Lecture 8: Linear Prediction: Lattice filters

Size: px
Start display at page:

Download "Lecture 8: Linear Prediction: Lattice filters"

Transcription

1 1 Lecture 8: Linear Prediction: Lattice filters Overview New AR parametrization: Reflection coefficients; Fast computation of prediction errors; Direct and Inverse Lattice filters; Burg lattice parameter estimator; Gradient Adaptive Lattice filters;

2 Lecture 8 2 Lattice Predictors Order -Update Recursions for Prediction errors Since the predictors obey the recursive in order equations a m = a B m = a m a B m 1 + Γ m 0 a B m 1 + Γ a m 1 m 0 it is natural that prediction errors can be expressed in recursive in order forms. These forms results considering the recursions for the vector u m+1 (n) Combining the equations we obtain u m+1 (n) = u m+1 (n) = f m (n) = a T mu m+1 (n) = [ a T m 1 0 ] u m (n) u(n m) u(n) u m (n 1) u m (n) u(n m) = a T m 1u m (n) + Γ m (a B m 1) T u m (n 1) = = f m 1 (n) + Γ m b m 1 (n 1) + Γ m [ 0 (a B m 1 ) T ] u(n) u m (n 1) =

3 Lecture 8 3 b m (n) = (a B m) T u m+1 (n) = [ 0 (a B m 1) T ] = (a B m 1) T u m (n 1) + Γ m (a m 1 ) T u m (n) = b m 1 (n 1) + Γ m f m 1 (n) u(n) u m (n 1) + Γ m [ (am 1 ) T 0 ] u m (n) u(n m) = The order recursions of the errors can be represented as f m(n) b m (n) = 1 Γ m Γ m 1 f m 1 (n) b m 1 (n 1)

4 Lecture 8 4 f m (n) = f m 1 (n) + Γ m b m 1 (n 1) b m (n) = b m 1 (n 1) + Γ m f m 1 (n) Using the time shifting operator q 1, the prediction error recursions are given by f m(n) b m (n) = 1 Γ mq 1 Γ m q 1 f m 1(n) b m 1 (n) which can now be iterated for m = 1, 2,..., M to obtain f M(n) b M (n) = = 1 Γ Mq 1 Γ M q 1 1 Γ Mq 1 Γ M q 1 Γ M 1 Γ M 1 1 Γ M 1 q 1 q 1 1 Γ M 1 q 1 q Γ 1q 1... Γ 1 q 1 1 Γ 1q 1 Γ 1 q 1 f 0(n) b 0 (n) 1 1 u(n) Having available the reflexion coefficients, all prediction errors of order m = 1,..., M can be computed using the Lattice predictor, in 2M additions and 2M multiplications.

5 Lecture 8 5 Some characteristics of the Lattice predictor: 1. It is the most efficient structure for generating simultaneously the forward and backward prediction errors. 2. The lattice structure is modular: increasing the order of the filter requires adding only one extra module, leaving all other modules the same. 3. The various stages of a lattice are decoupled from each other in the following sense: The memory of the lattice (storing b 0 (n 1),..., b M 1 (n 1)) contains orthogonal variables, thus the information contained in u(n) is splitted in M pieces, which reduces gradually the redundancy of the signal. 4. The similar structure of the lattice filter stages makes the filter suitable for VLSI implementation.

6 Lecture 8 6 Lattice Inverse filters The basic equations for one stage of the lattice are f m (n) = f m 1 (n) + Γ m b m 1 (n 1) b m (n) = Γ m f m 1 (n) + b m 1 (n 1) (1) and simply rewriting the first equation f m 1 (n) = f m (n) Γ m b m 1 (n 1) b m (n) = Γ m f m 1 (n) + b m 1 (n 1) we obtain the basic stage of the Lattice inverse filter representation.

