Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Size: px
Start display at page:

Download "Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem"

Transcription

1 Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model

2 Single Index Model 1 1. Covariance matrix of a portfolio requires 1 2n(n + 1) parameters. 2. This needs to be simplified. 3. We postulate a linear model for the random return of each asset: R i = a i + β i R m i = 1, 2,..., n, where a i, R m are random variables while the β i s are not. R m is the random return on the market portfolio which is denoted P m

3 Single Index Model 2 The market portfolio is made up of all assets weighted by their market capitalisation. Thus if the market contains n i (oustanding) shares of asset-i with current price π i, the portfolio weights for P m are given by w i = n i π i T market capitalisation of all assets. where T = n i=1 n iπ i denotes the total

4 Single Index Model 3 1. Return now to the linear model: R i = a i + β i R m 2. a i is the component of R i that is independent of the market 3. β i is a constant that determines how R i varies relative to changes in the market return R m 4. Because a i is random, we may write it in the form a i = α i + ɛ i where α i = E (a i ) and E (ɛ i ) = 0 5. Also assume that ɛ i are uncorrelated with the other ɛ j and also uncorrelated with R m

5 Single Index Model 4 1. We see that our linear model may be written as R i = α i + β i R m + ɛ i with cov(ɛ i, ɛ j ) = 0 when i j and cov(ɛ i, R m ) = If we let r i = E(R i ), r m = E(R m ), σ 2 i = V(R i ) and σ 2 ɛi = V(ɛ i ) and σ ij = cov(r i, R j ) = β i β j σ 2 m r i = α i + β i r m σ 2 i = β 2 i σ 2 m + σ 2 ɛi

6 Single Index Model 5 1. β i σ m is called the systematic risk. 2. σ ɛi is called the non-systematic risk. 3. In a well-diversified portfolio the non-systematic risk can be made negligible compared to the systematic risk. 4. Eg, for a portfolio of risky assets with weights x i we obtain µ P = α P + β P r m ; α P = i x i α i ; β P = i x i β i and σ 2 P = β2 P σ2 m + i x 2 i σ 2 ɛi

7 Single Index Model 6 1. When the portfolio is well-diversified we have approximately x i 1/n for each i and the portfolio variance becomes σ 2 P β2 P σ2 m + 1 n σ2 ɛ; σ 2 ɛ = 1 n i σ 2 ɛi 2. for large values of n, 1 n σ2 ɛ 0 so it may be ignored. 3. We see that for a well-diversified portfolio σ P β P σ m

8 Single Index Model 8 [BLACKBOARD: estimation of betas]

9 Adding a Riskless Asset 1 1. CAPM is an extension of the Portfolio Theory we discussed earlier. 2. The key feature of CAPM is that it assumes the existence of a riskless asset in the market. 3. The presence of the riskless asset leads to a degenerate efficient frontier. It becomes a straight line instead of a hyperbola in the µσ-plane. It is called the Capital Market Line.

10 Adding a Riskless Asset 2 1. We consider a portfolio of n risky assets S 1, S 2,..., S n and one riskless asset S Assume that the return on S 0 is r S 0 is riskless, so E(R 0 ) = R 0 = r 0 V(R 0 ) = 0 4. Also cov(r 0, R i ) = 0 i = 0, 1, 2,..., n

11 Adding a Riskless Asset 3 The covariance matrix for the corresponding (n + 1)-asset portfolio has structure s Ŝ = s 1n s n1... s nn

12 Adding a Riskless Asset 4 1. Obviously Ŝ does not have an inverse. Hence we cannot apply the portfolio analysis of the previous section. Therefore it is degenerate. But a solution is still available. 2. Let x, S, e and r denote the same quantities defined in the previous Chapter for the case of n-risky assets. 3. We will use the notation µ, σ to denote quantities which include the riskless asset. 4. Let x 0 denote the amount allocated to the riskless asset. Then The budget constraint becomes x ê = x 0 + x e = 1 so x 0 = 1 x e

13 Adding a Riskless Asset 5 1. The return on the portfolio can be expressed as µ = x r. Equivalently µ = r 0 + x r and r = r r 0 e 2. Finally, the presence of the riskless asset cannot affect the portfolio variance and so σ 2 = x Ŝ x = x Sx = σ 2

14 Adding a Riskless Asset 6 1. The EF for the (n + 1)-asset portfolio is therefore the solution to the unconstrained optimisation problem: min Z(x) = t µ σ2 = t(r 0 + x r) x Sx 2. NOTE: the budget constraint is automatically satisfied (since we have removed the dependence of the problem on x 0.) Therefore, we minimise Z with respect to the risky allocations x only. 3. The matrix S is the corresponding covariance matrix of the risky assets and it is non-singular.

