Scenario reduction and scenario tree construction for power management problems

Size: px
Start display at page:

Download "Scenario reduction and scenario tree construction for power management problems"

Transcription

1 Scenario reduction and scenario tree construction for power management problems N. Gröwe-Kuska, H. Heitsch and W. Römisch Humboldt-University Berlin Institute of Mathematics Page 1 of 20 IEEE Bologna POWER TECH 2003 Bologna, June 23-26, 2003

2 1. Electricity portfolio management We consider a power utility owning a hydro-thermal generation system and producing and trading electric power during some time horizon [1, T ] (e.g., weekly, monthly, yearly). Objective: Maximization of (expected) revenue Decisions: Mixed-integer (large scale) System and trading constraints: Capacity, reservoir, operational, load, reserve constraints Stochastic data processes: Electrical load, fuel and electricity prices, inflows Page 2 of 20

3 1.1. Data process approximation by scenario trees The data process ξ = {ξ t } T t=1 is approximated by a process forming a scenario tree which is based on a finite set N of nodes. n = 1 n n N T N + (n) t = 1 t 1 t(n) T Scenario tree with t 1 = 2, T = 5, N = 23 and 11 leaves The root node n = 1 stands for period t = 1. Every other node n has a unique predecessor n and a set N + (n) of successors. Let path(n) be the set {1,..., n, n} of nodes from the root to node n, t(n) := path(n) and N T := {n N : N + (n) = } the set of leaves. A scenario corresponds to path(n) for some n N T. With the given scenario probabilities {π n } n NT, we define recursively node probabilities π n := n + N + (n) π n +, n N. Page 3 of 20

4 1.2. Stochastic power management model Stochastic process: {ξ t = (d t, r t, γ t, α t, β t, ζ t )} T t=1 (electrical load, spinning reserve, inflows, (fuel or electricity) prices) given as a (multivariate) scenario tree Mixed-integer programming problem: min n N π n i=1 I [Ci n (p n i, u n i ) + Si n (u i )] s.t. p min it(n) un i p n i p max it(n) un i, u n i {0, 1}, n N, i = 1: I, u n τ i u n (τ+1) i u n (τ+1) i u n i, τ = 1: τ i 1, n N, i = 1: I, u n τ i 1 u n i, τ = 1: τ i 1, n N, i = 1: I, 0 vj n vjt(n) max, 0 wn j wjt(n) max, 0 ln j ljt(n) max, n N, j = 1: J, l n j = l n j v n j + η j w n j + γ n j, n N, j = 1: J, l 0 j = l in j, I p n i + i=1 I i=1 lj n = lj end, n N T, j = 1: J, J (vj n wj n ) d n, n N, j=1 (u n i p max it(n) pn i ) r n, n N. C n i are fuel or trading costs and S n i start-up costs of unit i at node n N : Ci n (p n i, u n i ) := max { αil n pn i + βil n un i } l=1,..., l τ S n i (u i ) := max τ=0,...,τ c i ζ n iτ (u n i κ=1 u n κ i ) Page 4 of 20

5 1.3. Solving the stochastic power management model N T N variables constraints nonzeros binary continuous Dimension of the model for T = 168, I = 25 and J = 7 Primal approaches seem to be hopeless in general! Lagrangian relaxation of coupling constraints Solution of the dual problem (proximal bundle method) Lagrange heuristics Solution of subproblems (stochastic dynamic programming) (descent algorithm) Page 5 of 20 (stochastic) economic dispatch

6 2. Generation of scenario trees (i) Development of a stochastic model for the data process ξ (parametric [e.g. time series model], nonparametric [e.g. resampling]) and generation of simulation scenarios; (ii) Construction of a scenario tree out of the stochastic model or of the simulation scenarios; (iii) optional scenario tree reduction. Approaches for (ii): (1) Barycentric scenario trees (conditional expectations w.r.t. a decomposition of the support into simplices); (2) Fitting of trees with prescribed structure to given moments; (3) Conditional sampling by integration quadratures; (4) Clustering methods for bundling scenarios; (5) Scenario tree construction based on optimal approximations w.r.t. certain probability metrics. Page 6 of 20