7 Lecture 8 7

8 Lecture 8 8 Joint process estimation Find the optimal (in MSE sense) filter recovering a desired signal d(n) from the signal u(n) not using directly the observations u(n), u(n 1),..., u(n m) as in FIR filtering but using instead the samples b 0 (n), b 1 (n),..., b M (n) which comes from the orthogonalization of u(n) using a lattice filter. The structure of the filter comprises two sections: one lattice predictor section with reflection coefficients Γ 1, Γ 2,..., Γ M, transforming the observations u(n), u(n 1),..., u(n m) into the sequence of uncorrelated errors b 0 (n).b 1 (n),..., b M (n); a multiple regression filter, with parameters γ 0, γ 1,..., γ M which uses as observations the samples b 0 (n).b 1 (n),..., b M (n) to compute the output of the filter y(n). Denoting we can write the optimal Wiener filter b(n) = [ b 0 (n) b 1 (n)... b M (n) ] T γ = [ γ 0 γ 1... γ M ] T γ = [Eb(n)b(n) T ] 1 Eb(n)d(n)

9 Lecture 8 9

10 Lecture 8 10 Relationship between Lattice parameters and optimal (direct) FIR filter parameters We found the autocorrelation matrix of backward errors to be and from b(n) = Lu(n) we found E[b(n)b(n) T ] = P P P M = D E[b(n)b(n) T ] = LE[u(n)u(n) T ]L T = LRL T = D We can now compute the optimal γ parameters as γ = [Eb(n)b(n)] 1 Eb(n)d(n) = D 1 Eb(n)d(n) = D 1 ELu(n)d(n) = D 1 Lp = D 1 LRw o Multiplying both sides with L T and recalling R 1 = L T D 1 L we obtain L T γ = w o Thus we have a one-to-one correspondence between the parameters of the optimal FIR filter, w o and the parameters of the optimal lattice filter. Burg estimation algorithm The optimum design of the lattice filter is a decoupled problem.

11 Lecture 8 11 At stage m the optimality criterion is: and using the stage m equations J m = E[f 2 m(n)] + E[b 2 m(n)] f m (n) = f m 1 (n) + Γ m b m 1 (n 1) b m (n) = b m 1 (n 1) + Γ m f m 1 (n) J m = E[f 2 m(n)] + E[b 2 m(n)] = E[(f m 1 (n) + Γ m b m 1 (n 1)) 2 ] + E[(b m 1 (n 1) + Γ m f m 1 (n)) 2 ] = E[(f 2 m 1(n) + b 2 m 1(n 1)](1 + Γ 2 m) + 4Γ m E[b m 1 (n 1)f m 1 (n)] Taking now the derivative with respect to Γ m of the above criterion we obtain and therefore d(j m ) dγ m = 2E[(f 2 m 1(n) + b 2 m 1(n 1)]Γ m + 4E[b m 1 (n 1)f m 1 (n)] = 0 Γ m = 2E[b m 1(n 1)f m 1 (n)] E[(fm 1(n)] 2 + E[b 2 m 1(n 1)] Replacing the expectation operator E with time average operator 1 N Nn=1 we obtain one direct way to estimate the parameters of the lattice filter, starting from the data available in lattice filter: Γ m = 2 N n=1 b m 1 (n 1)f m 1 (n) Nn=1 [(f 2 m 1(n) + b 2 m 1(n 1)] The parameters Γ 1,..., Γ M can be found solving first for Γ 1, then using Γ 1 to filter the data u(n) and obtain f 1 (n) and b 1 (n), then find the estimate of Γ 2...

