AMS Portfolio Theory and Capital Markets

Size: px
Start display at page:

Download "AMS Portfolio Theory and Capital Markets"

Transcription

1 AMS Portfolio Theory and Capital Markets I Class 09 - Optimal Portfolio Growth Robert J. Frey Research Professor Stony Brook University, Applied Mathematics and Statistics frey@ams.sunysb.edu This lesson focuses on optimal portfolio growth over time. Optimal is meant in the sense of maximizing the expected utility of terminal wealth. The material is drawn from Chapter 15 of Luenberger s Investment Scince. April 7, Investments in Stationary, Independent Return (SIR) Processes The return R on an asset with price S over a period from t to t+d is SHt + DL R = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ The rate of return r is stated in terms of the relative change in value SHt + DL - r = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ï R = 1 + r (1) () Example - Equity Markets The stock market is usually modeled as process whose returns are stationary with independent increments. The Efficient Market Hypothesis assumes that all known information is already priced into the stock; therfore, subsequent price changes must be the result of new information and, hence, represents indpendent events. It certainly not true that stock market returns are stationary, but over short- to mid-term horizons, the assumption of stationarity can be a reasonable approximation. Example - Constant Coefficient Geometric Brownian Motion Clearly, the rate of return r on constant coefficient geometric Brownian motion is a stationary process with independent increments d rhtl = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ d = m d t + s d WHtL (3). Log Utility and SIR Processes Let X t represent wealth at time t. If that wealth is invested in a SIR process, then, with R t representing the r.v. of return: X t = R t X t-1 (4)

2 ams-q01-lec-09-p.nb If X 0 is the initial wealth, then applying (4) recursively gives i n X n = R n R n-1 R n- R R 1 X 0 = X 0 j k t=i y R t z { (5) Under log utility we have U@X n D = log@x n D = log@x 0 D + log@r t D n t=1 (6) The individual returns are i.i.d. and we can, therefore, assert that E@U@X n DD = E@log@X n DD = log@x 0 D + n E@log@RDD (7) For the special case of log utility, if we wish to maximize the expected utility of our terminal wealty X n, then that is equivalent to maximizing the expected log return. If we rearrange the terms in (7) and then taking the antilog of both sides E@log@X n DD - log@x 0 D = n E@log@RDD (8) EC X n ÅÅÅÅÅÅÅÅ X 0 G = e n E@log@RDD (9) Thus, the investment grows exponentially with n at a rate of e E@log@RDD. We use the term growth rate for this quantity less one g = EC X n ÅÅÅÅÅÅ Å X 0 G - 1 = e n E@log@RDD - 1 (10) Example - Kelly Betting Suppose you have a chance to place a bet b representing some proportion of your total wealth that with probabiliy p will double your bet and with probability 1 p will return nothing. We can use Mathematica to solve for the value of b which maximizes the single period expected log return. Solve@ b Hp Log@1 + bd + H1 - pl Log@1 - bdl == 0, bd {{b Ø -1 + p}} Thus, an optimal policy is to bet ( p 1) times your wealth at each round. 3. Volatility Pumping Consider two (admitted rather odd investments). One pays off with a return of h or 1/h, each with probability 1/. Another remains fixed in value. ote that both investments have zero drift in the sense that each has an expected growth rate of 0. A log optimal policy is Ä Solve ÇÅ i l j 1 É ÅÅÅÅ k HLog@l h + H1 - lld + Log@l ê h + H1 - lldly z == 0, l { ÖÑ ;;l -> 1 ÅÅÅÅ?? That is, to split our wealth each period equally between the two investments. Consider the case in which h = 1/. the expected log return is