15 Adding a Riskless Asset 7 1. As previously, the critical line (which maps to the EF in the µ σ-plane) is given parametrically by a vector equation x = x(t) for t For the minimum we must have Z x = Sx tr = 0

16 Adding a Riskless Asset 8 Then, since S is non-singular x = t(s 1 r) is the required solution, giving µ = r 0 + t(r S 1 r) = r 0 + ct σ = t 2 (r S 1 r) = ct 2 = ( µ r 0 )t.

17 Adding a Riskless Asset 9 1. The common term c = r S 1 r can be evaluated in terms of known quantities as c = r S 1 r = (r r 0 e) S 1 (r r 0 e) = ar0 2 2br 0 + c, ( ( a = d r 0 b ) ) d a a where a, b, c are as given in Chapter 7 = dσ 2 0,

18 Adding a Riskless Asset 10 σ 2 0 is the portfolio variance on the EF for the risky assets only, corresponding to a portfolio return of r 0, i.e. σ 2 0 = ar 2 0 2br 0 + c d = a d (r 0 b a )2 + 1 a

19 Adding a Riskless Asset 11 The Critical Line 1. From the previous x = t(s 1 r). 2. This the vector equation of a line in n-dimensional x space. 3. It passes through the origin x = 0 at t = 0.

20 Adding a Riskless Asset 12 The EF (Capital Market Line) Using the above we find σ 2 = dσ 2 0 t2 = ( µ r 0 ) 2 /dσ 2 0 and since d > 0 we obtain σ = µ r 0 σ 0 d This straight line in the µ σ-plane is the degenerate form of the efficient frontier, when one of the assets is riskless. In this context, it is called the Capital Market Line or CML for short.

21 Adding a Riskless Asset 13 See notes, p. 112

22 CAPM 1 1. Let x be the allocation vector for any feasible portfolio (but not necessarily efficient). 2. Let x m denote the allocation vector for the market portfolio M (containing only risky assets). cov(r, R m ) = x Sx m = t m x r = t m ( µ r 0 ) ( µ r0 ) = σm 2 µ m r 0 3. where µ = E(R) and µ m = E(R m ) and we used that σm 2 = t m ( µ m r 0 ))

23 CAPM 2 We therefore get µ r 0 = β( µ m r 0 ) or E(R) = r 0 + β(e(r m ) r 0 ) (1) where β = cov(r, R m) σ 2 m This pair of equations implies that the expected return on any asset (or portfolio of assets) is a linear combination of the expected returns on the market portfolio and the riskless asset. (2)

24 CAPM 3 1. Important to realise that the asset (or portfolio) under consideration need not lie on the CML, 2. The parameter β (or beta) is a measure of the risk of the asset (or portfolio) relative to the market portfolio. 3. A high β (β > 1) asset has higher risk than the market portfolio and has a higher expected return.

25 CAPM 4 4. A low β (β < 1) asset has lower risk than the market portfolio and is penalised by lower expected return. 5. CAPM also infers a linear return between µ and β, that is between the expected return and the associated risk of an asset (or portfolio). The corresponding line in the µβ-plane is called the Security Market Line aka SML

26 The One-Fund Theorem 1 The One-Fund Theorem There exists a single fund M of risky assets such that any efficient portfolio can be constructed as a combination of the fund M and the risk-free asset P 0.

27 The One-Fund Theorem 2 1. In equilibrium, all investors will select their portfolios on the CML since this is the new EF in the presence of a riskless asset. 2. But we already know two points on the CML: P 0, the riskless asset and M the market portfolio of risky assets. These two point uniquely determine the CML.

28 The One-Fund Theorem 2 3. Indeed, if r m denotes the expected return on the market portfolio we have µ = x 0 r 0 + (1 x 0 )r m (3) σ = (1 x 0 )σ m, (4) equivalently, on eliminating x 0, µ r 0 σ = r m r 0 σ m

29 The One-Fund Theorem 3 This last result states the important result: The price of risk of any asset or portfolio on the CML is equal to the price of risk of the market portfolio. All investors will choose portfolios which are equivalent to some proportion x 0 of the riskless asset P 0 and a proportion (1 x 0 ) of the market portfolio M. The relative proportions of the risky assets contained in M will be the same for all investors, since these quantities are independent of investor preferences. of investor preferences

30 The One-Fund Theorem 4 1. Efficient portfolios between P0 and M are called lending portfolios, since they can be obtained by purchasing the riskless asset (i.e. lending) and the market portfolio. 2. Efficient portfolios between M and infinity are called borrowing portfolios, since these can be obtained by short-selling the riskless-asset asset (i.e. borrowing) and investing the proceeds in the market portfolio.

