6, 0.8, 0.0,.,.3,.6,.0,.,. i the Ross textbook. Each problem couts 0 poits. 0.6.

More information

Correlation possibly the most important and least understood topic in finance

Correlation possibly the most important and least understood topic in finance Correlatio...... possibly the most importat ad least uderstood topic i fiace 2014 Gary R. Evas. May be used oly for o-profit educatioal purposes oly without permissio of the author. The first exam... Eco

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because

More information

Chapter 8 Interval Estimation. Estimation Concepts. General Form of a Confidence Interval

Chapter 8 Interval Estimation. Estimation Concepts. General Form of a Confidence Interval Chapter 8 Iterval Estimatio Estimatio Cocepts Usually ca't take a cesus, so we must make decisios based o sample data It imperative that we take the risk of samplig error ito accout whe we iterpret sample

More information

Annual compounding, revisited

Annual compounding, revisited Sectio 1.: No-aual compouded iterest MATH 105: Cotemporary Mathematics Uiversity of Louisville August 2, 2017 Compoudig geeralized 2 / 15 Aual compoudig, revisited The idea behid aual compoudig is that

More information

1. Suppose X is a variable that follows the normal distribution with known standard deviation σ = 0.3 but unknown mean µ.

1. Suppose X is a variable that follows the normal distribution with known standard deviation σ = 0.3 but unknown mean µ. Chapter 9 Exercises Suppose X is a variable that follows the ormal distributio with kow stadard deviatio σ = 03 but ukow mea µ (a) Costruct a 95% cofidece iterval for µ if a radom sample of = 6 observatios

More information

APPLICATION OF GEOMETRIC SEQUENCES AND SERIES: COMPOUND INTEREST AND ANNUITIES

APPLICATION OF GEOMETRIC SEQUENCES AND SERIES: COMPOUND INTEREST AND ANNUITIES APPLICATION OF GEOMETRIC SEQUENCES AND SERIES: COMPOUND INTEREST AND ANNUITIES Example: Brado s Problem Brado, who is ow sixtee, would like to be a poker champio some day. At the age of twety-oe, he would

More information

B = A x z

B = A x z 114 Block 3 Erdeky == Begi 6.3 ============================================================== 1 / 8 / 2008 1 Correspodig Areas uder a ormal curve ad the stadard ormal curve are equal. Below: Area B = Area

More information

Further Pure 1 Revision Topic 5: Sums of Series

Further Pure 1 Revision Topic 5: Sums of Series The OCR syllabus says that cadidates should: Further Pure Revisio Topic 5: Sums of Series Cadidates should be able to: (a) use the stadard results for Σr, Σr, Σr to fid related sums; (b) use the method

More information

Probability and statistics

Probability and statistics 4 Probability ad statistics Basic deitios Statistics is a mathematical disciplie that allows us to uderstad pheomea shaped by may evets that we caot keep track of. Sice we miss iformatio to predict the

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Game Theory Lecture Notes By Y. Narahari Departmet of Computer Sciece ad Automatio Idia Istitute of Sciece Bagalore, Idia July 01 Chapter 4: Domiat Strategy Equilibria Note: This is a oly a draft versio,

More information

1 Savings Plans and Investments

1 Savings Plans and Investments 4C Lesso Usig ad Uderstadig Mathematics 6 1 Savigs las ad Ivestmets 1.1 The Savigs la Formula Lets put a $100 ito a accout at the ed of the moth. At the ed of the moth for 5 more moths, you deposit $100

More information

AMS Portfolio Theory and Capital Markets

AMS Portfolio Theory and Capital Markets AMS 69.0 - Portfolio Theory ad Capital Markets I Class 6 - Asset yamics Robert J. Frey Research Professor Stoy Brook iversity, Applied Mathematics ad Statistics frey@ams.suysb.edu http://www.ams.suysb.edu/~frey/

More information

1 ECON4415: International Economics Problem Set 4 - Solutions

1 ECON4415: International Economics Problem Set 4 - Solutions ECON445: Iteratioal Ecoomics Problem Set 4 - Solutios. I Moopolistic competitio. Moopolistic competitio is a market form where May rms producig di eret varieties. Each rm has moopoly power over its ow

More information

Sampling Distributions & Estimators

Sampling Distributions & Estimators API-209 TF Sessio 2 Teddy Svoroos September 18, 2015 Samplig Distributios & Estimators I. Estimators The Importace of Samplig Radomly Three Properties of Estimators 1. Ubiased 2. Cosistet 3. Efficiet I

More information

EXERCISE - BINOMIAL THEOREM

EXERCISE - BINOMIAL THEOREM BINOMIAL THOEREM / EXERCISE - BINOMIAL THEOREM LEVEL I SUBJECTIVE QUESTIONS. Expad the followig expressios ad fid the umber of term i the expasio of the expressios. (a) (x + y) 99 (b) ( + a) 9 + ( a) 9