12 Lecture 8 12 There are other possible estimators, but Burg estimator ensures the condition Γ < 1 which is required for the stability of the lattice filter. Gradient Adaptive Lattice Filters Imposing the same optimality criterion as in Burg method J m = E[f 2 m(n)] + E[b 2 m(n)] the gradient method applied to the lattice filter parameter at stage m is d(j m ) dγ m = 2E[f m (n)b m 1 (n 1) + f m 1 (n)b m (n)] and can be approximated (as usually in LMS algorithms) by ˆ J m 2[f m (n)b m 1 (n 1) + f m 1 (n)b m (n)] We obtain the updating equation for the parameter Γ m Γ m (n + 1) = Γ m (n) 1 2 µ m(n) ˆ J m = Γ m (n) µ m (n)(f m (n)b m 1 (n 1) + f m 1 (n)b m (n)) In order to normalize the adaptation step, the following value of µ m (n) was suggested where µ m (n) = 1 ξ m 1 (n) ξ m 1 (N) = N [(fm 1(i) 2 + b 2 m 1(i 1)] = ξ m 1 (N 1) + fm 1(N) 2 + b 2 m 1(N 1) i=1

13 Lecture 8 13 represents the total energy of forward and backward prediction errors. We can introduce a forgetting factor using ξ m 1 (n) = βξ m 1 (n 1) + (1 β)[f 2 m 1(n) + b 2 m 1(n 1)] with the forgetting factor close to 1, but 0 < β < 1 allowing to forget the old history, which may be irrelevant if the filtered signal is nonstationary.

14 Lecture 8 14

Page 1 of 5 Spectral Analysis of EUR/USD Currency Rate Fluctuation Based on Maximum Entropy Method. Present work continues the cycle of articles dedicated to the new Adaptive Trend & Cycles Following Method,

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Parameterized Expectations

Parameterized Expectations Parameterized Expectations A Brief Introduction Craig Burnside Duke University November 2006 Craig Burnside (Duke University) Parameterized Expectations November 2006 1 / 10 Parameterized Expectations

More information

Optimal variable step-size LMS model and algorithm with independence assumption

Optimal variable step-size LMS model and algorithm with independence assumption Vol. 46 No. 6 SCIENCE IN CHINA (Series F) December 003 Optimal variable step-size LMS model and algorithm with independence assumption GU Yuantao ( i ), ANG Kun ( &DUWen( ) ), CUI Huijuan ( ) State Key

More information

Lecture 3: Factor models in modern portfolio choice

Lecture 3: Factor models in modern portfolio choice Lecture 3: Factor models in modern portfolio choice Prof. Massimo Guidolin Portfolio Management Spring 2016 Overview The inputs of portfolio problems Using the single index model Multi-index models Portfolio

More information

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13 RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK JEL Codes: C51, C61, C63, and G13 Dr. Ramaprasad Bhar School of Banking and Finance The University of New South Wales Sydney 2052, AUSTRALIA Fax. +61 2

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Amath 546/Econ 589 Univariate GARCH Models

Amath 546/Econ 589 Univariate GARCH Models Amath 546/Econ 589 Univariate GARCH Models Eric Zivot April 24, 2013 Lecture Outline Conditional vs. Unconditional Risk Measures Empirical regularities of asset returns Engle s ARCH model Testing for ARCH

More information

Return Predictability: Dividend Price Ratio versus Expected Returns

Return Predictability: Dividend Price Ratio versus Expected Returns Return Predictability: Dividend Price Ratio versus Expected Returns Rambaccussing, Dooruj Department of Economics University of Exeter 08 May 2010 (Institute) 08 May 2010 1 / 17 Objective Perhaps one of

More information

Econ 582 Nonlinear Regression

Econ 582 Nonlinear Regression Econ 582 Nonlinear Regression Eric Zivot June 3, 2013 Nonlinear Regression In linear regression models = x 0 β (1 )( 1) + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β it is assumed that the regression

More information

Intro to GLM Day 2: GLM and Maximum Likelihood

Intro to GLM Day 2: GLM and Maximum Likelihood Intro to GLM Day 2: GLM and Maximum Likelihood Federico Vegetti Central European University ECPR Summer School in Methods and Techniques 1 / 32 Generalized Linear Modeling 3 steps of GLM 1. Specify the

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

University of New South Wales Semester 1, Economics 4201 and Homework #2 Due on Tuesday 3/29 (20% penalty per day late)

University of New South Wales Semester 1, Economics 4201 and Homework #2 Due on Tuesday 3/29 (20% penalty per day late) University of New South Wales Semester 1, 2011 School of Economics James Morley 1. Autoregressive Processes (15 points) Economics 4201 and 6203 Homework #2 Due on Tuesday 3/29 (20 penalty per day late)

More information

A Dynamic Model of Expected Bond Returns: a Functional Gradient Descent Approach.