31 The One-Fund Theorem 5 What is the market portfolio M??? Since all investors should purchase the same fund of risky securities, a little reflection indicates that it might be the portfolio of risky assets, with weights proportional to their market capitilization. That is, the weight of a risky asset in the market portfolio is equal to the proportion of that assset s total capital value to the total market value. Thus, in equilibrium, M should be precisely the same market portfolio considered in Section 1 in the lecture notes.

32 The Characteristic Line 1 From Equations (1) and (2), the CML is consistent with the regression line connecting the random variables R and R m. This regression line is called the Characteristic Line in the context of CAPM and can be written R = r 0 + β(r m r 0 ) + ɛ, where ɛ is a zero mean random variable or residual.

33 The Characteristic Line 2 In this presentation of the CAPM, it is evident that the return on a asset (or portfolio) contains 2 sources of risk: 1. through the value of the parameter β; and 2. through parameter ɛ. The β of an asset determines the systematic or non-diversifiable risk. This is the risk related to the covariance of the asset and the market portfolio. The second component, ɛ, determines the non-systematic or diversifiable risk, because its effects may be virtually eliminated through portfolio diversification.

34 The Pricing Model1 An asset with intial price, X 0 and whose price at time T in the future X T is unknown. A number of models for pricing risky such a risky asset include the Principle of Expected Return and the Principle of Expected Utility. The CAPM provides another pricing model BLACKBOARD: Do derivation

35 The Pricing Model 2 We have deduced that X 0 = 1 ( E(X T ) cov(x ) T, R M ) 1 + r 0 σm 2 (r m r 0 ), which is the pricing formulation of CAPM for a risky asset. 1. The 1st term (1 + r 0 ) 1 E(X T ) is simply the discounted expected future payoff of the asset, corresponding to the price determined by the Principle of Expected Return 2. The 2nd term is a risk premium dependent on the asset s covariance with the market and the excess return of the market over the risk-free rate.

36 The Pricing Model 3 3. The formula is linear in X T. This ensures that it is consistent with arbitrage free pricing. EG if 2 assets have random pay-outs X T and Y T at time T in the future, then the combination P T = ax T + by t must have price today equal to P 0 = ax 0 + by 0. If this wasnt the case we could ensure an arbitrage profit by purchasing the 2 asset portfolio if P 0 < ax 0 + by 0 or selling the portfolio if P 0 > ax 0 + by 0.

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

3. Capital asset pricing model and factor models

3. Capital asset pricing model and factor models 3. Capital asset pricing model and factor models (3.1) Capital asset pricing model and beta values (3.2) Interpretation and uses of the capital asset pricing model (3.3) Factor models (3.4) Performance

More information

Session 10: Lessons from the Markowitz framework p. 1

Session 10: Lessons from the Markowitz framework p. 1 Session 10: Lessons from the Markowitz framework Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 10: Lessons from the Markowitz framework p. 1 Recap The Markowitz question:

More information

Application to Portfolio Theory and the Capital Asset Pricing Model

Application to Portfolio Theory and the Capital Asset Pricing Model Appendix C Application to Portfolio Theory and the Capital Asset Pricing Model Exercise Solutions C.1 The random variables X and Y are net returns with the following bivariate distribution. y x 0 1 2 3

More information

Lecture 5 Theory of Finance 1

Lecture 5 Theory of Finance 1 Lecture 5 Theory of Finance 1 Simon Hubbert s.hubbert@bbk.ac.uk January 24, 2007 1 Introduction In the previous lecture we derived the famous Capital Asset Pricing Model (CAPM) for expected asset returns,

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 ortfolio Allocation Mean-Variance Approach Validity of the Mean-Variance Approach Constant absolute risk aversion (CARA): u(w ) = exp(

More information

Principles of Finance

Principles of Finance Principles of Finance Grzegorz Trojanowski Lecture 7: Arbitrage Pricing Theory Principles of Finance - Lecture 7 1 Lecture 7 material Required reading: Elton et al., Chapter 16 Supplementary reading: Luenberger,

More information

Financial Mathematics III Theory summary

Financial Mathematics III Theory summary Financial Mathematics III Theory summary Table of Contents Lecture 1... 7 1. State the objective of modern portfolio theory... 7 2. Define the return of an asset... 7 3. How is expected return defined?...