7 3. Distances of probability distributions Let P denote the probability distribution of the stochastic data process {ξ t } T t=1, where ξ t has dimension r, i.e., P has support Ξ IR rt = IR s. The Kantorovich functional or transportation metric takes the form µ c (P, Q) := inf{ c(ξ, ξ)η(dξ, d ξ) : π 1 η = P, π 2 η = Q}, Ξ Ξ where c : Ξ Ξ IR is a certain cost function. Example: c(ξ, ξ) := max{1, ξ p 1, ξ p 1 } ξ ξ (p 1) Page 7 of 20 Approach: Select a probability metric a function c : Ξ Ξ IR such that the underlying stochastic optimization model is stable w.r.t. µ c. Given P and a tolerance ε > 0, determine a scenario tree such that its probability distribution P tr has the property µ c (P, P tr ) ε.

8 Distances of discrete distributions P : scenarios ξ i with probabilities p i, i = 1,..., N, Q: scenarios ξ j with probabilities q j, j = 1,..., M. Then N µ c (P, Q) = sup{ p i u i + i=1 M q j v j : u i + v j c(ξ i, ξ j ) i, j} j=1 = inf{ i,j η ij c(ξ i, ξ j ) : η ij 0, j η ij = p i, i η ij = q j } (optimal value of linear transportation problems) (a) Distances of distributions can be computed by solving specific linear programs. (b) The principle of optimal scenario generation can be formulated as a best approximation problem with respect to µ c. However, it is nonconvex and difficult to solve. (c) The best approximation problem simplifies considerably if the scenarios are taken from a specified finite set. Page 8 of 20

9 4. Scenario Reduction We consider discrete distributions P with scenarios ξ i and probabilities p i, i = 1,..., N, and Q having a subset of scenarios ξ j, j J {1,..., N}, of P, but different probabilities q j, j J. Optimal reduction of a given scenario set J: The best approximation of P with respect to µ c by such a distribution Q exists and is denoted by Q. It has the distance D J = µ c (P, Q) = p i min c(ξ i, ξ j ) j J i J and the probabilities q j = p j + p i, j J, where J j := {i i J j J : j = j(i)} and j(i) arg min c(ξ i, ξ j ), i J, i.e., the optimal j J redistribution consists in adding the deleted scenario weight to that of some of the closest scenarios. Page 9 of 20 However, finding the optimal scenario set with a fixed number n of scenarios is a combinatorial optimization problem.

10 5. Fast reduction heuristics Algorithm 1: (Simultaneous backward reduction) Step [0]: Step [i]: Step [N-n+1]: Sorting of {c(ξ j, ξ k ) : j}, k, J [0] :=. l i arg min l J [i 1] k J [i 1] {l} J [i] := J [i 1] {l i }. Optimal redistribution. p k min c(ξ k, ξ j ). j J [i 1] {l} Page 10 of 20

11 Algorithm 2: (Fast forward selection) Step [0]: Compute c(ξ k, ξ u ), k, u = 1,..., N, Step [i]: Step [n+1]: J [0] := {1,..., N}. u i arg min u J [i 1] J [i] := J [i 1] \ {u i }. k J [i 1] \{u} Optimal redistribution. p k min c(ξ k, ξ j ), j J [i 1] \{u} Page 11 of 20

12 1000 Original load scenario tree Reduced load scenario tree / backward Page 12 of Reduced load scenario tree / forward

13 6. Constructing scenario trees from data scenarios Let a fan of data scenarios ξ i = (ξ1, i..., ξt i ) with probabilities πi, i = 1,..., N, be given, i.e., all scenarios coincide at the starting point t = 1, i.e., ξ1 1 =... = ξ1 N =: ξ1. Hence, it has the form t = 1 may be regarded as the root node of the scenario tree consisting of N scenarios (leaves). Now, P is the (discrete) probability distribution of ξ. Let c be adapted to the underlying stochastic program containing P. We describe an algorithm that produces, for each ε > 0, a scenario tree with distribution P ε, root node ξ1, less nodes than P and µ c (P, P ε ) < ε. Page 13 of 20

