Example. Suppose n = 2 and we wish to invest 200 in the portfolio d = (J, ) to do this

Size: px
Start display at page:

Download "Example. Suppose n = 2 and we wish to invest 200 in the portfolio d = (J, ) to do this"

Transcription

1 o Wk ^ Stochastic Modelling in Finance - Mean-Variance Analysis Three basic assumptions (i) Agents only care about the mean and variance of returns. (ii) Agents have homogeneous beliefs (that is they can all calculate the same expected returns and variance of returns). (iii) Markets are frictionless so any number of units of an asset can be bought or sold at any time at the market price. Assets Consider a one-step market model with n-assets. The price of asset j at the initial time (t = 0), denoted Sj(0), is a constant. The price of asset j at the end of the period (t = 1), denoted S?(l), is a random variable. The return per unit invested in asset j is j which is a random variable. The expected returns on asset j are E[rj] and the variance of Tj will be denoted a? and can be calculated using a* = The covariance between assets i and j is denoted a^j and can be calculated using f Pu (observe that a^ = erf). The correlation between asset i and asset j is denned as p(i, j) = COV(ri, r^jgio-j. This formula is handy as sometimes the matrix of correlation coefficients is provided and sometime the matrix of covariances. Portfolios A portfolio is a collection of assets. We describe a portfolio via a vector of portfolio weights $ = ($1, #2?...»$n).The portfolio weight of asset j is the proportion of the value of the portfolio held in asset j, i.e. n cash invested in asset j 3 ' total cash invested in portfolio Example. Suppose n = 2 and we wish to invest 200 in the portfolio d = (J, ) to do this we invest 50 in asset 1 and 150 in asset 2.

2 -2- A portfolio is feasible if the agent is able to purchase the portfolio. By definition all feasible portfolios have 5^=1 ^» = 1- ^n some circumstances it may be desirable to select 'dj < 0 for some 1 < j < n, which is commonly called 'short-selling'. In some markets short-selling is prohibited in which case all portfolio weights in the feasible portfolio satisfy 'dj > 0. The returns on the portfolio fl will be denoted z=l which (like r,-) is a random variable. The expected returns on the portfolio $ are The variance of a portfolio # is denoted o% and can be calculated using o% := VAR(i^) = i=l i=\ j=l i=l j=l Example. Suppose n = 2 and a&e any portfolio $ = (#i,#2)- ^e variance of this portfolio is u% = V^ie^in + tf2r2) = ^i<7? + t9 «t + 2?9i^2cri(72Pi,2L Mean Standard deviation diagram - One risky and one risk free asset Suppose we have a market of only two assets. The first asset is risk-free so has zero variance and a constant return 77 and the second asset (asset A) has returns denoted with standard deviation a a- These two assets are illustrated in Figure 1. The feasible portfolios can be written as da = (a, 1 - a) for a G R. The return on the portfolio?9q is denoted Ra- The mean and standard deviation of Ra are v E[Ra) = otrf + (1 - ai)e[ra] ; aa = l - a\aa. For a < 1 we have a = 1 - Sa- substituting this into the equation for the expected returns gives So for a < 1 the feasible portfolio axe on the upper line in Figure 1. The bold line indicates where the assets are both bought in positive quantities and the dotted line indicates the region where the risk free asset has been short sold. Mean Standard deviation diagram - Two risky assets Suppose we have a market of only two assets, denoted A and B, with returns ra,rb and standard deviations aa,ab and correlation coefficient p G [ 1,1]. These two assets are illustrated in Figure 2.

3 -b- A rf, -> Figure 1: Mean-standard deviation diagram for 1 risky and 1 risk free asset. The feasible portfolios can be written as da = (a, 1 - a) and suppose that short-selling is not allowed so that a [0,1]. The return on the portfolio #Q is denoted Ra and E[Ra] = ae[ra] + (1 - a)e[rb] and the variance of Ra is VAR(JRQ) = a2a\ + (1 - a)2a2b + 2a(l - a)o-acrb/?, Suppose that we would like to construct a portfolio with a given expected return r G [?M, E[rB\], to do this set r = a{e[ra] - E[rB]) solving for a gives a*(r)= E[rA) - E[rB]' such that E[Ra*(r)] = r. The standard deviation of Ra*(r) depends on the correlation between the two assets Case 1: p 1 In this case we may write = {a*{r)va + (1 - a*(r))<rb)2.

