point estimator a random variable (like P or X) whose values are used to estimate a population parameter

Size: px
Start display at page:

Download "point estimator a random variable (like P or X) whose values are used to estimate a population parameter"

Transcription

1 Estimatio We have oted that the pollig problem which attempts to estimate the proportio p of Successes i some populatio ad the measuremet problem which attempts to estimate the mea value µ of some quatity withi a populatio are situatios we hadle by samplig data. To estimate a populatio proportio p, it makes sese to compute the sample proportio p; but sice it is wisest to choose radom samples, the computatio of this statistic is best regarded as a radom variable P. Similarly, to estimate the populatio mea µ, it makes sese to compute the sample proportio x; but sice it is wisest to choose radom samples, the computatio of this statistic is best regarded as a radom variable X. 1

2 poit estimator a radom variable (like P or X) whose values are used to estimate a populatio parameter poit estimate ay value of a poit estimator (like p or x) derived from a particular sample A poit estimator is said to be ubiased if its expected value is equal to the parameter beig estimated; efficiet if its stadard error is less tha that of other poit estimators; ad cosistet if, as the sample size gets larger, it more accurately estimates the parameter. 2

3 iterval estimator a rage of values which is used to estimate a populatio parameter cofidece iterval a iterval estimator which cotais the parameter beig estimated with a certai level of cofidece (i.e., with a high probability) margi of error half the width of a cofidece iterval; cofidece itervals are geerally costructed as cetered o some poit estimate, that is, they have the form Poit estimate ± Margi of error 3

4 Cofidece itervals for the populatio mea Recall that the samplig distributio of the sample mea X is ormally distributed provided that either we are samplig from a ormal populatio of X values, or the sample is large (o the order of 30). Uder this assumptio, the Empirical Rule tells us that (roughly) 95% of all sampled values of X will lie withi two stadard deviatios (SD( X) = σ/ ) of its expected value (E( X) = µ). That is, P (µ 2 σ X µ + 2 σ ) We ca do a bit better tha this by replacig this approximate probability with a more accurate value: by ivertig the ormal probability distributio fuctio, we fid that 95% of values of a stadard ormal radom variable Z fall withi 1.96 stadard deviatios of the mea: P ( 1.96 Z 1.96) = Thus, P (µ 1.96 σ X µ σ ) =

5 Next, we observe that sice 95% of all sampled values of X will lie withi two stadard deviatios of the mea µ, the it is certaily true that the mea µ will lie withi two stadard deviatios of the sampled mea X. That is, P ( X 1.96 σ µ X σ ) = This seemigly iocuous coclusio has far-reachig cosequeces: it states that 95% of all sampled values of X have the property that the ukow value of µ lies i the cofidece iterval X ± 1.96 σ. The choice of 95% i this statemet is merely coveiet; it is ot a ecessary feature of the cofidece iterval. We may replace it with ay suitably large level of cofidece. cofidece coefficiet, or level of sigificace (α) the probability that a cofidece iterval will ot cotai the parameter it iteds to estimate cofidece level (100(1 α)%) the percetage of sampled values of a poit estimate that produce cofidece itervals cotaiig the parameter they ited to estimate 5

6 Thus, the cofidece iterval above estimates µ at the α = 0.05 sigificace level ad has a 95% cofidece level. These choices both lead to the ormal tail probability z α/2 = 1.96 that appears i the cofidece iterval X ± 1.96 σ. More geerally, at ay sigificace level α, we obtai the followig: cofidece iterval for the mea assumig that we are samplig from a ormally distributed populatio of values of the radom variable X, or if the sample is large eough ( 30), the sampled mea value X = x leads to a cofidece iterval for µ at level of sigificace α give by x ± z α/2 σ. 6

7 Notice the three quatities that determie the margi of error: margi of error = z α/2 σ. The margi of error i a cofidece iterval estimate - is smaller for populatios with smaller stadard deviatio σ; - is smaller for samples of greater size ; - is smaller whe larger sigificace levels α are employed. However, sice σ is costat, the ivestigator has o meas to lower this parameter. Oly sample size ad sigificace level α ca be maipulated. A more serious practical cocer is maifest here: the cofidece iterval formula give above presumes that the ivestigator kows the value of σ. If the parameter µ is ukow, it is highly ulikely that σ will also be kow! That is, the ivestigator may be forced to estimate σ first i order to develop a estimate for µ. 7

8 Cofidece itervals ad the t df distributio There is a obvious solutio to this problem: estimate the stadard deviatio SD( X) = σ of the samplig distributio with the stadard error SE( X) = s. This replaces the ukow parameter σ with the kow sample statistic s. However, this estimatio carries with it its ow samplig variability, so whe we replace SD( X) with SE( X) i the cofidece iterval formula, the uderlyig samplig distributio o loger behaves eough like a ormal distributio. The additioal variability itroduced by estimatig σ with s causes more variability i the samplig distributio of X, producig a symmetric bell-shaped distributio, but with thicker tails tha the ormal distributio. The precise ature of this ew samplig distributio was discovered by W. S. Gossett i the early 1900s, who published his fidigs uder the pseudoym Studet. Thus, it is kow as the Studet t df distributio, or the t distributio with df degrees of freedom. Degrees of freedom is a additioal parameter that satisfies df = 1. 8