More information

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME All Right Reserved No. of Pages - 10 No of Questios - 08 SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME YEAR I SEMESTER I (Group B) END SEMESTER EXAMINATION

More information

Section 3.3 Exercises Part A Simplify the following. 1. (3m 2 ) 5 2. x 7 x 11

Section 3.3 Exercises Part A Simplify the following. 1. (3m 2 ) 5 2. x 7 x 11 123 Sectio 3.3 Exercises Part A Simplify the followig. 1. (3m 2 ) 5 2. x 7 x 11 3. f 12 4. t 8 t 5 f 5 5. 3-4 6. 3x 7 4x 7. 3z 5 12z 3 8. 17 0 9. (g 8 ) -2 10. 14d 3 21d 7 11. (2m 2 5 g 8 ) 7 12. 5x 2

More information

A point estimate is the value of a statistic that estimates the value of a parameter.

A point estimate is the value of a statistic that estimates the value of a parameter. Chapter 9 Estimatig the Value of a Parameter Chapter 9.1 Estimatig a Populatio Proportio Objective A : Poit Estimate A poit estimate is the value of a statistic that estimates the value of a parameter.

More information

These characteristics are expressed in terms of statistical properties which are estimated from the sample data.

These characteristics are expressed in terms of statistical properties which are estimated from the sample data. 0. Key Statistical Measures of Data Four pricipal features which characterize a set of observatios o a radom variable are: (i) the cetral tedecy or the value aroud which all other values are buched, (ii)

More information

Online appendices from The xva Challenge by Jon Gregory. APPENDIX 10A: Exposure and swaption analogy.

Online appendices from The xva Challenge by Jon Gregory. APPENDIX 10A: Exposure and swaption analogy. APPENDIX 10A: Exposure ad swaptio aalogy. Sorese ad Bollier (1994), effectively calculate the CVA of a swap positio ad show this ca be writte as: CVA swap = LGD V swaptio (t; t i, T) PD(t i 1, t i ). i=1

More information

Overlapping Generations

Overlapping Generations Eco. 53a all 996 C. Sims. troductio Overlappig Geeratios We wat to study how asset markets allow idividuals, motivated by the eed to provide icome for their retiremet years, to fiace capital accumulatio

More information

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation NOTES ON ESTIMATION AND CONFIDENCE INTERVALS MICHAEL N. KATEHAKIS 1. Estimatio Estimatio is a brach of statistics that deals with estimatig the values of parameters of a uderlyig distributio based o observed/empirical

More information

Sequences and Series

Sequences and Series Sequeces ad Series Matt Rosezweig Cotets Sequeces ad Series. Sequeces.................................................. Series....................................................3 Rudi Chapter 3 Exercises........................................

More information

A Bayesian perspective on estimating mean, variance, and standard-deviation from data

A Bayesian perspective on estimating mean, variance, and standard-deviation from data Brigham Youg Uiversity BYU ScholarsArchive All Faculty Publicatios 006--05 A Bayesia perspective o estimatig mea, variace, ad stadard-deviatio from data Travis E. Oliphat Follow this ad additioal works

More information

x satisfying all regularity conditions. Then

x satisfying all regularity conditions. Then AMS570.01 Practice Midterm Exam Sprig, 018 Name: ID: Sigature: Istructio: This is a close book exam. You are allowed oe-page 8x11 formula sheet (-sided). No cellphoe or calculator or computer is allowed.

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Busiess ad Ecoomics Chapter 8 Estimatio: Additioal Topics Copright 010 Pearso Educatio, Ic. Publishig as Pretice Hall Ch. 8-1 8. Differece Betwee Two Meas: Idepedet Samples Populatio meas,

More information

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion Basic formula for the Chi-square test (Observed - Expected ) Expected Basic formula for cofidece itervals sˆ x ± Z ' Sample size adjustmet for fiite populatio (N * ) (N + - 1) Formulas for estimatig populatio

More information

BASIC STATISTICS ECOE 1323

BASIC STATISTICS ECOE 1323 BASIC STATISTICS ECOE 33 SPRING 007 FINAL EXAM NAME: ID NUMBER: INSTRUCTIONS:. Write your ame ad studet ID.. You have hours 3. This eam must be your ow work etirely. You caot talk to or share iformatio

More information

Estimation of Basic Genetic Parameters

Estimation of Basic Genetic Parameters Lecture 7 Estimatio of Basic Geetic Parameters Guilherme J. M. Rosa Uiversity of Wiscosi-Madiso Itroductio to Quatitative Geetics SISG, Seattle 16 18 July 018 Estimatio of Basic Geetic Parameters 1 arrow

More information

Chapter 5: Sequences and Series

Chapter 5: Sequences and Series Chapter 5: Sequeces ad Series 1. Sequeces 2. Arithmetic ad Geometric Sequeces 3. Summatio Notatio 4. Arithmetic Series 5. Geometric Series 6. Mortgage Paymets LESSON 1 SEQUENCES I Commo Core Algebra I,

More information

Chapter Six. Bond Prices 1/15/2018. Chapter 4, Part 2 Bonds, Bond Prices, Interest Rates and Holding Period Return.