4 -H- E[rB\ p=-l -> Figure 2: Mean-standard deviation diagram for 2 risky assets. It is an accident that the minimum variance portfolio in the case p = 0 has a return in [i?[r,4], [rs]], this need not always be the case. Inserting the expression for a* (r) into the standard deviation and rearranging gives and this line is illustrated in Figure 2. Case 2: p = 1 In this case we may write Let a : ob/(oa + vb) then it is easy to check that VAR(.Rq) = 0 and E[ta} < Ra<E[rB]. Define a risk-free asset C with re = Ra- Repeating the analysis in the previous paragraph we can show that By combining fund C and asset A we can obtain all portfolios on the line, E[rA] - rc r{cr) = rc-\ a. &A By combining fund C and asset B we can obtain all portfolios on the line, E[rB]-rc r(a) = rc-\ = a.

5 -s- Case 3: p G (0,1) The variance of the portfolio is VAR{Ra) = a2a\ + (1 - a)2a% 2a(1 - (x)aatrbp which is a quadratic function of a as illustrated. Minimum variance portfolio Typically when \p\ < 1 it is not possible construct a risk-free portfolio from 2 risky assets, however, we might be interested in the lowest variance portfolio that can be constructed. In Figure 3 the minimum variance portfolio is labeled Z (and has mean returns rmin and variance crmin). Figure 3: Minimum variance portfolio. Our goal is to find a e (0,1) such that the portfolio d = (a, 1 - a) has E[R \ = E[rm[n] and VAR(i?^) = <rmin. Observe that the expected returns of a feasible portfolio can be expressed as a function of a r(a) := E[R#a} = ae[ra] + (1 - a)e[rb\. Similarly, the variance of a feasible portfolio can also be expressed as a function of a a2{a) = VAR{R#a) = cx2a2a + (1 - afa\ + 2a(l - a)aaabp. At the point Z we have S^ = 0 which we may expand as da(a) dcr(a) da dr(a) da dr(a)'

6 -Gwhere -^gp = E[rA] E[rB] is a (non-zero) constant. Next using the chain rule -r<j2{a) = 2a(a)crf(a) da from which we deduce that 4-cr2(a) = 0 <=> -t-v{oi) = 0. However, hence i d 1. o-2(a) = 2a(<j\ + cr%- ^a^bp) - 2(aB - abaap) a = + o-% - 2<jAcrBp' Dominated portfolios and the efficient frontier A portfolio Z dominates the portfolio Y' \iuz = cry and E[RZ) > E[Ry], i.e. if you get more return for the same risk by investing in portfolio Z. The feasible set A is the set of all points on the mean standard deviation diagram which can be attained by combining the assets 1,2,...,n into a feasible portfolio. The boundary of the feasible set is called the efficient frontier. Figure 4 illustrates some feasible portfolios from combining assets A and B as well as B and C. The red line illustrates the efficient frontier. Theorem (Two fund separation). If funds X and Y are both on the efficient frontier all points on the feasible combinations can be expressed as a linear combination of these 2 funds. J Capital market line and efficient portfolios Next we reintroduce a risk free asset with return 77. By combining any fund Z (point) in A and the risk-free asset we may obtain all portfolios on the line, E[Rz]-rf yz(a) = rf + J-cr. However, for some a the portfolio on this line might be dominated by another point on the efficient frontier i.e. (2/z(cr)i c) <(max{r G R (r, a) G A}} 6*). As illustrated in Figure 5 there is a unique fund T for which the line

7 B Figure 4: Mean-standard deviation diagram for more that 2 assets. The efficient frontier is f */\ck/ lom strictly dominates the efficient frontier, i.e. for all a > 0 foz(cr), a) > nax{r R (r, o-) e A}; and (when A is convex) this inequality holds with equality on for a = <jt. The fund T is called the tangency portfolio and the line a i-)- yr(^) is called the Capital Markets Line (CML). Portfolios on the CML are referred to as efficient portfolios as they have a higher mean return than all other feasible portfolios with the same variance. The slope of the CML is referred to as the Sharpe Ratio of the tangency portfolio. All efficient portfolios have the same Sharpe ratio. Capital asset pricing model Recall that each agent is a mean-variance optimiser so will hold (according to his/her level of risk aversion) a combination of the tangency portfolio and the risk free asset. Suppose that the total number of asset i available is iv» the total value of asset i at time zero is JV^O) and the total value of all assets is Y%=\ NiSi(fy- The market portfolio is the portfolio with portfolio weights WACO) NnSn{0) The market portfolio coincides with the tangency portfolio because in total assets in the market must equal the total assets bought and sold by all of the agents.