9 Properties of the t df distributio like the stadard ormal distributio, the t distributio is symmetric, asymptotic, ad bell-shaped, with mea equal to 0 ad stadard deviatio equal to 1; ulike the stadard ormal distributio, the t distributio has thicker tails ad a less promiet cetral peak; the smaller the df, the thicker the tails; as the umber of df icreases, the tails of the t distributio thi out ad its cetral promiece icreases i desity, approximatig more closely the stadard ormal desity fuctio. Whereas the samplig distributio of X with σ kow is ormal, so that the stadardized variable Z = X µ σ/ follows the stadard ormal distributio, the samplig distributio of X with σ ukow is stadardized so that the variable T = X µ s/ follows the Studet t df distributio with df degrees of freedom. 9

10 cofidece iterval for the mea (σ ukow) assumig that we are samplig from a ormally distributed populatio of values of the radom variable X, or if the sample is large eough ( 30), the sampled mea value X = x leads to a cofidece iterval for µ at level of sigificace α give by s x ± t α/2,df 10

11 Cofidece itervals for the populatio proportio Recall that the samplig distributio of the sample proportio P is, by the Cetral Limit Theorem, approximated well by a ormal distributio. This approximatio is valid provided that we are samplig radomly ad that the sample is large large eough so that it cotais at least 5 expected successes (that is, p 5) ad at least 5 expected failures (that is, (1 p) 5). Uder these assumptios, we coclude that P is ormally distributed, with expected value E( P ) = p (the populatio proportio) ad stadard deviatio give by the formula SD( P ) = p(1 p)/. It follows that if a radom sample from the populatio produces the value P = p, the ( ) p(1 p) p(1 p) P p 1.96 p p ad more geerally, that = 0.95, 11

12 P ( p z α/2 p(1 p) ) p(1 p) p p + z α/2 = 1 α, which ( ca be recast i the form ) p(1 p) p(1 p) P p z α/2 p p + z α/2 = 1 α. Cosequetly, i a etirely aalogous maer to how we developed a cofidece iterval for the mea i the case that σ is kow, we ca produce a cofidece iterval for the proportio p with the formula p(1 p) p ± z α/2. The difficulty with this is that the margi of error i this last formula depeds o kowig p; but as p is what we are tryig to estimate i the first place, we do ot kow its value! Istead, we replace the stadard deviatio SD( P ) = p(1 p)/ i this formula with the stadard error SE( P ) = p(1 p)/ 12

13 to obtai the cofidece iterval for the proportio p assumig that we compute a value of P from a sample of size radomly selected from a populatio with true proportio of Success equal to p, where the sample is large eough so that it cotais at least 5 expected successes (p 5) ad at least 5 expected failures ((1 p) 5), the a cofidece iterval for p at level of sigificace α is give by p(1 p) p ± z α/2. 13

14 Choosig the sample size We have observed that the size of the margi of error i a cofidece iterval estimate decreases as the size of the sample icreases; this is because the margi of error equals z α/2 σ i the case of estimatig a mea (with σ kow), ad z α/2 p(1 p) i the case of estimatig a proportio. We ca use these facts to help choose the sample size so as to achieve a desired margi of error D: simply set D equal to the appropriate quatity above ad solve the equatio for : choosig whe estimatig µ for a desired margi of error D, the miimum sample size required to estimate µ with a cofidece iterval at sigificace level α is = ( ) zα/2ˆσ 2 where ˆσ represets some reasoable estimate of σ (perhaps the value of s, or eve the crude estimate [rage/4] take from a pilot sample) 14 D

15 choosig whe estimatig p for a desired margi of error D, the miimum sample size required to estimate p with a cofidece iterval at sigificace level α is ( zα/2 ) 2 = ˆp(1 ˆp) D where ˆp represets some reasoable estimate of p (perhaps the value of p take from a pilot sample, or eve the coservative estimate ˆp = 50%) 15

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1 Chapter 8 Cofidece Iterval Estimatio Copyright 2015, 2012, 2009 Pearso Educatio, Ic. Chapter 8, Slide 1 Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for

More information

Statistics for Economics & Business

Statistics for Economics & Business Statistics for Ecoomics & Busiess Cofidece Iterval Estimatio Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for the mea ad the proportio How to determie

More information

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty,

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty, Iferetial Statistics ad Probability a Holistic Approach Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike 4.0