A Dynamic Model of Expected Bond Returns: a Functional Gradient Descent Approach. A Dynamic Model of Expected Bond Returns: a Functional Gradient Descent Approach. Francesco Audrino Giovanni Barone-Adesi January 2006 Abstract We propose a multivariate methodology based on Functional

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

Predictive Regressions: A Present-Value Approach (van Binsbe. (van Binsbergen and Koijen, 2009)

Predictive Regressions: A Present-Value Approach (van Binsbe. (van Binsbergen and Koijen, 2009) Predictive Regressions: A Present-Value Approach (van Binsbergen and Koijen, 2009) October 5th, 2009 Overview Key ingredients: Results: Draw inference from the Campbell and Shiller (1988) present value

More information

X ln( +1 ) +1 [0 ] Γ( )

X ln( +1 ) +1 [0 ] Γ( ) Problem Set #1 Due: 11 September 2014 Instructor: David Laibson Economics 2010c Problem 1 (Growth Model): Recall the growth model that we discussed in class. We expressed the sequence problem as ( 0 )=

More information

Slides III - Complete Markets

Slides III - Complete Markets Slides III - Complete Markets Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides III - Complete Markets Spring 2017 1 / 33 Outline 1. Risk, Uncertainty,

More information

6.825 Homework 3: Solutions

6.825 Homework 3: Solutions 6.825 Homework 3: Solutions 1 Easy EM You are given the network structure shown in Figure 1 and the data in the following table, with actual observed values for A, B, and C, and expected counts for D.

More information

Monetary Economics Final Exam

Monetary Economics Final Exam 316-466 Monetary Economics Final Exam 1. Flexible-price monetary economics (90 marks). Consider a stochastic flexibleprice money in the utility function model. Time is discrete and denoted t =0, 1,...

More information

Mean Reverting Asset Trading. Research Topic Presentation CSCI-5551 Grant Meyers

Mean Reverting Asset Trading. Research Topic Presentation CSCI-5551 Grant Meyers Mean Reverting Asset Trading Research Topic Presentation CSCI-5551 Grant Meyers Table of Contents 1. Introduction + Associated Information 2. Problem Definition 3. Possible Solution 1 4. Problems with

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

ELECTRONOTES APPLICATION NOTE NO Hanshaw Road Ithaca, NY March 15, 2014

ELECTRONOTES APPLICATION NOTE NO Hanshaw Road Ithaca, NY March 15, 2014 ELECTRONOTES APPLICATION NOTE NO. 406 1016 Hanshaw Road Ithaca, NY 14850 March 15, 2014 WIENER ALTERNATIVE TO LMS ALGORITHM In this app note the purpose is first (and not too essentially) to update some

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analysis of Variance and Design of Experiments-II MODULE I LECTURE - 8 INCOMPLETE BLOCK DESIGNS Dr Shalabh Department of Mathematics & Statistics Indian Institute of Technology Kanpur Generally, we are

More information

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? DOI 0.007/s064-006-9073-z ORIGINAL PAPER Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? Jules H. van Binsbergen Michael W. Brandt Received:

More information

Financial Market Models. Lecture 1. One-period model of financial markets & hedging problems. Imperial College Business School