8 -8- Figure 5: The tangency portfolio and capital markets line. The risk premium on the market portfolio is E[RT] Tf. The Capital Asset Pricing Model is a model for risk premium of a specific asset (or portfolio) The term pi(e[rr\ 77) is the part of the risk of asset i which is correlated with the market risk premium. This term is often called the systematic risk. Secondly c^ is the firm specific section of the risk. The pi of asset i is denned as _COV(ri,flT) Pi o and is the sensitivity of the excess asset returns to the expected market returns. Usually, we identify oti and # using regression analysis (not covered in this course). Efficient markets Hypothesis The efficient markets hypothesis states that: Adjusting for risk, it is not possible to outperform the market portfolio. In mathematical terms for any feasible portfolio Z E[RT] ~rf o~x E[RZ] - rf &z This assumption is naturally built into the mean-variance analysis outlined above as all feasible portfolios lie below the CML. To test the efficient markets hypothesis we can examine the a of various portfolios

9 -3- When cx.i < 0 asset i earns less return than a point on the CML so is dominated by an efficient portfolio. When oti = 0 asset i is on the efficient CML. When a* > 0 asset i outperforms the market portfolio. In this final case the Sharpe ratio of asset i exceeds the Sharpe ratio of the market portfolio, i.e. E[n] -rf ^ E[RT] - rf di ax which contradicts the efficient markets hypothesis. Multi-factor models It is common to think that the market risk premium is not the only thing that influences the risk premium of asset i. The risk premium can also be modeled as where (Zj : 1 < j < n) are various risk factors. Broadly these are usually either (i) Macroeconomic factors (exchange rates, growth forecasts etc) or (ii) firm specific factors (which industry, country the firm is located or size of firm etc). We will not focus in detail on multi-factor models in this course as in general asset prices will be considered to be exogenous. crj , R M. V S.

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Optimal Investment with Risky Assets There are N risky assets, named 1, 2,, N, but no risk-free asset. With fixed total dollar

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Mean-variance analysis 1/ 51 Introduction How does one optimally choose among multiple risky assets? Due to diversi cation, which depends on assets return covariances, the attractiveness

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Fall 2017 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Corporate Finance Finance Ch t ap er 1: I t nves t men D i ec sions Albert Banal-Estanol

Corporate Finance Finance Ch t ap er 1: I t nves t men D i ec sions Albert Banal-Estanol Corporate Finance Chapter : Investment tdecisions i Albert Banal-Estanol In this chapter Part (a): Compute projects cash flows : Computing earnings, and free cash flows Necessary inputs? Part (b): Evaluate

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS PROBLEM SETS 1. (e) 2. (b) A higher borrowing is a consequence of the risk of the borrowers default. In perfect markets with no additional

More information

Lecture 2: Fundamentals of meanvariance

Lecture 2: Fundamentals of meanvariance Lecture 2: Fundamentals of meanvariance analysis Prof. Massimo Guidolin Portfolio Management Second Term 2018 Outline and objectives Mean-variance and efficient frontiers: logical meaning o Guidolin-Pedio,

More information

Lecture 3: Factor models in modern portfolio choice

Lecture 3: Factor models in modern portfolio choice Lecture 3: Factor models in modern portfolio choice Prof. Massimo Guidolin Portfolio Management Spring 2016 Overview The inputs of portfolio problems Using the single index model Multi-index models Portfolio

More information

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén PORTFOLIO THEORY Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Portfolio Theory Investments 1 / 60 Outline 1 Modern Portfolio Theory Introduction Mean-Variance

More information

Financial Mathematics III Theory summary

Financial Mathematics III Theory summary Financial Mathematics III Theory summary Table of Contents Lecture 1... 7 1. State the objective of modern portfolio theory... 7 2. Define the return of an asset... 7 3. How is expected return defined?...