3 ams-q01-lec-09-p.nb 3 E@log@RDD = ÅÅÅÅÅ 1 Hlog@1.5D + log@0.75dl = (11) We have e = 1.069, so the growth rate is about 7%. Thus, even though each asset individually has a growth rate of zero a suitably constructed portfolio of such instruments actually has a positive growth rate. 4. Optimal Continuous Time Growth A multivariate geometric Brownian motion is described by the following equations d r i HtL = d S ihtl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = m i d t + s i d W i HtL (1) In addition, cross products of d WHtL terms are scaled by their covariances Cov@d W i HtL d W j HtLD = s i,j d t (13) If we form a portfolio of instrumets with weights x = {x 1, x, x 3,, x } d VHtL ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ VHtL = x i d S ihtl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = x i Hm i d t + s i d W i HtLL (14) The variance of the stochastic term is E i j k x i s i d W i HtL y z { = x i x j s i, j d t j=1 (15) So V(t) is log normal with EClogC ÅÅÅÅÅÅÅÅÅÅÅÅÅ VHtL i VH0L GG = j k x i m i - ÅÅÅÅÅ 1 y x i x j s i,j z t j=1 { (16) Example - Understanding Volatility Pumping Consider a collection of independent instruments with the same drift and volatility d r i HtL = d S ihtl ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = m d t + s d W i HtL (17) The expected log return for each stock is m s /; however, if build an equally weighted portfolio of such instruments, then VHtL EClogC ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ VHt - 1L GG = m - ÅÅÅÅÅÅÅÅÅÅÅ s (18) Growth is reduced by volatility, so by diversifying the portfolio, we realize a lower volatiliy and, hence, a higher rate of growth. 5. Portfolio Efficiency We realize the optimal porfolio by maximizing its expect log return

4 4 ams-q01-lec-09-p.nb lo max m x o n x i m i - ÅÅÅÅÅ 1 x i x j s i, j j=1 ƒ o 1 T x = 1} o ~ (19) 6. ot-quite-continuous Time In continuous time we are dealing with an infinitesimal rebalancing period of dt. In practice, operational and cost considerations force us to rebalance on something more like a quarterly or semi-annual period. Consider a Taylor series expansion for the log return about r = 0 U@RD = log@rd = log@1 + rd = r - r ÅÅÅÅÅÅÅ + OAr3 E (0) For r near zero and roughly symmetric about zero it is straightforward to show that the expected impact of O[r 3 ] is small. Thus, we can write the following approximate expression for the expected log return E@U@RDD = E@log@1 + E@rD - E@r D ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ (1) However, we also know that Var@rD = EAr E - E@rD () Substituting one expression into the other yields Var@rD + E@rD E@U@RDD = E@log@1 + E@rD - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ (3) If we assume that we follow the continuous time log optimal policy, then we have an error based on E@rD caused by the less frequent rebalancing. Depending upon the circumstances we can choose to ignore this effect or adjust the standard continuous time formulation by adjusting the covariance matrix. ote that (m T r) = r T (m m T ) r, so we use the following adjusted covariance matrix in our portfolio optimizations Q = Q + Im m T M ï Hq L i, j = s i,j + m i m j (4) Example - the S & P 500 The annual mean and standard deviation of log return for the S&P 500 is about 1% and 0%, respectively. Consider a quarterly rebalancing frequency. The quarterly mean and variance as 0.5 (1%) = 3% and è!!!!!!!!! 0.5 H0 %L = 10 %. We now need to estimate the mean and variance of the ordinary return. The continuous distribution package in Mathematica provides the necessary tools << Statistics`ContinuousDistributions` We can now compute the mean and standard deviation of r, the ordinary return. Mean@LogormalDistribution@0.03, 0.1DD - 1 è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Variance@LogormalDistribution@0.03, 0.1DD Var@rD + E@rD U@RD = E@log@1 + E@rD - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = If we ignore the E@rD and use the unmodified continuous time formulation, then (5)

5 ams-q01-lec-09-p.nb 5 U@RD = E@log@1 + E@rD - Var@rD ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ This results in a small, %, difference in expected utility. = ÅÅÅÅÅÅÅÅÅÅÅÅ 0.01 = (6) We still have the O[r 3 ] term hanging around. We can again rely on Mathematica to get an idea of the scale of this term. ExpectedValueAH# - 1L 3 &, LogormalDistribution@0.03, 0.1DE The actual third-order term in the Taylor series is divided by 3 so this effect is also quite small. Thus, the continuous time log optimal results still provides reasonable guidance in most realistic investment decisions. If we are concerned about the approximation, then there is a simple adjustment that can be made to account for most of the discrepancy.