Financial Market Models. Lecture 1. One-period model of financial markets & hedging problems. Imperial College Business School Financial Market Models Lecture One-period model of financial markets & hedging problems One-period model of financial markets a 4 2a 3 3a 3 a 3 -a 4 2 Aims of section Introduce one-period model with finite

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

GMM Estimation. 1 Introduction. 2 Consumption-CAPM

GMM Estimation. 1 Introduction. 2 Consumption-CAPM GMM Estimation 1 Introduction Modern macroeconomic models are typically based on the intertemporal optimization and rational expectations. The Generalized Method of Moments (GMM) is an econometric framework

More information

Interest Rate Curves Calibration with Monte-Carlo Simulatio

Interest Rate Curves Calibration with Monte-Carlo Simulatio Interest Rate Curves Calibration with Monte-Carlo Simulation 24 june 2008 Participants A. Baena (UCM) Y. Borhani (Univ. of Oxford) E. Leoncini (Univ. of Florence) R. Minguez (UCM) J.M. Nkhaso (UCM) A.

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

Financial Time Series Analysis (FTSA)

Financial Time Series Analysis (FTSA) Financial Time Series Analysis (FTSA) Lecture 6: Conditional Heteroscedastic Models Few models are capable of generating the type of ARCH one sees in the data.... Most of these studies are best summarized

More information

Portfolio Choice. := δi j, the basis is orthonormal. Expressed in terms of the natural basis, x = j. x j x j,

Portfolio Choice. := δi j, the basis is orthonormal. Expressed in terms of the natural basis, x = j. x j x j, Portfolio Choice Let us model portfolio choice formally in Euclidean space. There are n assets, and the portfolio space X = R n. A vector x X is a portfolio. Even though we like to see a vector as coordinate-free,

More information

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data Group Prof. Daniel Cremers 7. Sequential Data Bayes Filter (Rep.) We can describe the overall process using a Dynamic Bayes Network: This incorporates the following Markov assumptions: (measurement) (state)!2

More information

3. The Dynamic Programming Algorithm (cont d)

3. The Dynamic Programming Algorithm (cont d) 3. The Dynamic Programming Algorithm (cont d) Last lecture e introduced the DPA. In this lecture, e first apply the DPA to the chess match example, and then sho ho to deal ith problems that do not match

More information

A Dynamic Model of Expected Bond Returns: a Functional Gradient Descent Approach

A Dynamic Model of Expected Bond Returns: a Functional Gradient Descent Approach A Dynamic Model of Expected Bond Returns: a Functional Gradient Descent Approach Francesco Audrino Giovanni Barone-Adesi Institute of Finance, University of Lugano, Via Buffi 13, 6900 Lugano, Switzerland

More information

Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur

Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Lecture - 07 Mean-Variance Portfolio Optimization (Part-II)

More information

FIT5124 Advanced Topics in Security. Lecture 1: Lattice-Based Crypto. I

FIT5124 Advanced Topics in Security. Lecture 1: Lattice-Based Crypto. I FIT5124 Advanced Topics in Security Lecture 1: Lattice-Based Crypto. I Ron Steinfeld Clayton School of IT Monash University March 2016 Acknowledgements: Some figures sourced from Oded Regev s Lecture Notes

More information

DUALITY AND SENSITIVITY ANALYSIS

DUALITY AND SENSITIVITY ANALYSIS DUALITY AND SENSITIVITY ANALYSIS Understanding Duality No learning of Linear Programming is complete unless we learn the concept of Duality in linear programming. It is impossible to separate the linear

More information

Scenario reduction and scenario tree construction for power management problems

Scenario reduction and scenario tree construction for power management problems Scenario reduction and scenario tree construction for power management problems N. Gröwe-Kuska, H. Heitsch and W. Römisch Humboldt-University Berlin Institute of Mathematics Page 1 of 20 IEEE Bologna POWER

More information

Options Pricing Using Combinatoric Methods Postnikov Final Paper

Options Pricing Using Combinatoric Methods Postnikov Final Paper Options Pricing Using Combinatoric Methods 18.04 Postnikov Final Paper Annika Kim May 7, 018 Contents 1 Introduction The Lattice Model.1 Overview................................ Limitations of the Lattice

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

Deep Learning for Time Series Analysis

Deep Learning for Time Series Analysis CS898 Deep Learning and Application Deep Learning for Time Series Analysis Bo Wang Scientific Computation Lab 1 Department of Computer Science University of Waterloo Outline 1. Background Knowledge 2.