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

FIN 6160 Investment Theory. Lecture 7-10

FIN 6160 Investment Theory. Lecture 7-10 FIN 6160 Investment Theory Lecture 7-10 Optimal Asset Allocation Minimum Variance Portfolio is the portfolio with lowest possible variance. To find the optimal asset allocation for the efficient frontier

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Efficient Frontier and Asset Allocation

Efficient Frontier and Asset Allocation Topic 4 Efficient Frontier and Asset Allocation LEARNING OUTCOMES By the end of this topic, you should be able to: 1. Explain the concept of efficient frontier and Markowitz portfolio theory; 2. Discuss

More information

General Notation. Return and Risk: The Capital Asset Pricing Model

General Notation. Return and Risk: The Capital Asset Pricing Model Return and Risk: The Capital Asset Pricing Model (Text reference: Chapter 10) Topics general notation single security statistics covariance and correlation return and risk for a portfolio diversification

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Lecture 10-12: CAPM.

Lecture 10-12: CAPM. Lecture 10-12: CAPM. I. Reading II. Market Portfolio. III. CAPM World: Assumptions. IV. Portfolio Choice in a CAPM World. V. Minimum Variance Mathematics. VI. Individual Assets in a CAPM World. VII. Intuition

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College April 26, 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Financial Economics: Capital Asset Pricing Model

Financial Economics: Capital Asset Pricing Model Financial Economics: Capital Asset Pricing Model Shuoxun Hellen Zhang WISE & SOE XIAMEN UNIVERSITY April, 2015 1 / 66 Outline Outline MPT and the CAPM Deriving the CAPM Application of CAPM Strengths and

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

The Markowitz framework

The Markowitz framework IGIDR, Bombay 4 May, 2011 Goals What is a portfolio? Asset classes that define an Indian portfolio, and their markets. Inputs to portfolio optimisation: measuring returns and risk of a portfolio Optimisation

More information

Microeconomics 3. Economics Programme, University of Copenhagen. Spring semester Lars Peter Østerdal. Week 17

Microeconomics 3. Economics Programme, University of Copenhagen. Spring semester Lars Peter Østerdal. Week 17 Microeconomics 3 Economics Programme, University of Copenhagen Spring semester 2006 Week 17 Lars Peter Østerdal 1 Today s programme General equilibrium over time and under uncertainty (slides from week

More information

Solutions to questions in Chapter 8 except those in PS4. The minimum-variance portfolio is found by applying the formula:

Solutions to questions in Chapter 8 except those in PS4. The minimum-variance portfolio is found by applying the formula: Solutions to questions in Chapter 8 except those in PS4 1. The parameters of the opportunity set are: E(r S ) = 20%, E(r B ) = 12%, σ S = 30%, σ B = 15%, ρ =.10 From the standard deviations and the correlation

More information

Capital Allocation Between The Risky And The Risk- Free Asset

Capital Allocation Between The Risky And The Risk- Free Asset Capital Allocation Between The Risky And The Risk- Free Asset Chapter 7 Investment Decisions capital allocation decision = choice of proportion to be invested in risk-free versus risky assets asset allocation

More information

Ch. 8 Risk and Rates of Return. Return, Risk and Capital Market. Investment returns

Ch. 8 Risk and Rates of Return. Return, Risk and Capital Market. Investment returns Ch. 8 Risk and Rates of Return Topics Measuring Return Measuring Risk Risk & Diversification CAPM Return, Risk and Capital Market Managers must estimate current and future opportunity rates of return for

More information

QR43, Introduction to Investments Class Notes, Fall 2003 IV. Portfolio Choice

QR43, Introduction to Investments Class Notes, Fall 2003 IV. Portfolio Choice QR43, Introduction to Investments Class Notes, Fall 2003 IV. Portfolio Choice A. Mean-Variance Analysis 1. Thevarianceofaportfolio. Consider the choice between two risky assets with returns R 1 and R 2.