More information

Introduction to Probability and Statistics Chapter 7

Introduction to Probability and Statistics Chapter 7 Itroductio to Probability ad Statistics Chapter 7 Ammar M. Sarha, asarha@mathstat.dal.ca Departmet of Mathematics ad Statistics, Dalhousie Uiversity Fall Semester 008 Chapter 7 Statistical Itervals Based

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Samplig Distributios ad Estimatio T O P I C # Populatio Proportios, π π the proportio of the populatio havig some characteristic Sample proportio ( p ) provides a estimate of π : x p umber of successes

More information

Chapter 8 Interval Estimation. Estimation Concepts. General Form of a Confidence Interval

Chapter 8 Interval Estimation. Estimation Concepts. General Form of a Confidence Interval Chapter 8 Iterval Estimatio Estimatio Cocepts Usually ca't take a cesus, so we must make decisios based o sample data It imperative that we take the risk of samplig error ito accout whe we iterpret sample

More information

Topic-7. Large Sample Estimation

Topic-7. Large Sample Estimation Topic-7 Large Sample Estimatio TYPES OF INFERENCE Ò Estimatio: É Estimatig or predictig the value of the parameter É What is (are) the most likely values of m or p? Ò Hypothesis Testig: É Decidig about

More information

A point estimate is the value of a statistic that estimates the value of a parameter.

A point estimate is the value of a statistic that estimates the value of a parameter. Chapter 9 Estimatig the Value of a Parameter Chapter 9.1 Estimatig a Populatio Proportio Objective A : Poit Estimate A poit estimate is the value of a statistic that estimates the value of a parameter.

More information

Sampling Distributions & Estimators

Sampling Distributions & Estimators API-209 TF Sessio 2 Teddy Svoroos September 18, 2015 Samplig Distributios & Estimators I. Estimators The Importace of Samplig Radomly Three Properties of Estimators 1. Ubiased 2. Cosistet 3. Efficiet I

More information

Estimating Proportions with Confidence

Estimating Proportions with Confidence Aoucemets: Discussio today is review for midterm, o credit. You may atted more tha oe discussio sectio. Brig sheets of otes ad calculator to midterm. We will provide Scatro form. Homework: (Due Wed Chapter

More information

Chapter 8: Estimation of Mean & Proportion. Introduction

Chapter 8: Estimation of Mean & Proportion. Introduction Chapter 8: Estimatio of Mea & Proportio 8.1 Estimatio, Poit Estimate, ad Iterval Estimate 8.2 Estimatio of a Populatio Mea: σ Kow 8.3 Estimatio of a Populatio Mea: σ Not Kow 8.4 Estimatio of a Populatio

More information

Standard Deviations for Normal Sampling Distributions are: For proportions For means _

Standard Deviations for Normal Sampling Distributions are: For proportions For means _ Sectio 9.2 Cofidece Itervals for Proportios We will lear to use a sample to say somethig about the world at large. This process (statistical iferece) is based o our uderstadig of samplig models, ad will

More information

CHAPTER 8 Estimating with Confidence

CHAPTER 8 Estimating with Confidence CHAPTER 8 Estimatig with Cofidece 8.2 Estimatig a Populatio Proportio The Practice of Statistics, 5th Editio Stares, Tabor, Yates, Moore Bedford Freema Worth Publishers Estimatig a Populatio Proportio

More information

ii. Interval estimation:

ii. Interval estimation: 1 Types of estimatio: i. Poit estimatio: Example (1) Cosider the sample observatios 17,3,5,1,18,6,16,10 X 8 X i i1 8 17 3 5 118 6 16 10 8 116 8 14.5 14.5 is a poit estimate for usig the estimator X ad

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Cofidece Itervals Itroductio A poit estimate provides o iformatio about the precisio ad reliability of estimatio. For example, the sample mea X is a poit estimate of the populatio mea μ but because of

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Lecture 4: Probability (continued)

Lecture 4: Probability (continued) Lecture 4: Probability (cotiued) Desity Curves We ve defied probabilities for discrete variables (such as coi tossig). Probabilities for cotiuous or measuremet variables also are evaluated usig relative

More information

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS Lecture 4: Parameter Estimatio ad Cofidece Itervals GENOME 560 Doug Fowler, GS (dfowler@uw.edu) 1 Review: Probability Distributios Discrete: Biomial distributio Hypergeometric distributio Poisso distributio

More information

Math 124: Lecture for Week 10 of 17

Math 124: Lecture for Week 10 of 17 What we will do toight 1 Lecture for of 17 David Meredith Departmet of Mathematics Sa Fracisco State Uiversity 2 3 4 April 8, 2008 5 6 II Take the midterm. At the ed aswer the followig questio: To be revealed

More information

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3)

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3) Today: Fiish Chapter 9 (Sectios 9.6 to 9.8 ad 9.9 Lesso 3) ANNOUNCEMENTS: Quiz #7 begis after class today, eds Moday at 3pm. Quiz #8 will begi ext Friday ad ed at 10am Moday (day of fial). There will be

More information

. (The calculated sample mean is symbolized by x.)