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Econ 101A Final Exam We May 9, 2012.

Econ 101A Final Exam We May 9, 2012. Econ 101A Final Exam We May 9, 2012. You have 3 hours to answer the questions in the final exam. We will collect the exams at 2.30 sharp. Show your work, and good luck! Problem 1. Utility Maximization.

More information

Comparison of design-based sample mean estimate with an estimate under re-sampling-based multiple imputations

Comparison of design-based sample mean estimate with an estimate under re-sampling-based multiple imputations Comparison of design-based sample mean estimate with an estimate under re-sampling-based multiple imputations Recai Yucel 1 Introduction This section introduces the general notation used throughout this

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Iteration. The Cake Eating Problem. Discount Factors

Iteration. The Cake Eating Problem. Discount Factors 18 Value Function Iteration Lab Objective: Many questions have optimal answers that change over time. Sequential decision making problems are among this classification. In this lab you we learn how to

More information

Technical Appendix: Policy Uncertainty and Aggregate Fluctuations.

Technical Appendix: Policy Uncertainty and Aggregate Fluctuations. Technical Appendix: Policy Uncertainty and Aggregate Fluctuations. Haroon Mumtaz Paolo Surico July 18, 2017 1 The Gibbs sampling algorithm Prior Distributions and starting values Consider the model to

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

Math: Deriving supply and demand curves

Math: Deriving supply and demand curves Chapter 0 Math: Deriving supply and demand curves At a basic level, individual supply and demand curves come from individual optimization: if at price p an individual or firm is willing to buy or sell

More information

Worst-case-expectation approach to optimization under uncertainty

Worst-case-expectation approach to optimization under uncertainty Worst-case-expectation approach to optimization under uncertainty Wajdi Tekaya Joint research with Alexander Shapiro, Murilo Pereira Soares and Joari Paulo da Costa : Cambridge Systems Associates; : Georgia

More information

Solution algorithm for Boz-Mendoza JME by Enrique G. Mendoza University of Pennsylvania, NBER & PIER

Solution algorithm for Boz-Mendoza JME by Enrique G. Mendoza University of Pennsylvania, NBER & PIER Solution algorithm for Boz-Mendoza JME 2014 by Enrique G. Mendoza University of Pennsylvania, NBER & PIER Two-stage solution method At each date t of a sequence of T periods of observed realizations of

More information

Assessing Model Stability Using Recursive Estimation and Recursive Residuals

Assessing Model Stability Using Recursive Estimation and Recursive Residuals Assessing Model Stability Using Recursive Estimation and Recursive Residuals Our forecasting procedure cannot be expected to produce good forecasts if the forecasting model that we constructed was stable

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Portfolio construction by volatility forecasts: Does the covariance structure matter?

Portfolio construction by volatility forecasts: Does the covariance structure matter? Portfolio construction by volatility forecasts: Does the covariance structure matter? Momtchil Pojarliev and Wolfgang Polasek INVESCO Asset Management, Bleichstrasse 60-62, D-60313 Frankfurt email: momtchil

More information

Logit Models for Binary Data

Logit Models for Binary Data Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis These models are appropriate when the response

More information

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall 2014 Reduce the risk, one asset Let us warm up by doing an exercise. We consider an investment with σ 1 =

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

Forecast Combination

Forecast Combination Forecast Combination In the press, you will hear about Blue Chip Average Forecast and Consensus Forecast These are the averages of the forecasts of distinct professional forecasters. Is there merit to