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

LECTURE NOTES 3 ARIEL M. VIALE

LECTURE NOTES 3 ARIEL M. VIALE LECTURE NOTES 3 ARIEL M VIALE I Markowitz-Tobin Mean-Variance Portfolio Analysis Assumption Mean-Variance preferences Markowitz 95 Quadratic utility function E [ w b w ] { = E [ w] b V ar w + E [ w] }

More information

Optimal Portfolio Selection

Optimal Portfolio Selection Optimal Portfolio Selection We have geometrically described characteristics of the optimal portfolio. Now we turn our attention to a methodology for exactly identifying the optimal portfolio given a set

More information

23.1. Assumptions of Capital Market Theory

23.1. Assumptions of Capital Market Theory NPTEL Course Course Title: Security Analysis and Portfolio anagement Course Coordinator: Dr. Jitendra ahakud odule-12 Session-23 Capital arket Theory-I Capital market theory extends portfolio theory and

More information

Advanced Financial Economics Homework 2 Due on April 14th before class

Advanced Financial Economics Homework 2 Due on April 14th before class Advanced Financial Economics Homework 2 Due on April 14th before class March 30, 2015 1. (20 points) An agent has Y 0 = 1 to invest. On the market two financial assets exist. The first one is riskless.

More information

!"#$ 01$ 7.3"กก>E E?D:A 5"7=7 E!<C";E2346 <2H<

!#$ 01$ 7.3กก>E E?D:A 57=7 E!<C;E2346 <2H< กก AEC Portfolio Investment!"#$ 01$ 7.3"กก>E E?D:A 5"7=7 >?@A?2346BC@ก"9D E!

More information

Consumption- Savings, Portfolio Choice, and Asset Pricing

Consumption- Savings, Portfolio Choice, and Asset Pricing Finance 400 A. Penati - G. Pennacchi Consumption- Savings, Portfolio Choice, and Asset Pricing I. The Consumption - Portfolio Choice Problem We have studied the portfolio choice problem of an individual

More information

Copyright 2009 Pearson Education Canada

Copyright 2009 Pearson Education Canada Operating Cash Flows: Sales $682,500 $771,750 $868,219 $972,405 $957,211 less expenses $477,750 $540,225 $607,753 $680,684 $670,048 Difference $204,750 $231,525 $260,466 $291,722 $287,163 After-tax (1

More information

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7 OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS BKM Ch 7 ASSET ALLOCATION Idea from bank account to diversified portfolio Discussion principles are the same for any number of stocks A. bonds and stocks B.

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

Session 8: The Markowitz problem p. 1

Session 8: The Markowitz problem p. 1 Session 8: The Markowitz problem Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 8: The Markowitz problem p. 1 Portfolio optimisation Session 8: The Markowitz problem

More information

Consumption and Portfolio Choice under Uncertainty

Consumption and Portfolio Choice under Uncertainty Chapter 8 Consumption and Portfolio Choice under Uncertainty In this chapter we examine dynamic models of consumer choice under uncertainty. We continue, as in the Ramsey model, to take the decision of

More information

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS Jan Werner University of Minnesota SPRING 2019 1 I.1 Equilibrium Prices in Security Markets Assume throughout this section that utility functions

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS 1. a. The expected cash flow is: (0.5 $70,000) + (0.5 00,000) = $135,000 With a risk premium of 8% over the risk-free rate of 6%, the required

More information

Mean Variance Analysis and CAPM

Mean Variance Analysis and CAPM Mean Variance Analysis and CAPM Yan Zeng Version 1.0.2, last revised on 2012-05-30. Abstract A summary of mean variance analysis in portfolio management and capital asset pricing model. 1. Mean-Variance

More information

Mean-Variance Portfolio Choice in Excel

Mean-Variance Portfolio Choice in Excel Mean-Variance Portfolio Choice in Excel Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Let s suppose you can only invest in two assets: a (US) stock index (here represented by the

More information

Mean-Variance Portfolio Theory

Mean-Variance Portfolio Theory Mean-Variance Portfolio Theory Lakehead University Winter 2005 Outline Measures of Location Risk of a Single Asset Risk and Return of Financial Securities Risk of a Portfolio The Capital Asset Pricing

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Black-Litterman Model

Black-Litterman Model Institute of Financial and Actuarial Mathematics at Vienna University of Technology Seminar paper Black-Litterman Model by: Tetyana Polovenko Supervisor: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

CHAPTER 11 RETURN AND RISK: THE CAPITAL ASSET PRICING MODEL (CAPM)

CHAPTER 11 RETURN AND RISK: THE CAPITAL ASSET PRICING MODEL (CAPM) CHAPTER 11 RETURN AND RISK: THE CAPITAL ASSET PRICING MODEL (CAPM) Answers to Concept Questions 1. Some of the risk in holding any asset is unique to the asset in question. By investing in a variety of

More information

E(r) The Capital Market Line (CML)