. (The calculated sample mean is symbolized by x.) Stat 40, sectio 5.4 The Cetral Limit Theorem otes by Tim Pilachowski If you have t doe it yet, go to the Stat 40 page ad dowload the hadout 5.4 supplemet Cetral Limit Theorem. The homework (both practice

More information

Lecture 5: Sampling Distribution

Lecture 5: Sampling Distribution Lecture 5: Samplig Distributio Readigs: Sectios 5.5, 5.6 Itroductio Parameter: describes populatio Statistic: describes the sample; samplig variability Samplig distributio of a statistic: A probability

More information

BASIC STATISTICS ECOE 1323

BASIC STATISTICS ECOE 1323 BASIC STATISTICS ECOE 33 SPRING 007 FINAL EXAM NAME: ID NUMBER: INSTRUCTIONS:. Write your ame ad studet ID.. You have hours 3. This eam must be your ow work etirely. You caot talk to or share iformatio

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: I this chapter we wat to fid out the value of a parameter for a populatio. We do t kow the value of this parameter for the etire

More information

5. Best Unbiased Estimators

5. Best Unbiased Estimators Best Ubiased Estimators http://www.math.uah.edu/stat/poit/ubiased.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 5. Best Ubiased Estimators Basic Theory Cosider agai

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Cotets 40 Samplig Distributios ad Estimatio 40.1 Samplig Distributios 40. Iterval Estimatio for the Variace 13 Learig outcomes You will lear about the distributios which are created whe a populatio is

More information

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpeCourseWare http://ocwmitedu 430 Itroductio to Statistical Methods i Ecoomics Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocwmitedu/terms 430 Itroductio

More information

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion Basic formula for the Chi-square test (Observed - Expected ) Expected Basic formula for cofidece itervals sˆ x ± Z ' Sample size adjustmet for fiite populatio (N * ) (N + - 1) Formulas for estimatig populatio

More information

5 Statistical Inference

5 Statistical Inference 5 Statistical Iferece 5.1 Trasitio from Probability Theory to Statistical Iferece 1. We have ow more or less fiished the probability sectio of the course - we ow tur attetio to statistical iferece. I statistical

More information

1. Suppose X is a variable that follows the normal distribution with known standard deviation σ = 0.3 but unknown mean µ.

1. Suppose X is a variable that follows the normal distribution with known standard deviation σ = 0.3 but unknown mean µ. Chapter 9 Exercises Suppose X is a variable that follows the ormal distributio with kow stadard deviatio σ = 03 but ukow mea µ (a) Costruct a 95% cofidece iterval for µ if a radom sample of = 6 observatios

More information

B = A x z

B = A x z 114 Block 3 Erdeky == Begi 6.3 ============================================================== 1 / 8 / 2008 1 Correspodig Areas uder a ormal curve ad the stadard ormal curve are equal. Below: Area B = Area

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Busiess ad Ecoomics Chapter 8 Estimatio: Additioal Topics Copright 010 Pearso Educatio, Ic. Publishig as Pretice Hall Ch. 8-1 8. Differece Betwee Two Meas: Idepedet Samples Populatio meas,

More information

Parametric Density Estimation: Maximum Likelihood Estimation

Parametric Density Estimation: Maximum Likelihood Estimation Parametric Desity stimatio: Maimum Likelihood stimatio C6 Today Itroductio to desity estimatio Maimum Likelihood stimatio Itroducto Bayesia Decisio Theory i previous lectures tells us how to desig a optimal

More information

Chapter 10 - Lecture 2 The independent two sample t-test and. confidence interval

Chapter 10 - Lecture 2 The independent two sample t-test and. confidence interval Assumptios Idepedet Samples - ukow σ 1, σ - 30 or m 30 - Upooled case Idepedet Samples - ukow σ 1, σ - 30 or m 30 - Pooled case Idepedet samples - Pooled variace - Large samples Chapter 10 - Lecture The

More information

The Idea of a Confidence Interval

The Idea of a Confidence Interval AP Statistics Ch. 8 Notes Estimatig with Cofidece I the last chapter, we aswered questios about what samples should look like assumig that we kew the true values of populatio parameters (like μ, σ, ad

More information

1 Random Variables and Key Statistics

1 Random Variables and Key Statistics Review of Statistics 1 Radom Variables ad Key Statistics Radom Variable: A radom variable is a variable that takes o differet umerical values from a sample space determied by chace (probability distributio,

More information

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013 18.S096 Problem Set 5 Fall 2013 Volatility Modelig Due Date: 10/29/2013 1. Sample Estimators of Diffusio Process Volatility ad Drift Let {X t } be the price of a fiacial security that follows a geometric

More information

BIOSTATS 540 Fall Estimation Page 1 of 72. Unit 6. Estimation. Use at least twelve observations in constructing a confidence interval