More information

Reinforcement Learning 04 - Monte Carlo. Elena, Xi

Reinforcement Learning 04 - Monte Carlo. Elena, Xi Reinforcement Learning 04 - Monte Carlo Elena, Xi Previous lecture 2 Markov Decision Processes Markov decision processes formally describe an environment for reinforcement learning where the environment

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

Stochastic Proximal Algorithms with Applications to Online Image Recovery

Stochastic Proximal Algorithms with Applications to Online Image Recovery 1/24 Stochastic Proximal Algorithms with Applications to Online Image Recovery Patrick Louis Combettes 1 and Jean-Christophe Pesquet 2 1 Mathematics Department, North Carolina State University, Raleigh,

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has

More information

Gov 2001: Section 5. I. A Normal Example II. Uncertainty. Gov Spring 2010

Gov 2001: Section 5. I. A Normal Example II. Uncertainty. Gov Spring 2010 Gov 2001: Section 5 I. A Normal Example II. Uncertainty Gov 2001 Spring 2010 A roadmap We started by introducing the concept of likelihood in the simplest univariate context one observation, one variable.

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Chapter 7 One-Dimensional Search Methods

Chapter 7 One-Dimensional Search Methods Chapter 7 One-Dimensional Search Methods An Introduction to Optimization Spring, 2014 1 Wei-Ta Chu Golden Section Search! Determine the minimizer of a function over a closed interval, say. The only assumption

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

Monetary policy under uncertainty

Monetary policy under uncertainty Chapter 10 Monetary policy under uncertainty 10.1 Motivation In recent times it has become increasingly common for central banks to acknowledge that the do not have perfect information about the structure

More information

ECON 6022B Problem Set 1 Suggested Solutions Fall 2011

ECON 6022B Problem Set 1 Suggested Solutions Fall 2011 ECON 6022B Problem Set Suggested Solutions Fall 20 September 5, 20 Shocking the Solow Model Consider the basic Solow model in Lecture 2. Suppose the economy stays at its steady state in Period 0 and there

More information

Principles of Finance

Principles of Finance Principles of Finance Grzegorz Trojanowski Lecture 7: Arbitrage Pricing Theory Principles of Finance - Lecture 7 1 Lecture 7 material Required reading: Elton et al., Chapter 16 Supplementary reading: Luenberger,

More information

a 13 Notes on Hidden Markov Models Michael I. Jordan University of California at Berkeley Hidden Markov Models The model

a 13 Notes on Hidden Markov Models Michael I. Jordan University of California at Berkeley Hidden Markov Models The model Notes on Hidden Markov Models Michael I. Jordan University of California at Berkeley Hidden Markov Models This is a lightly edited version of a chapter in a book being written by Jordan. Since this is

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2010, Mr. Ruey S. Tsay Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2010, Mr. Ruey S. Tsay Solutions to Final Exam The University of Chicago, Booth School of Business Business 410, Spring Quarter 010, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (4 pts) Answer briefly the following questions. 1. Questions 1

More information

Lecture 9: Markov and Regime

Lecture 9: Markov and Regime Lecture 9: Markov and Regime Switching Models Prof. Massimo Guidolin 20192 Financial Econometrics Spring 2017 Overview Motivation Deterministic vs. Endogeneous, Stochastic Switching Dummy Regressiom Switching

More information

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009)

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009) Technical Report Doc ID: TR-1-2009. 14-April-2009 (Last revised: 02-June-2009) The homogeneous selfdual model algorithm for linear optimization. Author: Erling D. Andersen In this white paper we present

More information

Optimal energy management and stochastic decomposition

Optimal energy management and stochastic decomposition Optimal energy management and stochastic decomposition F. Pacaud P. Carpentier J.P. Chancelier M. De Lara JuMP-dev workshop, 2018 ENPC ParisTech ENSTA ParisTech Efficacity 1/23 Motivation We consider a