E(r) The Capital Market Line (CML) The Capital Asset Pricing Model (CAPM) B. Espen Eckbo 2011 We have so far studied the relevant portfolio opportunity set (mean- variance efficient portfolios) We now study more specifically portfolio demand,

More information

Expected Utility and Risk Aversion

Expected Utility and Risk Aversion Expected Utility and Risk Aversion Expected utility and risk aversion 1/ 58 Introduction Expected utility is the standard framework for modeling investor choices. The following topics will be covered:

More information

Notation, Conventions, and Conditional Expectations

Notation, Conventions, and Conditional Expectations Notation, Conventions, and Conditional Expectations A. General Variables and Indexes Notation in italics represents a scalar; notation in bold italics represents a vector or matrix. Uppercase notation

More information

CHAPTER 6: PORTFOLIO SELECTION

CHAPTER 6: PORTFOLIO SELECTION CHAPTER 6: PORTFOLIO SELECTION 6-1 21. The parameters of the opportunity set are: E(r S ) = 20%, E(r B ) = 12%, σ S = 30%, σ B = 15%, ρ =.10 From the standard deviations and the correlation coefficient

More information

Portfolio Risk Management and Linear Factor Models

Portfolio Risk Management and Linear Factor Models Chapter 9 Portfolio Risk Management and Linear Factor Models 9.1 Portfolio Risk Measures There are many quantities introduced over the years to measure the level of risk that a portfolio carries, and each

More information

FINC3017: Investment and Portfolio Management

FINC3017: Investment and Portfolio Management FINC3017: Investment and Portfolio Management Investment Funds Topic 1: Introduction Unit Trusts: investor s funds are pooled, usually into specific types of assets. o Investors are assigned tradeable

More information

University 18 Lessons Financial Management. Unit 12: Return, Risk and Shareholder Value

University 18 Lessons Financial Management. Unit 12: Return, Risk and Shareholder Value University 18 Lessons Financial Management Unit 12: Return, Risk and Shareholder Value Risk and Return Risk and Return Security analysis is built around the idea that investors are concerned with two principal

More information

Econ 424/CFRM 462 Portfolio Risk Budgeting

Econ 424/CFRM 462 Portfolio Risk Budgeting Econ 424/CFRM 462 Portfolio Risk Budgeting Eric Zivot August 14, 2014 Portfolio Risk Budgeting Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the

More information

ECMC49F Midterm. Instructor: Travis NG Date: Oct 26, 2005 Duration: 1 hour 50 mins Total Marks: 100. [1] [25 marks] Decision-making under certainty

ECMC49F Midterm. Instructor: Travis NG Date: Oct 26, 2005 Duration: 1 hour 50 mins Total Marks: 100. [1] [25 marks] Decision-making under certainty ECMC49F Midterm Instructor: Travis NG Date: Oct 26, 2005 Duration: 1 hour 50 mins Total Marks: 100 [1] [25 marks] Decision-making under certainty (a) [5 marks] Graphically demonstrate the Fisher Separation

More information

Advanced Macroeconomics 5. Rational Expectations and Asset Prices

Advanced Macroeconomics 5. Rational Expectations and Asset Prices Advanced Macroeconomics 5. Rational Expectations and Asset Prices Karl Whelan School of Economics, UCD Spring 2015 Karl Whelan (UCD) Asset Prices Spring 2015 1 / 43 A New Topic We are now going to switch

More information

Lecture 10: Performance measures

Lecture 10: Performance measures Lecture 10: Performance measures Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe Portfolio and Asset Liability Management Summer Semester 2008 Prof.

More information

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2010

Department of Agricultural Economics. PhD Qualifier Examination. August 2010 Department of Agricultural Economics PhD Qualifier Examination August 200 Instructions: The exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

MATH362 Fundamentals of Mathematical Finance. Topic 1 Mean variance portfolio theory. 1.1 Mean and variance of portfolio return

MATH362 Fundamentals of Mathematical Finance. Topic 1 Mean variance portfolio theory. 1.1 Mean and variance of portfolio return MATH362 Fundamentals of Mathematical Finance Topic 1 Mean variance portfolio theory 1.1 Mean and variance of portfolio return 1.2 Markowitz mean-variance formulation 1.3 Two-fund Theorem 1.4 Inclusion