AMS Portfolio Theory and Capital Markets

AMS Portfolio Theory and Capital Markets AMS 69.0 - Portfolio Theory and Capital Markets I Class 5 - Utility and Pricing Theory Robert J. Frey Research Professor Stony Brook University, Applied Mathematics and Statistics frey@ams.sunysb.edu This

More information

AMS Portfolio Theory and Capital Markets I

AMS Portfolio Theory and Capital Markets I ams-q01-sol-05-m.nb 1 AMS 691.02 - Portfolio Theory and Capital Markets I Solutions 5 - Utility Theory and Portfolio Choice Robert J Frey, Research Professor Stony Brook University, Applied Mathematics

More information

AMS Foundations

AMS Foundations AMS 511 - Foundations Final Examination s Robert J. Frey Research Professor Stony Brook University, Applied Mathematics and Statistics frey@ams.sunysb.edu Final Examination May 2006 1. Cash-Chooser Option

More information

AMS Capital Markets and Portfolio Theory I

AMS Capital Markets and Portfolio Theory I ams-q01-sol-01-m.nb 1 AMS 691.02 - Capital Markets and Portfolio Theory I Solution 1 - Financial Markets and the Theory of Interest Robert J. Frey Research Professor Stony Brook University, Applied Mathematics

More information

Is the meta-analysis of correlation coefficients accurate when population correlations vary?

Is the meta-analysis of correlation coefficients accurate when population correlations vary? Is the meta-analysis of correlation coefficients accurate when population correlations vary? Article (Unspecified) Field, A. P. (2005) Is the meta-analysis of correlation coefficients accurate when population

More information

AMS-511 Foundations of Quantitative Finance

AMS-511 Foundations of Quantitative Finance AMS-511 Foundations of Quantitative Finance Fall 013 Lecture 15 Monday 09 Dec 013 Final Examination Review Robert J. Frey, Research Professor Stony Brook University, Applied Mathematics and Statistics

More information

ON SOME ASPECTS OF PORTFOLIO MANAGEMENT. Mengrong Kang A THESIS

ON SOME ASPECTS OF PORTFOLIO MANAGEMENT. Mengrong Kang A THESIS ON SOME ASPECTS OF PORTFOLIO MANAGEMENT By Mengrong Kang A THESIS Submitted to Michigan State University in partial fulfillment of the requirement for the degree of Statistics-Master of Science 2013 ABSTRACT

More information

Some useful optimization problems in portfolio theory

Some useful optimization problems in portfolio theory Some useful optimization problems in portfolio theory Igor Melicherčík Department of Economic and Financial Modeling, Faculty of Mathematics, Physics and Informatics, Mlynská dolina, 842 48 Bratislava

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 23 rd March 2017 Subject CT8 Financial Economics Time allowed: Three Hours (10.30 13.30 Hours) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1. Please read

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

AMS Portfolio Theory and Capital Markets

AMS Portfolio Theory and Capital Markets AMS 69.0 - Portfolio Theory ad Capital Markets I Class 6 - Asset yamics Robert J. Frey Research Professor Stoy Brook iversity, Applied Mathematics ad Statistics frey@ams.suysb.edu http://www.ams.suysb.edu/~frey/

More information

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron The Merton Model A Structural Approach to Default Prediction Agenda Idea Merton Model The iterative approach Example: Enron A solution using equity values and equity volatility Example: Enron 2 1 Idea

More information

Universal Portfolios

Universal Portfolios CS28B/Stat24B (Spring 2008) Statistical Learning Theory Lecture: 27 Universal Portfolios Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals Portfolio optimization setting Suppose we have

More information

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle Birkbeck MSc/Phd Economics Advanced Macroeconomics, Spring 2006 Lecture 2: The Consumption CAPM and the Equity Premium Puzzle 1 Overview This lecture derives the consumption-based capital asset pricing

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

Financial Mathematics III Theory summary

Financial Mathematics III Theory summary Financial Mathematics III Theory summary Table of Contents Lecture 1... 7 1. State the objective of modern portfolio theory... 7 2. Define the return of an asset... 7 3. How is expected return defined?...