14 Recursive reduction algorithm: Let ε t > 0, t = 1,..., T, be given such that T t=1 ε t ε, set t := T, I T +1 := {1,..., N}, πt i +1 := πi and P T +1 := P. For t = T,..., 2: Step t: Determine an index set I t I t+1 such that µ ct (P t, P t+1 ) < ε t, where {ξ i } i It is the support of P t and c t is defined by c t (ξ, ξ) := c((ξ 1,..., ξ t, 0,..., 0), ( ξ 1,..., ξ t, 0,..., 0)); (scenario reduction w.r.t. the time horizon [1, t]) Step 1: Determine a probability measure P ε such that its marginal distributions P ε Π 1 t are δ ξ 1 for t = 1 and P ε Π 1 t = πtδ i ξ i and π t t i := πt+1 i + π j t+1, i I t j J t,i where J t,i := {j I t+1 \ I t : i t (j) = i}, i t (j) arg min i I t c t (ξ j, ξ i )} are the index sets according to the redistribution rule. Page 14 of 20

15 Page 15 of 20 Blue: compute c-distances of scenarios; delete the green scenario & add its weight to the red one

16 Application: ξ is the bivariate weekly data process having the components a) electrical load, b) hourly electricity spot prices (at EEX). Data scenarios are obtained from a stochastic model calibrated to the historical load data of a (small) German power utility and historical price data of the European Energy Exchange (EEX) at Leipzig. We choose N = 50, T = 7, ε = 0.05, ε t = ε T, and arrive at a tree with 4608 nodes (instead of 8400 nodes of the original fan). t hours I t Page 16 of 20

17 400 Scenario tree for the electrical load Load Hours 100 Scenario tree for hourly spot prices Page 17 of Spot price Hours

18 7. GAMS/SCENRED GAMS/SCENRED introduced to GAMS Distribution 20.6 (May 2002) SCENRED is a collection of C++ routines for the optimal reduction of scenarios or scenario trees GAMS/SCENRED provides the link from GAMS programs to the scenario reduction algorithms. The reduced problems can then be solved by a deterministic optimization algorithm provided by GAMS. SCENRED contains three reduction algorithms: - FAST BACKWARD method - Mix of FAST BACKWARD/FORWARD methods - Mix of FAST BACKWARD/BACKWARD methods Automatic selection (best expected performance w.r.t. running time) Details: Page 18 of 20

19 8. Numerical tests We tested the link between the Lagrangian relaxation and the scenario tree construction algorithms. Portfolio management problem for 25 thermal generation units and 7 pumped-storage hydro units Time horizon: 1 week; Discretization: 1 hour Initial fan of 100 load scenarios simulated from a statistical model for the load process (combines a time series model for the daily mean load with regression models for the intra-day behaviour) Page 19 of 20

20 Dimension and solution time for the dual ε rel N T N Variables Nonzeros time[s] binary continuous Dual optimum Page 20 of relative tolerance for the scenario tree Hours Dual optimum and number of scenario bundles I t (t = 1,..., T ) for scenario trees with relative tolerance ε rel = ( ), ( ), 0.01 ( )

Approximations of Stochastic Programs. Scenario Tree Reduction and Construction

Approximations of Stochastic Programs. Scenario Tree Reduction and Construction Approximations of Stochastic Programs. Scenario Tree Reduction and Construction W. Römisch Humboldt-University Berlin Institute of Mathematics 10099 Berlin, Germany www.mathematik.hu-berlin.de/~romisch

More information

Scenario tree generation for stochastic programming models using GAMS/SCENRED

Scenario tree generation for stochastic programming models using GAMS/SCENRED Scenario tree generation for stochastic programming models using GAMS/SCENRED Holger Heitsch 1 and Steven Dirkse 2 1 Humboldt-University Berlin, Department of Mathematics, Germany 2 GAMS Development Corp.,