More information

Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory

Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory Shuoxun Hellen Zhang WISE & SOE XIAMEN UNIVERSITY April, 2015 1 / 95 Outline Modern portfolio theory The backward induction,

More information

Quantitative Portfolio Theory & Performance Analysis

Quantitative Portfolio Theory & Performance Analysis 550.447 Quantitative ortfolio Theory & erformance Analysis Week February 18, 2013 Basic Elements of Modern ortfolio Theory Assignment For Week of February 18 th (This Week) Read: A&L, Chapter 3 (Basic

More information

Key investment insights

Key investment insights Basic Portfolio Theory B. Espen Eckbo 2011 Key investment insights Diversification: Always think in terms of stock portfolios rather than individual stocks But which portfolio? One that is highly diversified

More information

Department of Mathematics. Mathematics of Financial Derivatives

Department of Mathematics. Mathematics of Financial Derivatives Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2

More information

Archana Khetan 05/09/ MAFA (CA Final) - Portfolio Management

Archana Khetan 05/09/ MAFA (CA Final) - Portfolio Management Archana Khetan 05/09/2010 +91-9930812722 Archana090@hotmail.com MAFA (CA Final) - Portfolio Management 1 Portfolio Management Portfolio is a collection of assets. By investing in a portfolio or combination

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND PROBLE SETS 1. (e). (b) A higher borrowing rate is a consequence of the risk of the borrowers default. In perfect markets with no additional cost of default, this increment

More information

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL CHAPTER 9: THE CAPITAL ASSET PRICING MODEL 1. E(r P ) = r f + β P [E(r M ) r f ] 18 = 6 + β P(14 6) β P = 12/8 = 1.5 2. If the security s correlation coefficient with the market portfolio doubles (with

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 OPTION RISK Introduction In these notes we consider the risk of an option and relate it to the standard capital asset pricing model. If we are simply interested

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 ortfolio Allocation Mean-Variance Approach Validity of the Mean-Variance Approach Constant absolute risk aversion (CARA): u(w ) = exp(

More information

Analytical Problem Set

Analytical Problem Set Analytical Problem Set Unless otherwise stated, any coupon payments, cash dividends, or other cash payouts delivered by a security in the following problems should be assume to be distributed at the end

More information

1 Asset Pricing: Replicating portfolios

1 Asset Pricing: Replicating portfolios Alberto Bisin Corporate Finance: Lecture Notes Class 1: Valuation updated November 17th, 2002 1 Asset Pricing: Replicating portfolios Consider an economy with two states of nature {s 1, s 2 } and with

More information

COPYRIGHTED MATERIAL. Portfolio Selection CHAPTER 1. JWPR026-Fabozzi c01 June 22, :54

COPYRIGHTED MATERIAL. Portfolio Selection CHAPTER 1. JWPR026-Fabozzi c01 June 22, :54 CHAPTER 1 Portfolio Selection FRANK J. FABOZZI, PhD, CFA, CPA Professor in the Practice of Finance, Yale School of Management HARRY M. MARKOWITZ, PhD Consultant FRANCIS GUPTA, PhD Director, Research, Dow

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Solution Guide to Exercises for Chapter 4 Decision making under uncertainty

Solution Guide to Exercises for Chapter 4 Decision making under uncertainty THE ECONOMICS OF FINANCIAL MARKETS R. E. BAILEY Solution Guide to Exercises for Chapter 4 Decision making under uncertainty 1. Consider an investor who makes decisions according to a mean-variance objective.

More information

Lecture #2. YTM / YTC / YTW IRR concept VOLATILITY Vs RETURN Relationship. Risk Premium over the Standard Deviation of portfolio excess return

Lecture #2. YTM / YTC / YTW IRR concept VOLATILITY Vs RETURN Relationship. Risk Premium over the Standard Deviation of portfolio excess return REVIEW Lecture #2 YTM / YTC / YTW IRR concept VOLATILITY Vs RETURN Relationship Sharpe Ratio: Risk Premium over the Standard Deviation of portfolio excess return (E(r p) r f ) / σ 8% / 20% = 0.4x. A higher

More information

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Asset Allocation and Risk Management Martin B. Haugh Department of Industrial Engineering and Operations Research Columbia University Outline Review of Mean-Variance Analysis