More information

Lifetime Portfolio Selection: A Simple Derivation

Lifetime Portfolio Selection: A Simple Derivation Lifetime Portfolio Selection: A Simple Derivation Gordon Irlam (gordoni@gordoni.com) July 9, 018 Abstract Merton s portfolio problem involves finding the optimal asset allocation between a risky and a

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Mean-variance analysis 1/ 51 Introduction How does one optimally choose among multiple risky assets? Due to diversi cation, which depends on assets return covariances, the attractiveness

More information

Continuous-Time Consumption and Portfolio Choice

Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice 1/ 57 Introduction Assuming that asset prices follow di usion processes, we derive an individual s continuous

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Optimal Investment with Risky Assets There are N risky assets, named 1, 2,, N, but no risk-free asset. With fixed total dollar

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Optimization Models in Financial Mathematics

Optimization Models in Financial Mathematics Optimization Models in Financial Mathematics John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge Illinois Section MAA, April 3, 2004 1 Introduction Trends in financial mathematics

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

1 Asset Pricing: Bonds vs Stocks

1 Asset Pricing: Bonds vs Stocks Asset Pricing: Bonds vs Stocks The historical data on financial asset returns show that one dollar invested in the Dow- Jones yields 6 times more than one dollar invested in U.S. Treasury bonds. The return

More information

Mean-variance optimization for life-cycle pension portfolios

Mean-variance optimization for life-cycle pension portfolios Mean-variance optimization for life-cycle pension portfolios by J. M. Peeters Weem to obtain the degree of Master of Science in Applied Mathematics at the Delft University of Technology, Faculty of Electrical

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Trading Volatility Using Options: a French Case

Trading Volatility Using Options: a French Case Trading Volatility Using Options: a French Case Introduction Volatility is a key feature of financial markets. It is commonly used as a measure for risk and is a common an indicator of the investors fear

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Methods of Stochastic Analysis

Methods of Stochastic Analysis Methods of Stochastic Analysis Hiroshi Toyoizumi 1 July 5, 2006 1 E-mail: toyoizumi@waseda.jp Contents 1 introduction 4 1.1 Example of Stochastic Analysis.................. 4 1.2 Course................................

More information

Equilibrium Asset Returns

Equilibrium Asset Returns Equilibrium Asset Returns Equilibrium Asset Returns 1/ 38 Introduction We analyze the Intertemporal Capital Asset Pricing Model (ICAPM) of Robert Merton (1973). The standard single-period CAPM holds when

More information

1.1 Interest rates Time value of money

1.1 Interest rates Time value of money Lecture 1 Pre- Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012 IEOR 306: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 6, 202 Four problems, each with multiple parts. Maximum score 00 (+3 bonus) = 3. You need to show

More information

Continuous-Time Pension-Fund Modelling

Continuous-Time Pension-Fund Modelling . Continuous-Time Pension-Fund Modelling Andrew J.G. Cairns Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Riccarton, Edinburgh, EH4 4AS, United Kingdom Abstract This paper

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

Modeling Portfolios that Contain Risky Assets Risk and Return I: Introduction

Modeling Portfolios that Contain Risky Assets Risk and Return I: Introduction Modeling Portfolios that Contain Risky Assets Risk and Return I: Introduction C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 26, 2012 version c 2011 Charles

More information

1 Answers to the Sept 08 macro prelim - Long Questions

1 Answers to the Sept 08 macro prelim - Long Questions Answers to the Sept 08 macro prelim - Long Questions. Suppose that a representative consumer receives an endowment of a non-storable consumption good. The endowment evolves exogenously according to ln

More information

Econ 101A Final exam Mo 18 May, 2009.