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Anna Timonina University of Vienna, Abraham Wald PhD Program in Statistics and Operations

More information

Section 9.1 Solving Linear Inequalities

Section 9.1 Solving Linear Inequalities Section 9.1 Solving Linear Inequalities We know that a linear equation in x can be expressed as ax + b = 0. A linear inequality in x can be written in one of the following forms: ax + b < 0, ax + b 0,

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay

Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay Lecture Note of Bus 41202, Spring 2008: More Volatility Models. Mr. Ruey Tsay The EGARCH model Asymmetry in responses to + & returns: g(ɛ t ) = θɛ t + γ[ ɛ t E( ɛ t )], with E[g(ɛ t )] = 0. To see asymmetry

More information

Financial Econometrics Lecture 5: Modelling Volatility and Correlation

Financial Econometrics Lecture 5: Modelling Volatility and Correlation Financial Econometrics Lecture 5: Modelling Volatility and Correlation Dayong Zhang Research Institute of Economics and Management Autumn, 2011 Learning Outcomes Discuss the special features of financial

More information

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Spring 2009 Main question: How much are patents worth? Answering this question is important, because it helps

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Remarks on stochastic automatic adjoint differentiation and financial models calibration

Remarks on stochastic automatic adjoint differentiation and financial models calibration arxiv:1901.04200v1 [q-fin.cp] 14 Jan 2019 Remarks on stochastic automatic adjoint differentiation and financial models calibration Dmitri Goloubentcev, Evgeny Lakshtanov Abstract In this work, we discuss

More information

Application of Markov-Switching Regression Model on Economic Variables

Application of Markov-Switching Regression Model on Economic Variables Journal of Statistical and Econometric Methods, vol.5, no.2, 2016, 17-30 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2016 Application of Markov-Switching Regression Model on Economic Variables

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Backpropagation and Recurrent Neural Networks in Financial Analysis of Multiple Stock Market Returns

Backpropagation and Recurrent Neural Networks in Financial Analysis of Multiple Stock Market Returns Backpropagation and Recurrent Neural Networks in Financial Analysis of Multiple Stock Market Returns Jovina Roman and Akhtar Jameel Department of Computer Science Xavier University of Louisiana 7325 Palmetto

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying polynomials working with complex numbers Introduction 2 b 2 A trinomial of the form x + bx + that can be written as

More information

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010 Problem set 5 Asset pricing Markus Roth Chair for Macroeconomics Johannes Gutenberg Universität Mainz Juli 5, 200 Markus Roth (Macroeconomics 2) Problem set 5 Juli 5, 200 / 40 Contents Problem 5 of problem

More information

1 The Solow Growth Model

1 The Solow Growth Model 1 The Solow Growth Model The Solow growth model is constructed around 3 building blocks: 1. The aggregate production function: = ( ()) which it is assumed to satisfy a series of technical conditions: (a)

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

Lecture 4: Divide and Conquer

Lecture 4: Divide and Conquer Lecture 4: Divide and Conquer Divide and Conquer Merge sort is an example of a divide-and-conquer algorithm Recall the three steps (at each level to solve a divideand-conquer problem recursively Divide

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Lecture 8 : The dual lattice and reducing SVP to MVP

Lecture 8 : The dual lattice and reducing SVP to MVP CSE 206A: Lattice Algorithms and Applications Spring 2007 Lecture 8 : The dual lattice and reducing SVP to MVP Lecturer: Daniele Micciancio Scribe: Scott Yilek 1 Overview In the last lecture we explored

More information

Lecture 8: Markov and Regime

Lecture 8: Markov and Regime Lecture 8: Markov and Regime Switching Models Prof. Massimo Guidolin 20192 Financial Econometrics Spring 2016 Overview Motivation Deterministic vs. Endogeneous, Stochastic Switching Dummy Regressiom Switching

More information