Chapter Six. Bond Prices 1/15/2018. Chapter 4, Part 2 Bonds, Bond Prices, Interest Rates and Holding Period Return. Chapter Six Chapter 4, Part Bods, Bod Prices, Iterest Rates ad Holdig Period Retur Bod Prices 1. Zero-coupo or discout bod Promise a sigle paymet o a future date Example: Treasury bill. Coupo bod periodic

More information

STRAND: FINANCE. Unit 3 Loans and Mortgages TEXT. Contents. Section. 3.1 Annual Percentage Rate (APR) 3.2 APR for Repayment of Loans

STRAND: FINANCE. Unit 3 Loans and Mortgages TEXT. Contents. Section. 3.1 Annual Percentage Rate (APR) 3.2 APR for Repayment of Loans CMM Subject Support Strad: FINANCE Uit 3 Loas ad Mortgages: Text m e p STRAND: FINANCE Uit 3 Loas ad Mortgages TEXT Cotets Sectio 3.1 Aual Percetage Rate (APR) 3.2 APR for Repaymet of Loas 3.3 Credit Purchases

More information

Problem Set 1a - Oligopoly

Problem Set 1a - Oligopoly Advaced Idustrial Ecoomics Sprig 2014 Joha Steek 6 may 2014 Problem Set 1a - Oligopoly 1 Table of Cotets 2 Price Competitio... 3 2.1 Courot Oligopoly with Homogeous Goods ad Differet Costs... 3 2.2 Bertrad

More information

Maximum Empirical Likelihood Estimation (MELE)

Maximum Empirical Likelihood Estimation (MELE) Maximum Empirical Likelihood Estimatio (MELE Natha Smooha Abstract Estimatio of Stadard Liear Model - Maximum Empirical Likelihood Estimator: Combiatio of the idea of imum likelihood method of momets,

More information

An Improved Composite Forecast For Realized Volatility

An Improved Composite Forecast For Realized Volatility Joural of Statistical ad Ecoometric Methods, vol.3, o.1, 2014, 75-84 ISSN: 2241-0384 (prit), 2241-0376 (olie) Sciepress Ltd, 2014 A Improved Composite Forecast For Realized Volatility Isaac J. Faber 1

More information

MS-E2114 Investment Science Exercise 2/2016, Solutions

MS-E2114 Investment Science Exercise 2/2016, Solutions MS-E24 Ivestmet Sciece Exercise 2/206, Solutios 26.2.205 Perpetual auity pays a xed sum periodically forever. Suppose a amout A is paid at the ed of each period, ad suppose the per-period iterest rate

More information

Chapter Four Learning Objectives Valuing Monetary Payments Now and in the Future

Chapter Four Learning Objectives Valuing Monetary Payments Now and in the Future Chapter Four Future Value, Preset Value, ad Iterest Rates Chapter 4 Learig Objectives Develop a uderstadig of 1. Time ad the value of paymets 2. Preset value versus future value 3. Nomial versus real iterest

More information

Course FM/2 Practice Exam 1 Solutions

Course FM/2 Practice Exam 1 Solutions Course FM/2 Practice Exam 1 Solutios Solutio 1 D Sikig fud loa The aual service paymet to the leder is the aual effective iterest rate times the loa balace: SP X 0.075 To determie the aual sikig fud paymet,

More information

Chapter Four 1/15/2018. Learning Objectives. The Meaning of Interest Rates Future Value, Present Value, and Interest Rates Chapter 4, Part 1.

Chapter Four 1/15/2018. Learning Objectives. The Meaning of Interest Rates Future Value, Present Value, and Interest Rates Chapter 4, Part 1. Chapter Four The Meaig of Iterest Rates Future Value, Preset Value, ad Iterest Rates Chapter 4, Part 1 Preview Develop uderstadig of exactly what the phrase iterest rates meas. I this chapter, we see that

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Point Estimation by MLE Lesson 5

Point Estimation by MLE Lesson 5 Poit Estimatio b MLE Lesso 5 Review Defied Likelihood Maximum Likelihood Estimatio Step : Costruct Likelihood Step : Maximize fuctio Take Log of likelihood fuctio Take derivative of fuctio Set derivative

More information

First determine the payments under the payment system

First determine the payments under the payment system Corporate Fiace February 5, 2008 Problem Set # -- ANSWERS Klick. You wi a judgmet agaist a defedat worth $20,000,000. Uder state law, the defedat has the right to pay such a judgmet out over a 20 year

More information