BIOSTATS 540 Fall Estimation Page 1 of 72. Unit 6. Estimation. Use at least twelve observations in constructing a confidence interval BIOSTATS 540 Fall 015 6. Estimatio Page 1 of 7 Uit 6. Estimatio Use at least twelve observatios i costructig a cofidece iterval - Gerald va Belle What is the mea of the blood pressures of all the studets

More information

Lecture 5 Point Es/mator and Sampling Distribu/on

Lecture 5 Point Es/mator and Sampling Distribu/on Lecture 5 Poit Es/mator ad Samplig Distribu/o Fall 03 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milto Stewart School of Idustrial Systems & Egieerig Georgia Tech Road map Poit Es/ma/o Cofidece Iterval

More information

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i The iformatio required by the mea-variace approach is substatial whe the umber of assets is large; there are mea values, variaces, ad )/2 covariaces - a total of 2 + )/2 parameters. Sigle-factor model:

More information

CHAPTER 8 CONFIDENCE INTERVALS

CHAPTER 8 CONFIDENCE INTERVALS CHAPTER 8 CONFIDENCE INTERVALS Cofidece Itervals is our first topic i iferetial statistics. I this chapter, we use sample data to estimate a ukow populatio parameter: either populatio mea (µ) or populatio

More information

A Bayesian perspective on estimating mean, variance, and standard-deviation from data

A Bayesian perspective on estimating mean, variance, and standard-deviation from data Brigham Youg Uiversity BYU ScholarsArchive All Faculty Publicatios 006--05 A Bayesia perspective o estimatig mea, variace, ad stadard-deviatio from data Travis E. Oliphat Follow this ad additioal works

More information

These characteristics are expressed in terms of statistical properties which are estimated from the sample data.

These characteristics are expressed in terms of statistical properties which are estimated from the sample data. 0. Key Statistical Measures of Data Four pricipal features which characterize a set of observatios o a radom variable are: (i) the cetral tedecy or the value aroud which all other values are buched, (ii)

More information

Research Article The Probability That a Measurement Falls within a Range of n Standard Deviations from an Estimate of the Mean

Research Article The Probability That a Measurement Falls within a Range of n Standard Deviations from an Estimate of the Mean Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 70806, 8 pages doi:0.540/0/70806 Research Article The Probability That a Measuremet Falls withi a Rage of Stadard Deviatios

More information

AY Term 2 Mock Examination

AY Term 2 Mock Examination AY 206-7 Term 2 Mock Examiatio Date / Start Time Course Group Istructor 24 March 207 / 2 PM to 3:00 PM QF302 Ivestmet ad Fiacial Data Aalysis G Christopher Tig INSTRUCTIONS TO STUDENTS. This mock examiatio

More information

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation NOTES ON ESTIMATION AND CONFIDENCE INTERVALS MICHAEL N. KATEHAKIS 1. Estimatio Estimatio is a brach of statistics that deals with estimatig the values of parameters of a uderlyig distributio based o observed/empirical

More information

Exam 1 Spring 2015 Statistics for Applications 3/5/2015

Exam 1 Spring 2015 Statistics for Applications 3/5/2015 8.443 Exam Sprig 05 Statistics for Applicatios 3/5/05. Log Normal Distributio: A radom variable X follows a Logormal(θ, σ ) distributio if l(x) follows a Normal(θ, σ ) distributio. For the ormal radom

More information

Unbiased estimators Estimators

Unbiased estimators Estimators 19 Ubiased estimators I Chapter 17 we saw that a dataset ca be modeled as a realizatio of a radom sample from a probability distributio ad that quatities of iterest correspod to features of the model distributio.

More information

Control Charts for Mean under Shrinkage Technique

Control Charts for Mean under Shrinkage Technique Helderma Verlag Ecoomic Quality Cotrol ISSN 0940-5151 Vol 24 (2009), No. 2, 255 261 Cotrol Charts for Mea uder Shrikage Techique J. R. Sigh ad Mujahida Sayyed Abstract: I this paper a attempt is made to

More information

Maximum Empirical Likelihood Estimation (MELE)

Maximum Empirical Likelihood Estimation (MELE) Maximum Empirical Likelihood Estimatio (MELE Natha Smooha Abstract Estimatio of Stadard Liear Model - Maximum Empirical Likelihood Estimator: Combiatio of the idea of imum likelihood method of momets,

More information

1 Estimating the uncertainty attached to a sample mean: s 2 vs.

1 Estimating the uncertainty attached to a sample mean: s 2 vs. Political Sciece 100a/200a Fall 2001 Cofidece itervals ad hypothesis testig, Part I 1 1 Estimatig the ucertaity attached to a sample mea: s 2 vs. σ 2 Recall the problem of descriptive iferece: We wat to

More information

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

A random variable is a variable whose value is a numerical outcome of a random phenomenon. The Practice of Statistics, d ed ates, Moore, ad Stares Itroductio We are ofte more iterested i the umber of times a give outcome ca occur tha i the possible outcomes themselves For example, if we toss