More information

When we model expected returns, we implicitly model expected prices

When we model expected returns, we implicitly model expected prices Week 1: Risk and Return Securities: why do we buy them? To take advantage of future cash flows (in the form of dividends or selling a security for a higher price). How much should we pay for this, considering

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

Modelling Economic Variables

Modelling Economic Variables ucsc supplementary notes ams/econ 11a Modelling Economic Variables c 2010 Yonatan Katznelson 1. Mathematical models The two central topics of AMS/Econ 11A are differential calculus on the one hand, and

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

In terms of covariance the Markowitz portfolio optimisation problem is:

In terms of covariance the Markowitz portfolio optimisation problem is: Markowitz portfolio optimisation Solver To use Solver to solve the quadratic program associated with tracing out the efficient frontier (unconstrained efficient frontier UEF) in Markowitz portfolio optimisation

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

3. Capital asset pricing model and factor models

3. Capital asset pricing model and factor models 3. Capital asset pricing model and factor models (3.1) Capital asset pricing model and beta values (3.2) Interpretation and uses of the capital asset pricing model (3.3) Factor models (3.4) Performance

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

Models of Asset Pricing

Models of Asset Pricing appendix1 to chapter 5 Models of Asset Pricing In Chapter 4, we saw that the return on an asset (such as a bond) measures how much we gain from holding that asset. When we make a decision to buy an asset,

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Market Timing Does Work: Evidence from the NYSE 1

Market Timing Does Work: Evidence from the NYSE 1 Market Timing Does Work: Evidence from the NYSE 1 Devraj Basu Alexander Stremme Warwick Business School, University of Warwick November 2005 address for correspondence: Alexander Stremme Warwick Business

More information

Return and Risk: The Capital-Asset Pricing Model (CAPM)

Return and Risk: The Capital-Asset Pricing Model (CAPM) Return and Risk: The Capital-Asset Pricing Model (CAPM) Expected Returns (Single assets & Portfolios), Variance, Diversification, Efficient Set, Market Portfolio, and CAPM Expected Returns and Variances

More information

Micro Theory I Assignment #5 - Answer key

Micro Theory I Assignment #5 - Answer key Micro Theory I Assignment #5 - Answer key 1. Exercises from MWG (Chapter 6): (a) Exercise 6.B.1 from MWG: Show that if the preferences % over L satisfy the independence axiom, then for all 2 (0; 1) and

More information

Some useful optimization problems in portfolio theory

Some useful optimization problems in portfolio theory Some useful optimization problems in portfolio theory Igor Melicherčík Department of Economic and Financial Modeling, Faculty of Mathematics, Physics and Informatics, Mlynská dolina, 842 48 Bratislava

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

International Finance. Estimation Error. Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc.

International Finance. Estimation Error. Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc. International Finance Estimation Error Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc February 17, 2017 Motivation The Markowitz Mean Variance Efficiency is the

More information

RETURN AND RISK: The Capital Asset Pricing Model

RETURN AND RISK: The Capital Asset Pricing Model RETURN AND RISK: The Capital Asset Pricing Model (BASED ON RWJJ CHAPTER 11) Return and Risk: The Capital Asset Pricing Model (CAPM) Know how to calculate expected returns Understand covariance, correlation,

More information

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

Aversion to Risk and Optimal Portfolio Selection in the Mean- Variance Framework

Aversion to Risk and Optimal Portfolio Selection in the Mean- Variance Framework Aversion to Risk and Optimal Portfolio Selection in the Mean- Variance Framework Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2017 Outline and objectives Four alternative

More information

MATH4512 Fundamentals of Mathematical Finance. Topic Two Mean variance portfolio theory. 2.1 Mean and variance of portfolio return

MATH4512 Fundamentals of Mathematical Finance. Topic Two Mean variance portfolio theory. 2.1 Mean and variance of portfolio return MATH4512 Fundamentals of Mathematical Finance Topic Two Mean variance portfolio theory 2.1 Mean and variance of portfolio return 2.2 Markowitz mean-variance formulation 2.3 Two-fund Theorem 2.4 Inclusion

More information

MATH 4512 Fundamentals of Mathematical Finance

MATH 4512 Fundamentals of Mathematical Finance MATH 451 Fundamentals of Mathematical Finance Solution to Homework Three Course Instructor: Prof. Y.K. Kwok 1. The market portfolio consists of n uncorrelated assets with weight vector (x 1 x n T. Since

More information