More information

Energy Systems under Uncertainty: Modeling and Computations

Energy Systems under Uncertainty: Modeling and Computations Energy Systems under Uncertainty: Modeling and Computations W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Systems Analysis 2015, November 11 13, IIASA (Laxenburg,

More information

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals A. Eichhorn and W. Römisch Humboldt-University Berlin, Department of Mathematics, Germany http://www.math.hu-berlin.de/~romisch

More information

Scenario Reduction and Scenario Tree Construction for Power Management Problems

Scenario Reduction and Scenario Tree Construction for Power Management Problems 1 Scenario Reduction and Scenario Tree Construction for Power Management Problems Nicole Gröwe-Kuska, Holger Heitsch and Werner Römisch Abstract Portfolio and risk management problems of power utilities

More information

Scenario Reduction and Scenario Tree Construction for Power Management Problems

Scenario Reduction and Scenario Tree Construction for Power Management Problems 1 Scenario Reduction Scenario Tree Construction for ower Management roblems Nicole Gröwe-Kuska Holger Heitsch Werner Römisch Abstract ortfolio risk management problems of power utilities may be modeled

More information

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications

Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Approximation of Continuous-State Scenario Processes in Multi-Stage Stochastic Optimization and its Applications Anna Timonina University of Vienna, Abraham Wald PhD Program in Statistics and Operations

More information

A Multi-Stage Stochastic Programming Model for Managing Risk-Optimal Electricity Portfolios. Stochastic Programming and Electricity Risk Management

A Multi-Stage Stochastic Programming Model for Managing Risk-Optimal Electricity Portfolios. Stochastic Programming and Electricity Risk Management A Multi-Stage Stochastic Programming Model for Managing Risk-Optimal Electricity Portfolios SLIDE 1 Outline Multi-stage stochastic programming modeling Setting - Electricity portfolio management Electricity

More information

Worst-case-expectation approach to optimization under uncertainty

Worst-case-expectation approach to optimization under uncertainty Worst-case-expectation approach to optimization under uncertainty Wajdi Tekaya Joint research with Alexander Shapiro, Murilo Pereira Soares and Joari Paulo da Costa : Cambridge Systems Associates; : Georgia

More information

Multistage Stochastic Mixed-Integer Programs for Optimizing Gas Contract and Scheduling Maintenance

Multistage Stochastic Mixed-Integer Programs for Optimizing Gas Contract and Scheduling Maintenance Multistage Stochastic Mixed-Integer Programs for Optimizing Gas Contract and Scheduling Maintenance Zhe Liu Siqian Shen September 2, 2012 Abstract In this paper, we present multistage stochastic mixed-integer

More information

Robust Dual Dynamic Programming

Robust Dual Dynamic Programming 1 / 18 Robust Dual Dynamic Programming Angelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann American University of Beirut Olayan School of Business 31 May 217 2 / 18 Inspired by SDDP Stochastic optimization

More information

Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion Planning

Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion Planning Industrial and Manufacturing Systems Engineering Publications Industrial and Manufacturing Systems Engineering 1-2013 Scenario Construction and Reduction Applied to Stochastic Power Generation Expansion

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

Investigation of the and minimum storage energy target levels approach. Final Report

Investigation of the and minimum storage energy target levels approach. Final Report Investigation of the AV@R and minimum storage energy target levels approach Final Report First activity of the technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional

More information

Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach

Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach Alexander Shapiro and Wajdi Tekaya School of Industrial and

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market

Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market Multistage Stochastic Demand-side Management for Price-Making Major Consumers of Electricity in a Co-optimized Energy and Reserve Market Mahbubeh Habibian Anthony Downward Golbon Zakeri Abstract In this

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Optimal construction of a fund of funds

Optimal construction of a fund of funds Optimal construction of a fund of funds Petri Hilli, Matti Koivu and Teemu Pennanen January 28, 29 Introduction We study the problem of diversifying a given initial capital over a finite number of investment