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School)

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) SDMR Finance (2) Olivier Brandouy University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) Outline 1 Formal Approach to QAM : concepts and notations 2 3 Portfolio risk and return

More information

MATH 4512 Fundamentals of Mathematical Finance

MATH 4512 Fundamentals of Mathematical Finance MATH 451 Fundamentals of Mathematical Finance Solution to Homework Three Course Instructor: Prof. Y.K. Kwok 1. The market portfolio consists of n uncorrelated assets with weight vector (x 1 x n T. Since

More information

Portfolio Risk Management and Linear Factor Models

Portfolio Risk Management and Linear Factor Models Chapter 9 Portfolio Risk Management and Linear Factor Models 9.1 Portfolio Risk Measures There are many quantities introduced over the years to measure the level of risk that a portfolio carries, and each

More information

From optimisation to asset pricing

From optimisation to asset pricing From optimisation to asset pricing IGIDR, Bombay May 10, 2011 From Harry Markowitz to William Sharpe = from portfolio optimisation to pricing risk Harry versus William Harry Markowitz helped us answer

More information

Black-Litterman Model

Black-Litterman Model Institute of Financial and Actuarial Mathematics at Vienna University of Technology Seminar paper Black-Litterman Model by: Tetyana Polovenko Supervisor: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold

More information

Lecture 3: Factor models in modern portfolio choice

Lecture 3: Factor models in modern portfolio choice Lecture 3: Factor models in modern portfolio choice Prof. Massimo Guidolin Portfolio Management Spring 2016 Overview The inputs of portfolio problems Using the single index model Multi-index models Portfolio

More information

RETURN AND RISK: The Capital Asset Pricing Model

RETURN AND RISK: The Capital Asset Pricing Model RETURN AND RISK: The Capital Asset Pricing Model (BASED ON RWJJ CHAPTER 11) Return and Risk: The Capital Asset Pricing Model (CAPM) Know how to calculate expected returns Understand covariance, correlation,

More information

Use partial derivatives just found, evaluate at a = 0: This slope of small hyperbola must equal slope of CML:

Use partial derivatives just found, evaluate at a = 0: This slope of small hyperbola must equal slope of CML: Derivation of CAPM formula, contd. Use the formula: dµ σ dσ a = µ a µ dµ dσ = a σ. Use partial derivatives just found, evaluate at a = 0: Plug in and find: dµ dσ σ = σ jm σm 2. a a=0 σ M = a=0 a µ j µ

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

Mean Variance Analysis and CAPM

Mean Variance Analysis and CAPM Mean Variance Analysis and CAPM Yan Zeng Version 1.0.2, last revised on 2012-05-30. Abstract A summary of mean variance analysis in portfolio management and capital asset pricing model. 1. Mean-Variance

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

Finance 100: Corporate Finance. Professor Michael R. Roberts Quiz 3 November 8, 2006

Finance 100: Corporate Finance. Professor Michael R. Roberts Quiz 3 November 8, 2006 Finance 100: Corporate Finance Professor Michael R. Roberts Quiz 3 November 8, 006 Name: Solutions Section ( Points...no joke!): Question Maximum Student Score 1 30 5 3 5 4 0 Total 100 Instructions: Please

More information

General Notation. Return and Risk: The Capital Asset Pricing Model

General Notation. Return and Risk: The Capital Asset Pricing Model Return and Risk: The Capital Asset Pricing Model (Text reference: Chapter 10) Topics general notation single security statistics covariance and correlation return and risk for a portfolio diversification

More information

Archana Khetan 05/09/ MAFA (CA Final) - Portfolio Management

Archana Khetan 05/09/ MAFA (CA Final) - Portfolio Management Archana Khetan 05/09/2010 +91-9930812722 Archana090@hotmail.com MAFA (CA Final) - Portfolio Management 1 Portfolio Management Portfolio is a collection of assets. By investing in a portfolio or combination

More information

When we model expected returns, we implicitly model expected prices

When we model expected returns, we implicitly model expected prices Week 1: Risk and Return Securities: why do we buy them? To take advantage of future cash flows (in the form of dividends or selling a security for a higher price). How much should we pay for this, considering

More information

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL CHAPTER 9: THE CAPITAL ASSET PRICING MODEL 1. E(r P ) = r f + β P [E(r M ) r f ] 18 = 6 + β P(14 6) β P = 12/8 = 1.5 2. If the security s correlation coefficient with the market portfolio doubles (with

More information

Lecture 10-12: CAPM.