Econ 101A Final exam Mo 18 May, 2009. Econ 101A Final exam Mo 18 May, 2009. Do not turn the page until instructed to. Do not forget to write Problems 1 and 2 in the first Blue Book and Problems 3 and 4 in the second Blue Book. 1 Econ 101A

More information

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives CHAPTER Duxbury Thomson Learning Making Hard Decision Third Edition RISK ATTITUDES A. J. Clark School of Engineering Department of Civil and Environmental Engineering 13 FALL 2003 By Dr. Ibrahim. Assakkaf

More information

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods. Introduction In ECON 50, we discussed the structure of two-period dynamic general equilibrium models, some solution methods, and their

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Combining Real Options and game theory in incomplete markets.

Combining Real Options and game theory in incomplete markets. Combining Real Options and game theory in incomplete markets. M. R. Grasselli Mathematics and Statistics McMaster University Further Developments in Quantitative Finance Edinburgh, July 11, 2007 Successes

More information

The Optimization Process: An example of portfolio optimization

The Optimization Process: An example of portfolio optimization ISyE 6669: Deterministic Optimization The Optimization Process: An example of portfolio optimization Shabbir Ahmed Fall 2002 1 Introduction Optimization can be roughly defined as a quantitative approach

More information

Mean-Variance Portfolio Choice in Excel

Mean-Variance Portfolio Choice in Excel Mean-Variance Portfolio Choice in Excel Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Let s suppose you can only invest in two assets: a (US) stock index (here represented by the

More information

Optimization of a Real Estate Portfolio with Contingent Portfolio Programming

Optimization of a Real Estate Portfolio with Contingent Portfolio Programming Mat-2.108 Independent research projects in applied mathematics Optimization of a Real Estate Portfolio with Contingent Portfolio Programming 3 March, 2005 HELSINKI UNIVERSITY OF TECHNOLOGY System Analysis

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

Advanced Financial Economics Homework 2 Due on April 14th before class

Advanced Financial Economics Homework 2 Due on April 14th before class Advanced Financial Economics Homework 2 Due on April 14th before class March 30, 2015 1. (20 points) An agent has Y 0 = 1 to invest. On the market two financial assets exist. The first one is riskless.

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Lecture 1: The Econometrics of Financial Returns

Lecture 1: The Econometrics of Financial Returns Lecture 1: The Econometrics of Financial Returns Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2016 Overview General goals of the course and definition of risk(s) Predicting asset returns:

More information

The Economic and Social BOOTSTRAPPING Review, Vol. 31, No. THE 4, R/S October, STATISTIC 2000, pp

The Economic and Social BOOTSTRAPPING Review, Vol. 31, No. THE 4, R/S October, STATISTIC 2000, pp The Economic and Social BOOTSTRAPPING Review, Vol. 31, No. THE 4, R/S October, STATISTIC 2000, pp. 351-359 351 Bootstrapping the Small Sample Critical Values of the Rescaled Range Statistic* MARWAN IZZELDIN

More information

Continuous Processes. Brownian motion Stochastic calculus Ito calculus

Continuous Processes. Brownian motion Stochastic calculus Ito calculus Continuous Processes Brownian motion Stochastic calculus Ito calculus Continuous Processes The binomial models are the building block for our realistic models. Three small-scale principles in continuous

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Full file at

Full file at KEY POINTS Most students taking this course will have had a prior course in basic corporate finance. Most also will have had at least one accounting class. Consequently, a good proportion of the material

More information

BUSM 411: Derivatives and Fixed Income

BUSM 411: Derivatives and Fixed Income BUSM 411: Derivatives and Fixed Income 3. Uncertainty and Risk Uncertainty and risk lie at the core of everything we do in finance. In order to make intelligent investment and hedging decisions, we need

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

Subject CS2A Risk Modelling and Survival Analysis Core Principles

Subject CS2A Risk Modelling and Survival Analysis Core Principles ` Subject CS2A Risk Modelling and Survival Analysis Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