More information

ST 305: Exam 2 Fall 2014

ST 305: Exam 2 Fall 2014 ST 305: Exam Fall 014 By hadig i this completed exam, I state that I have either give or received assistace from aother perso durig the exam period. I have used o resources other tha the exam itself ad

More information

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010 Combiig imperfect data, ad a itroductio to data assimilatio Ross Baister, NCEO, September 00 rbaister@readigacuk The probability desity fuctio (PDF prob that x lies betwee x ad x + dx p (x restrictio o

More information

Online appendices from Counterparty Risk and Credit Value Adjustment a continuing challenge for global financial markets by Jon Gregory

Online appendices from Counterparty Risk and Credit Value Adjustment a continuing challenge for global financial markets by Jon Gregory Olie appedices from Couterparty Risk ad Credit Value Adjustmet a APPENDIX 8A: Formulas for EE, PFE ad EPE for a ormal distributio Cosider a ormal distributio with mea (expected future value) ad stadard

More information

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME All Right Reserved No. of Pages - 10 No of Questios - 08 SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME YEAR I SEMESTER I (Group B) END SEMESTER EXAMINATION

More information

Chapter 17 Sampling Distribution Models

Chapter 17 Sampling Distribution Models Chapter 17 Samplig Distributio Models 353 Chapter 17 Samplig Distributio Models 1. Sed moey. All of the histograms are cetered aroud p 0.05. As gets larger, the shape of the histograms get more uimodal

More information

I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint).

I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). I. Meaure of Cetral Tedecy: -Allow u to ummarize a etire data et with a igle value (the midpoit.. Mode : The value (core that occur mot ofte i a data et. -Mo x Sample mode -Mo Populatio mode. Media : the

More information

1 Estimating sensitivities

1 Estimating sensitivities Copyright c 27 by Karl Sigma 1 Estimatig sesitivities Whe estimatig the Greeks, such as the, the geeral problem ivolves a radom variable Y = Y (α) (such as a discouted payoff) that depeds o a parameter

More information

Outline. Populations. Defs: A (finite) population is a (finite) set P of elements e. A variable is a function v : P IR. Population and Characteristics

Outline. Populations. Defs: A (finite) population is a (finite) set P of elements e. A variable is a function v : P IR. Population and Characteristics Outlie Populatio Characteristics Types of Samples Sample Characterstics Sample Aalogue Estimatio Populatios Defs: A (fiite) populatio is a (fiite) set P of elemets e. A variable is a fuctio v : P IR. Examples

More information

1. Find the area under the standard normal curve between z = 0 and z = 3. (a) (b) (c) (d)

1. Find the area under the standard normal curve between z = 0 and z = 3. (a) (b) (c) (d) STA 2023 Practice 3 You may receive assistace from the Math Ceter. These problems are iteded to provide supplemetary problems i preparatio for test 3. This packet does ot ecessarily reflect the umber,

More information

0.1 Valuation Formula:

0.1 Valuation Formula: 0. Valuatio Formula: 0.. Case of Geeral Trees: q = er S S S 3 S q = er S S 4 S 5 S 4 q 3 = er S 3 S 6 S 7 S 6 Therefore, f (3) = e r [q 3 f (7) + ( q 3 ) f (6)] f () = e r [q f (5) + ( q ) f (4)] = f ()

More information

ECON 5350 Class Notes Maximum Likelihood Estimation

ECON 5350 Class Notes Maximum Likelihood Estimation ECON 5350 Class Notes Maximum Likelihood Estimatio 1 Maximum Likelihood Estimatio Example #1. Cosider the radom sample {X 1 = 0.5, X 2 = 2.0, X 3 = 10.0, X 4 = 1.5, X 5 = 7.0} geerated from a expoetial

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Aalyi ad Statitical Method Statitic 65 http://www.tat.tamu.edu/~uhaii/teachig.html Lecture 9 Suhaii Subba Rao Tetig o far We have looked at oe ample hypothei tet of the form H 0 : µ = µ 0 agait H

More information

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011 15.075 Exam 2 Istructor: Cythia Rudi TA: Dimitrios Bisias October 25, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 You are i charge of a study

More information

Confidence Intervals based on Absolute Deviation for Population Mean of a Positively Skewed Distribution

Confidence Intervals based on Absolute Deviation for Population Mean of a Positively Skewed Distribution Iteratioal Joural of Computatioal ad Theoretical Statistics ISSN (220-59) It. J. Comp. Theo. Stat. 5, No. (May-208) http://dx.doi.org/0.2785/ijcts/0500 Cofidece Itervals based o Absolute Deviatio for Populatio

More information

Topic 14: Maximum Likelihood Estimation

Topic 14: Maximum Likelihood Estimation Toic 4: November, 009 As before, we begi with a samle X = (X,, X of radom variables chose accordig to oe of a family of robabilities P θ I additio, f(x θ, x = (x,, x will be used to deote the desity fuctio