Lecture 10-12: CAPM. Lecture 10-12: CAPM. I. Reading II. Market Portfolio. III. CAPM World: Assumptions. IV. Portfolio Choice in a CAPM World. V. Minimum Variance Mathematics. VI. Individual Assets in a CAPM World. VII. Intuition

More information

FIN 6160 Investment Theory. Lecture 7-10

FIN 6160 Investment Theory. Lecture 7-10 FIN 6160 Investment Theory Lecture 7-10 Optimal Asset Allocation Minimum Variance Portfolio is the portfolio with lowest possible variance. To find the optimal asset allocation for the efficient frontier

More information

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL CHAPTER 9: THE CAPITAL ASSET PRICING MODEL 1. E(r P ) = r f + β P [E(r M ) r f ] 18 = 6 + β P(14 6) β P = 12/8 = 1.5 2. If the security s correlation coefficient with the market portfolio doubles (with

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Fall 2017 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Lecture 4: Return vs Risk: Mean-Variance Analysis

Lecture 4: Return vs Risk: Mean-Variance Analysis Lecture 4: Return vs Risk: Mean-Variance Analysis 4.1 Basics Given a cool of many different stocks, you want to decide, for each stock in the pool, whether you include it in your portfolio and (if yes)

More information

Capital Asset Pricing Model

Capital Asset Pricing Model Capital Asset Pricing Model 1 Introduction In this handout we develop a model that can be used to determine how an investor can choose an optimal asset portfolio in this sense: the investor will earn the

More information

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7 OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS BKM Ch 7 ASSET ALLOCATION Idea from bank account to diversified portfolio Discussion principles are the same for any number of stocks A. bonds and stocks B.

More information

Return and Risk: The Capital-Asset Pricing Model (CAPM)

Return and Risk: The Capital-Asset Pricing Model (CAPM) Return and Risk: The Capital-Asset Pricing Model (CAPM) Expected Returns (Single assets & Portfolios), Variance, Diversification, Efficient Set, Market Portfolio, and CAPM Expected Returns and Variances

More information

Financial Economics: Capital Asset Pricing Model

Financial Economics: Capital Asset Pricing Model Financial Economics: Capital Asset Pricing Model Shuoxun Hellen Zhang WISE & SOE XIAMEN UNIVERSITY April, 2015 1 / 66 Outline Outline MPT and the CAPM Deriving the CAPM Application of CAPM Strengths and

More information

QR43, Introduction to Investments Class Notes, Fall 2003 IV. Portfolio Choice

QR43, Introduction to Investments Class Notes, Fall 2003 IV. Portfolio Choice QR43, Introduction to Investments Class Notes, Fall 2003 IV. Portfolio Choice A. Mean-Variance Analysis 1. Thevarianceofaportfolio. Consider the choice between two risky assets with returns R 1 and R 2.

More information

MATH4512 Fundamentals of Mathematical Finance. Topic Two Mean variance portfolio theory. 2.1 Mean and variance of portfolio return

MATH4512 Fundamentals of Mathematical Finance. Topic Two Mean variance portfolio theory. 2.1 Mean and variance of portfolio return MATH4512 Fundamentals of Mathematical Finance Topic Two Mean variance portfolio theory 2.1 Mean and variance of portfolio return 2.2 Markowitz mean-variance formulation 2.3 Two-fund Theorem 2.4 Inclusion

More information

MATH362 Fundamentals of Mathematical Finance. Topic 1 Mean variance portfolio theory. 1.1 Mean and variance of portfolio return

MATH362 Fundamentals of Mathematical Finance. Topic 1 Mean variance portfolio theory. 1.1 Mean and variance of portfolio return MATH362 Fundamentals of Mathematical Finance Topic 1 Mean variance portfolio theory 1.1 Mean and variance of portfolio return 1.2 Markowitz mean-variance formulation 1.3 Two-fund Theorem 1.4 Inclusion

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

Risk and Return. CA Final Paper 2 Strategic Financial Management Chapter 7. Dr. Amit Bagga Phd.,FCA,AICWA,Mcom.

Risk and Return. CA Final Paper 2 Strategic Financial Management Chapter 7. Dr. Amit Bagga Phd.,FCA,AICWA,Mcom. Risk and Return CA Final Paper 2 Strategic Financial Management Chapter 7 Dr. Amit Bagga Phd.,FCA,AICWA,Mcom. Learning Objectives Discuss the objectives of portfolio Management -Risk and Return Phases

More information

P s =(0,W 0 R) safe; P r =(W 0 σ,w 0 µ) risky; Beyond P r possible if leveraged borrowing OK Objective function Mean a (Std.Dev.