The Baumol-Tobin and the Tobin Mean-Variance Models of the Demand

The Baumol-Tobin and the Tobin Mean-Variance Models of the Demand Appendix 1 to chapter 19 A p p e n d i x t o c h a p t e r An Overview of the Financial System 1 The Baumol-Tobin and the Tobin Mean-Variance Models of the Demand for Money The Baumol-Tobin Model of Transactions

More information

CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS

CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS By Jörg Laitenberger and Andreas Löffler Abstract In capital budgeting problems future cash flows are discounted using the expected one period returns of the

More information

Homework 3: Asset Pricing

Homework 3: Asset Pricing Homework 3: Asset Pricing Mohammad Hossein Rahmati November 1, 2018 1. Consider an economy with a single representative consumer who maximize E β t u(c t ) 0 < β < 1, u(c t ) = ln(c t + α) t= The sole

More information

Volatility Harvesting in Emerging Markets

Volatility Harvesting in Emerging Markets RESEARCH BRIEF March 2012 In the ten years ending December 2011, the capitalizationweighted MSCI Emerging Markets Index (MSCI EM) provided an annualized total return of 14% with a volatility of 24%. Over

More information

Option Pricing Using Monte Carlo Methods. A Directed Research Project. Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE

Option Pricing Using Monte Carlo Methods. A Directed Research Project. Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE Option Pricing Using Monte Carlo Methods A Directed Research Project Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Professional Degree

More information

Deriving and Solving the Black-Scholes Equation

Deriving and Solving the Black-Scholes Equation Introduction Deriving and Solving the Black-Scholes Equation Shane Moore April 27, 2014 The Black-Scholes equation, named after Fischer Black and Myron Scholes, is a partial differential equation, which

More information

Information Theory and Networks

Information Theory and Networks Information Theory and Networks Lecture 18: Information Theory and the Stock Market Paul Tune http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

More information

Modelling the Sharpe ratio for investment strategies

Modelling the Sharpe ratio for investment strategies Modelling the Sharpe ratio for investment strategies Group 6 Sako Arts 0776148 Rik Coenders 0777004 Stefan Luijten 0783116 Ivo van Heck 0775551 Rik Hagelaars 0789883 Stephan van Driel 0858182 Ellen Cardinaels

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Desirable properties for a good model of portfolio credit risk modelling

Desirable properties for a good model of portfolio credit risk modelling 3.3 Default correlation binomial models Desirable properties for a good model of portfolio credit risk modelling Default dependence produce default correlations of a realistic magnitude. Estimation number

More information

Chilton Investment Seminar

Chilton Investment Seminar Chilton Investment Seminar Palm Beach, Florida - March 30, 2006 Applied Mathematics and Statistics, Stony Brook University Robert J. Frey, Ph.D. Director, Program in Quantitative Finance Objectives Be

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 8 The portfolio selection problem The portfolio

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Gary Schurman MB, CFA August, 2012 The Capital Asset Pricing Model CAPM is used to estimate the required rate of return

More information

Monte Carlo Methods in Structuring and Derivatives Pricing

Monte Carlo Methods in Structuring and Derivatives Pricing Monte Carlo Methods in Structuring and Derivatives Pricing Prof. Manuela Pedio (guest) 20263 Advanced Tools for Risk Management and Pricing Spring 2017 Outline and objectives The basic Monte Carlo algorithm

More information

Subject CT8 Financial Economics Core Technical Syllabus

Subject CT8 Financial Economics Core Technical Syllabus Subject CT8 Financial Economics Core Technical Syllabus for the 2018 exams 1 June 2017 Aim The aim of the Financial Economics subject is to develop the necessary skills to construct asset liability models

More information

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION RAVI PHATARFOD *, Monash University Abstract We consider two aspects of gambling with the Kelly criterion. First, we show that for a wide range of final

More information

Quantitative Portfolio Theory & Performance Analysis

Quantitative Portfolio Theory & Performance Analysis 550.447 Quantitative ortfolio Theory & erformance Analysis Week February 18, 2013 Basic Elements of Modern ortfolio Theory Assignment For Week of February 18 th (This Week) Read: A&L, Chapter 3 (Basic

More information