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Itroductio to Statistical Iferece Fial Review CH1: Picturig Distributios With Graphs 1. Types of Variable -Categorical -Quatitative 2. Represetatios of Distributios (a) Categorical -Pie Chart -Bar Graph

More information

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution Iteratioal Joural of Statistics ad Systems ISSN 0973-675 Volume, Number 4 (07, pp. 7-73 Research Idia Publicatios http://www.ripublicatio.com Bayes Estimator for Coefficiet of Variatio ad Iverse Coefficiet

More information

Monetary Economics: Problem Set #5 Solutions

Monetary Economics: Problem Set #5 Solutions Moetary Ecoomics oblem Set #5 Moetary Ecoomics: oblem Set #5 Solutios This problem set is marked out of 1 poits. The weight give to each part is idicated below. Please cotact me asap if you have ay questios.

More information

4.5 Generalized likelihood ratio test

4.5 Generalized likelihood ratio test 4.5 Geeralized likelihood ratio test A assumptio that is used i the Athlete Biological Passport is that haemoglobi varies equally i all athletes. We wish to test this assumptio o a sample of k athletes.

More information

Simulation Efficiency and an Introduction to Variance Reduction Methods

Simulation Efficiency and an Introduction to Variance Reduction Methods Mote Carlo Simulatio: IEOR E4703 Columbia Uiversity c 2017 by Marti Haugh Simulatio Efficiecy ad a Itroductio to Variace Reductio Methods I these otes we discuss the efficiecy of a Mote-Carlo estimator.

More information

Parameter Uncertainty in Loss Ratio Distributions and its Implications

Parameter Uncertainty in Loss Ratio Distributions and its Implications ad its Implicatios Michael G. Wacek, FCAS, MAAA Abstract This paper addresses the issue of parameter ucertaity i loss ratio distributios ad its implicatios for primary ad reisurace ratemakig, uderwritig

More information

Non-Inferiority Logrank Tests

Non-Inferiority Logrank Tests Chapter 706 No-Iferiority Lograk Tests Itroductio This module computes the sample size ad power for o-iferiority tests uder the assumptio of proportioal hazards. Accrual time ad follow-up time are icluded

More information

Chpt 5. Discrete Probability Distributions. 5-3 Mean, Variance, Standard Deviation, and Expectation

Chpt 5. Discrete Probability Distributions. 5-3 Mean, Variance, Standard Deviation, and Expectation Chpt 5 Discrete Probability Distributios 5-3 Mea, Variace, Stadard Deviatio, ad Expectatio 1/23 Homework p252 Applyig the Cocepts Exercises p253 1-19 2/23 Objective Fid the mea, variace, stadard deviatio,

More information

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices?

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices? FINM6900 Fiace Theory How Is Asymmetric Iformatio Reflected i Asset Prices? February 3, 2012 Referece S. Grossma, O the Efficiecy of Competitive Stock Markets where Traders Have Diverse iformatio, Joural

More information

Chapter 10 Statistical Inference About Means and Proportions With Two Populations. Learning objectives

Chapter 10 Statistical Inference About Means and Proportions With Two Populations. Learning objectives Chater 0 Statistical Iferece About Meas ad Proortios With Two Poulatios Slide Learig objectives. Uderstad ifereces About the Differece Betwee Two Poulatio Meas: σ ad σ Kow. Uderstad Ifereces About the

More information

43. A 000 par value 5-year bod with 8.0% semiaual coupos was bought to yield 7.5% covertible semiaually. Determie the amout of premium amortized i the 6 th coupo paymet. (A).00 (B).08 (C).5 (D).5 (E).34

More information

CAPITAL ASSET PRICING MODEL

CAPITAL ASSET PRICING MODEL CAPITAL ASSET PRICING MODEL RETURN. Retur i respect of a observatio is give by the followig formula R = (P P 0 ) + D P 0 Where R = Retur from the ivestmet durig this period P 0 = Curret market price P

More information

x satisfying all regularity conditions. Then

x satisfying all regularity conditions. Then AMS570.01 Practice Midterm Exam Sprig, 018 Name: ID: Sigature: Istructio: This is a close book exam. You are allowed oe-page 8x11 formula sheet (-sided). No cellphoe or calculator or computer is allowed.