P s =(0,W 0 R) safe; P r =(W 0 σ,w 0 µ) risky; Beyond P r possible if leveraged borrowing OK Objective function Mean a (Std.Dev. ECO 305 FALL 2003 December 2 ORTFOLIO CHOICE One Riskless, One Risky Asset Safe asset: gross return rate R (1 plus interest rate) Risky asset: random gross return rate r Mean µ = E[r] >R,Varianceσ 2 =

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Optimal Investment with Risky Assets There are N risky assets, named 1, 2,, N, but no risk-free asset. With fixed total dollar

More information

Foundations of Finance

Foundations of Finance Lecture 5: CAPM. I. Reading II. Market Portfolio. III. CAPM World: Assumptions. IV. Portfolio Choice in a CAPM World. V. Individual Assets in a CAPM World. VI. Intuition for the SML (E[R p ] depending

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Gary Schurman MB, CFA August, 2012 The Capital Asset Pricing Model CAPM is used to estimate the required rate of return

More information

Econ 424/CFRM 462 Portfolio Risk Budgeting

Econ 424/CFRM 462 Portfolio Risk Budgeting Econ 424/CFRM 462 Portfolio Risk Budgeting Eric Zivot August 14, 2014 Portfolio Risk Budgeting Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the

More information

LECTURE NOTES 3 ARIEL M. VIALE

LECTURE NOTES 3 ARIEL M. VIALE LECTURE NOTES 3 ARIEL M VIALE I Markowitz-Tobin Mean-Variance Portfolio Analysis Assumption Mean-Variance preferences Markowitz 95 Quadratic utility function E [ w b w ] { = E [ w] b V ar w + E [ w] }

More information

Chapter 13 Return, Risk, and Security Market Line

Chapter 13 Return, Risk, and Security Market Line 1 Chapter 13 Return, Risk, and Security Market Line Konan Chan Financial Management, Spring 2018 Topics Covered Expected Return and Variance Portfolio Risk and Return Risk & Diversification Systematic

More information

The stochastic discount factor and the CAPM

The stochastic discount factor and the CAPM The stochastic discount factor and the CAPM Pierre Chaigneau pierre.chaigneau@hec.ca November 8, 2011 Can we price all assets by appropriately discounting their future cash flows? What determines the risk

More information

Lecture 2: Stochastic Discount Factor

Lecture 2: Stochastic Discount Factor Lecture 2: Stochastic Discount Factor Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Stochastic Discount Factor (SDF) A stochastic discount factor is a stochastic process {M t,t+s } such that

More information

Solutions to questions in Chapter 8 except those in PS4. The minimum-variance portfolio is found by applying the formula:

Solutions to questions in Chapter 8 except those in PS4. The minimum-variance portfolio is found by applying the formula: Solutions to questions in Chapter 8 except those in PS4 1. The parameters of the opportunity set are: E(r S ) = 20%, E(r B ) = 12%, σ S = 30%, σ B = 15%, ρ =.10 From the standard deviations and the correlation

More information

You can also read about the CAPM in any undergraduate (or graduate) finance text. ample, Bodie, Kane, and Marcus Investments.

You can also read about the CAPM in any undergraduate (or graduate) finance text. ample, Bodie, Kane, and Marcus Investments. ECONOMICS 7344, Spring 2003 Bent E. Sørensen March 6, 2012 An introduction to the CAPM model. We will first sketch the efficient frontier and how to derive the Capital Market Line and we will then derive

More information

Hedge Portfolios, the No Arbitrage Condition & Arbitrage Pricing Theory

Hedge Portfolios, the No Arbitrage Condition & Arbitrage Pricing Theory Hedge Portfolios, the No Arbitrage Condition & Arbitrage Pricing Theory Hedge Portfolios A portfolio that has zero risk is said to be "perfectly hedged" or, in the jargon of Economics and Finance, is referred

More information

9.1 Principal Component Analysis for Portfolios

9.1 Principal Component Analysis for Portfolios Chapter 9 Alpha Trading By the name of the strategies, an alpha trading strategy is to select and trade portfolios so the alpha is maximized. Two important mathematical objects are factor analysis and

More information

Portfolio models - Podgorica

Portfolio models - Podgorica Outline Holding period return Suppose you invest in a stock-index fund over the next period (e.g. 1 year). The current price is 100$ per share. At the end of the period you receive a dividend of 5$; the

More information

Lecture 2: Fundamentals of meanvariance

Lecture 2: Fundamentals of meanvariance Lecture 2: Fundamentals of meanvariance analysis Prof. Massimo Guidolin Portfolio Management Second Term 2018 Outline and objectives Mean-variance and efficient frontiers: logical meaning o Guidolin-Pedio,

More information

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Asset Allocation and Risk Management Martin B. Haugh Department of Industrial Engineering and Operations Research Columbia University Outline Review of Mean-Variance Analysis

More information

Session 8: The Markowitz problem p. 1

Session 8: The Markowitz problem p. 1 Session 8: The Markowitz problem Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 8: The Markowitz problem p. 1 Portfolio optimisation Session 8: The Markowitz problem

More information

Key investment insights

Key investment insights Basic Portfolio Theory B. Espen Eckbo 2011 Key investment insights Diversification: Always think in terms of stock portfolios rather than individual stocks But which portfolio? One that is highly diversified

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

Lecture 5. Return and Risk: The Capital Asset Pricing Model

Lecture 5. Return and Risk: The Capital Asset Pricing Model Lecture 5 Return and Risk: The Capital Asset Pricing Model Outline 1 Individual Securities 2 Expected Return, Variance, and Covariance 3 The Return and Risk for Portfolios 4 The Efficient Set for Two Assets

More information

CHAPTER 8: INDEX MODELS

CHAPTER 8: INDEX MODELS Chapter 8 - Index odels CHATER 8: INDEX ODELS ROBLE SETS 1. The advantage of the index model, compared to the arkowitz procedure, is the vastly reduced number of estimates required. In addition, the large

More information

Risk and Return and Portfolio Theory

Risk and Return and Portfolio Theory Risk and Return and Portfolio Theory Intro: Last week we learned how to calculate cash flows, now we want to learn how to discount these cash flows. This will take the next several weeks. We know discount

More information

Finance 100: Corporate Finance

Finance 100: Corporate Finance Finance 100: Corporate Finance Professor Michael R. Roberts Quiz 2 October 31, 2007 Name: Section: Question Maximum Student Score 1 30 2 40 3 30 Total 100 Instructions: Please read each question carefully

More information

Microéconomie de la finance

Microéconomie de la finance Microéconomie de la finance 7 e édition Christophe Boucher christophe.boucher@univ-lorraine.fr 1 Chapitre 6 7 e édition Les modèles d évaluation d actifs 2 Introduction The Single-Index Model - Simplifying

More information

Mean-Variance Theory at Work: Single and Multi-Index (Factor) Models

Mean-Variance Theory at Work: Single and Multi-Index (Factor) Models Mean-Variance Theory at Work: Single and Multi-Index (Factor) Models Prof. Massimo Guidolin Portfolio Management Spring 2017 Outline and objectives The number of parameters in MV problems and the curse

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

The Capital Asset Pricing Model

The Capital Asset Pricing Model The Capital Asset Pricing Model Moty Katzman September 19, 2014 Aim: To find the correct price of financial assets. Additional assumptions about markets and investors: A4: Markets are in equilibrium: The

More information

Applied portfolio analysis. Lecture II

Applied portfolio analysis. Lecture II Applied portfolio analysis Lecture II + 1 Fundamentals in optimal portfolio choice How do we choose the optimal allocation? What inputs do we need? How do we choose them? How easy is to get exact solutions

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996:

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996: University of Washington Summer Department of Economics Eric Zivot Economics 3 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of handwritten notes. Answer all

More information

Macroeconomics Sequence, Block I. Introduction to Consumption Asset Pricing

Macroeconomics Sequence, Block I. Introduction to Consumption Asset Pricing Macroeconomics Sequence, Block I Introduction to Consumption Asset Pricing Nicola Pavoni October 21, 2016 The Lucas Tree Model This is a general equilibrium model where instead of deriving properties of

More information

Microeconomics 3. Economics Programme, University of Copenhagen. Spring semester Lars Peter Østerdal. Week 17

Microeconomics 3. Economics Programme, University of Copenhagen. Spring semester Lars Peter Østerdal. Week 17 Microeconomics 3 Economics Programme, University of Copenhagen Spring semester 2006 Week 17 Lars Peter Østerdal 1 Today s programme General equilibrium over time and under uncertainty (slides from week

More information

Modelling Returns: the CER and the CAPM

Modelling Returns: the CER and the CAPM Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20 Econometric Modelling of Financial Returns Financial data are mostly observational data: they

More information

1.1 Interest rates Time value of money

1.1 Interest rates Time value of money Lecture 1 Pre- Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on

More information

Chapter 6 Efficient Diversification. b. Calculation of mean return and variance for the stock fund: (A) (B) (C) (D) (E) (F) (G)

Chapter 6 Efficient Diversification. b. Calculation of mean return and variance for the stock fund: (A) (B) (C) (D) (E) (F) (G) Chapter 6 Efficient Diversification 1. E(r P ) = 12.1% 3. a. The mean return should be equal to the value computed in the spreadsheet. The fund's return is 3% lower in a recession, but 3% higher in a boom.