More information

The Limit of a Sequence (Brief Summary) 1

The Limit of a Sequence (Brief Summary) 1 The Limit of a Sequece (Brief Summary). Defiitio. A real umber L is a it of a sequece of real umbers if every ope iterval cotaiig L cotais all but a fiite umber of terms of the sequece. 2. Claim. A sequece

More information

Models of Asset Pricing

Models of Asset Pricing 4 Appedix 1 to Chapter Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. Chapter 20 Chance Errors in Sampling (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. Chapter 20 Chance Errors in Sampling (cont.) 22S:025 or 7P:025. Elemetary Statistics ad Iferece 22S:025 or 7P:025 Lecture 27 1 Elemetary Statistics ad Iferece 22S:025 or 7P:025 Chapter 20 2 D. The Correctio Factor - (page 367) 1992 Presidetial Campaig Texas 12.5 x

More information

Forecasting bad debt losses using clustering algorithms and Markov chains

Forecasting bad debt losses using clustering algorithms and Markov chains Forecastig bad debt losses usig clusterig algorithms ad Markov chais Robert J. Till Experia Ltd Lambert House Talbot Street Nottigham NG1 5HF {Robert.Till@uk.experia.com} Abstract Beig able to make accurate

More information

Department of Mathematics, S.R.K.R. Engineering College, Bhimavaram, A.P., India 2

Department of Mathematics, S.R.K.R. Engineering College, Bhimavaram, A.P., India 2 Skewess Corrected Cotrol charts for two Iverted Models R. Subba Rao* 1, Pushpa Latha Mamidi 2, M.S. Ravi Kumar 3 1 Departmet of Mathematics, S.R.K.R. Egieerig College, Bhimavaram, A.P., Idia 2 Departmet

More information

Just Lucky? A Statistical Test for Option Backdating

Just Lucky? A Statistical Test for Option Backdating Workig Paper arch 27, 2007 Just Lucky? A Statistical Test for Optio Backdatig Richard E. Goldberg James A. Read, Jr. The Brattle Group Abstract The literature i fiacial ecoomics provides covicig evidece

More information

Quantitative Analysis

Quantitative Analysis EduPristie www.edupristie.com Modellig Mea Variace Skewess Kurtosis Mea: X i = i Mode: Value that occurs most frequetly Media: Midpoit of data arraged i ascedig/ descedig order s Avg. of squared deviatios

More information

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions A Empirical Study of the Behaviour of the Sample Kurtosis i Samples from Symmetric Stable Distributios J. Marti va Zyl Departmet of Actuarial Sciece ad Mathematical Statistics, Uiversity of the Free State,

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL A SULEMENTAL MATERIAL Theorem (Expert pseudo-regret upper boud. Let us cosider a istace of the I-SG problem ad apply the FL algorithm, where each possible profile A is a expert ad receives, at roud, a

More information

Appendix 1 to Chapter 5

Appendix 1 to Chapter 5 Appedix 1 to Chapter 5 Models of Asset Pricig I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy a asset, we are

More information

Twitter: @Owe134866 www.mathsfreeresourcelibrary.com Prior Kowledge Check 1) State whether each variable is qualitative or quatitative: a) Car colour Qualitative b) Miles travelled by a cyclist c) Favourite

More information

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge

Binomial Model. Stock Price Dynamics. The Key Idea Riskless Hedge Biomial Model Stock Price Dyamics The value of a optio at maturity depeds o the price of the uderlyig stock at maturity. The value of the optio today depeds o the expected value of the optio at maturity

More information

APPLICATION OF GEOMETRIC SEQUENCES AND SERIES: COMPOUND INTEREST AND ANNUITIES

APPLICATION OF GEOMETRIC SEQUENCES AND SERIES: COMPOUND INTEREST AND ANNUITIES APPLICATION OF GEOMETRIC SEQUENCES AND SERIES: COMPOUND INTEREST AND ANNUITIES Example: Brado s Problem Brado, who is ow sixtee, would like to be a poker champio some day. At the age of twety-oe, he would

More information

An Improved Estimator of Population Variance using known Coefficient of Variation

An Improved Estimator of Population Variance using known Coefficient of Variation J. Stat. Appl. Pro. Lett. 4, No. 1, 11-16 (017) 11 Joural of Statistics Applicatios & Probability Letters A Iteratioal Joural http://dx.doi.org/10.18576/jsapl/04010 A Improved Estimator of Populatio Variace

More information

of Asset Pricing R e = expected return

of Asset Pricing R e = expected return Appedix 1 to Chapter 5 Models of Asset Pricig EXPECTED RETURN I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy

More information

Models of Asset Pricing

Models of Asset Pricing APPENDIX 1 TO CHAPTER 4 Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

Models of Asset Pricing

Models of Asset Pricing APPENDIX 1 TO CHAPTER4 Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

Systematic and Complex Sampling!

Systematic and Complex Sampling! Systematic ad Complex Samplig! Professor Ro Fricker! Naval Postgraduate School! Moterey, Califoria! Readig Assigmet:! Scheaffer, Medehall, Ott, & Gerow! Chapter 7.1-7.4! 1 Goals for this Lecture! Defie

More information

AMS Portfolio Theory and Capital Markets

AMS Portfolio Theory and Capital Markets AMS 69.0 - Portfolio Theory ad Capital Markets I Class 6 - Asset yamics Robert J. Frey Research Professor Stoy Brook iversity, Applied Mathematics ad Statistics frey@ams.suysb.edu http://www.ams.suysb.edu/~frey/

More information