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

The Markowitz framework

The Markowitz framework IGIDR, Bombay 4 May, 2011 Goals What is a portfolio? Asset classes that define an Indian portfolio, and their markets. Inputs to portfolio optimisation: measuring returns and risk of a portfolio Optimisation

More information

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén PORTFOLIO THEORY Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Portfolio Theory Investments 1 / 60 Outline 1 Modern Portfolio Theory Introduction Mean-Variance

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 OPTION RISK Introduction In these notes we consider the risk of an option and relate it to the standard capital asset pricing model. If we are simply interested

More information

Optimizing Portfolios

Optimizing Portfolios Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Investors may wish to adjust the allocation of financial resources including a mixture

More information

ECMC49F Midterm. Instructor: Travis NG Date: Oct 26, 2005 Duration: 1 hour 50 mins Total Marks: 100. [1] [25 marks] Decision-making under certainty

ECMC49F Midterm. Instructor: Travis NG Date: Oct 26, 2005 Duration: 1 hour 50 mins Total Marks: 100. [1] [25 marks] Decision-making under certainty ECMC49F Midterm Instructor: Travis NG Date: Oct 26, 2005 Duration: 1 hour 50 mins Total Marks: 100 [1] [25 marks] Decision-making under certainty (a) [5 marks] Graphically demonstrate the Fisher Separation

More information

An Intertemporal Capital Asset Pricing Model

An Intertemporal Capital Asset Pricing Model I. Assumptions Finance 400 A. Penati - G. Pennacchi Notes on An Intertemporal Capital Asset Pricing Model These notes are based on the article Robert C. Merton (1973) An Intertemporal Capital Asset Pricing

More information

Derivation of zero-beta CAPM: Efficient portfolios

Derivation of zero-beta CAPM: Efficient portfolios Derivation of zero-beta CAPM: Efficient portfolios AssumptionsasCAPM,exceptR f does not exist. Argument which leads to Capital Market Line is invalid. (No straight line through R f, tilted up as far as

More information

Mean Variance Portfolio Theory

Mean Variance Portfolio Theory Chapter 1 Mean Variance Portfolio Theory This book is about portfolio construction and risk analysis in the real-world context where optimization is done with constraints and penalties specified by the

More information

15.414: COURSE REVIEW. Main Ideas of the Course. Approach: Discounted Cashflows (i.e. PV, NPV): CF 1 CF 2 P V = (1 + r 1 ) (1 + r 2 ) 2

15.414: COURSE REVIEW. Main Ideas of the Course. Approach: Discounted Cashflows (i.e. PV, NPV): CF 1 CF 2 P V = (1 + r 1 ) (1 + r 2 ) 2 15.414: COURSE REVIEW JIRO E. KONDO Valuation: Main Ideas of the Course. Approach: Discounted Cashflows (i.e. PV, NPV): and CF 1 CF 2 P V = + +... (1 + r 1 ) (1 + r 2 ) 2 CF 1 CF 2 NP V = CF 0 + + +...

More information

Optimal Portfolio Selection

Optimal Portfolio Selection Optimal Portfolio Selection We have geometrically described characteristics of the optimal portfolio. Now we turn our attention to a methodology for exactly identifying the optimal portfolio given a set

More information

Quantitative Portfolio Theory & Performance Analysis

Quantitative Portfolio Theory & Performance Analysis 550.447 Quantitative ortfolio Theory & erformance Analysis Week February 18, 2013 Basic Elements of Modern ortfolio Theory Assignment For Week of February 18 th (This Week) Read: A&L, Chapter 3 (Basic

More information

Equilibrium Asset Returns

Equilibrium Asset Returns Equilibrium Asset Returns Equilibrium Asset Returns 1/ 38 Introduction We analyze the Intertemporal Capital Asset Pricing Model (ICAPM) of Robert Merton (1973). The standard single-period CAPM holds when

More information

Ch. 8 Risk and Rates of Return. Return, Risk and Capital Market. Investment returns

Ch. 8 Risk and Rates of Return. Return, Risk and Capital Market. Investment returns Ch. 8 Risk and Rates of Return Topics Measuring Return Measuring Risk Risk & Diversification CAPM Return, Risk and Capital Market Managers must estimate current and future opportunity rates of return for

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

1 Asset Pricing: Replicating portfolios

1 Asset Pricing: Replicating portfolios Alberto Bisin Corporate Finance: Lecture Notes Class 1: Valuation updated November 17th, 2002 1 Asset Pricing: Replicating portfolios Consider an economy with two states of nature {s 1, s 2 } and with

More information

IAPM June 2012 Second Semester Solutions

IAPM June 2012 Second Semester Solutions IAPM June 202 Second Semester Solutions The calculations are given below. A good answer requires both the correct calculations and an explanation of the calculations. Marks are lost if explanation is absent.

More information

Derivatives and Asset Pricing in a Discrete-Time Setting: Basic Concepts and Strategies

Derivatives and Asset Pricing in a Discrete-Time Setting: Basic Concepts and Strategies Chapter 1 Derivatives and Asset Pricing in a Discrete-Time Setting: Basic Concepts and Strategies This chapter is organized as follows: 1. Section 2 develops the basic strategies using calls and puts.

More information