More information

Integer Programming Models

Integer Programming Models Integer Programming Models Fabio Furini December 10, 2014 Integer Programming Models 1 Outline 1 Combinatorial Auctions 2 The Lockbox Problem 3 Constructing an Index Fund Integer Programming Models 2 Integer

More information

Scenario Generation for Stochastic Programming Introduction and selected methods

Scenario Generation for Stochastic Programming Introduction and selected methods Michal Kaut Scenario Generation for Stochastic Programming Introduction and selected methods SINTEF Technology and Society September 2011 Scenario Generation for Stochastic Programming 1 Outline Introduction

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Optimization Models in Financial Mathematics

Optimization Models in Financial Mathematics Optimization Models in Financial Mathematics John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge Illinois Section MAA, April 3, 2004 1 Introduction Trends in financial mathematics

More information

Risk aversion in multi-stage stochastic programming: a modeling and algorithmic perspective

Risk aversion in multi-stage stochastic programming: a modeling and algorithmic perspective Risk aversion in multi-stage stochastic programming: a modeling and algorithmic perspective Tito Homem-de-Mello School of Business Universidad Adolfo Ibañez, Santiago, Chile Joint work with Bernardo Pagnoncelli

More information

Problem set Fall 2012.

Problem set Fall 2012. Problem set 1. 14.461 Fall 2012. Ivan Werning September 13, 2012 References: 1. Ljungqvist L., and Thomas J. Sargent (2000), Recursive Macroeconomic Theory, sections 17.2 for Problem 1,2. 2. Werning Ivan

More information

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech Solving electricity market quadratic problems by Branch and Fix Coordination methods. F.-Javier Heredia 1,2, C. Corchero 1,2, Eugenio Mijangos 1,3 1 Group on Numerical Optimization and Modeling, Universitat

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2018 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 160

More information

Multistage risk-averse asset allocation with transaction costs

Multistage risk-averse asset allocation with transaction costs Multistage risk-averse asset allocation with transaction costs 1 Introduction Václav Kozmík 1 Abstract. This paper deals with asset allocation problems formulated as multistage stochastic programming models.

More information

hydro thermal portfolio management

hydro thermal portfolio management hydro thermal portfolio management presentation @ Schloss Leopoldskron 8 Sep 004 contents. thesis initiation. context 3. problem definition 4. main milestones of the thesis 5. milestones presentation 6.

More information

Arbitrage Conditions for Electricity Markets with Production and Storage

Arbitrage Conditions for Electricity Markets with Production and Storage SWM ORCOS Arbitrage Conditions for Electricity Markets with Production and Storage Raimund Kovacevic Research Report 2018-03 March 2018 ISSN 2521-313X Operations Research and Control Systems Institute

More information

Optimal Pricing in Markets with Non-Convex Costs

Optimal Pricing in Markets with Non-Convex Costs Optimal Pricing in Markets with Non-Convex Costs Navid Azizan, California Institute of Technology Yu Su, California Institute of Technology Krishnamurthy Dvijotham, Google DeepMind Adam Wierman, California

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

DASC: A DECOMPOSITION ALGORITHM FOR MULTISTAGE STOCHASTIC PROGRAMS WITH STRONGLY CONVEX COST FUNCTIONS

DASC: A DECOMPOSITION ALGORITHM FOR MULTISTAGE STOCHASTIC PROGRAMS WITH STRONGLY CONVEX COST FUNCTIONS DASC: A DECOMPOSITION ALGORITHM FOR MULTISTAGE STOCHASTIC PROGRAMS WITH STRONGLY CONVEX COST FUNCTIONS Vincent Guigues School of Applied Mathematics, FGV Praia de Botafogo, Rio de Janeiro, Brazil vguigues@fgv.br

More information

VOLATILITY EFFECTS AND VIRTUAL ASSETS: HOW TO PRICE AND HEDGE AN ENERGY PORTFOLIO

VOLATILITY EFFECTS AND VIRTUAL ASSETS: HOW TO PRICE AND HEDGE AN ENERGY PORTFOLIO VOLATILITY EFFECTS AND VIRTUAL ASSETS: HOW TO PRICE AND HEDGE AN ENERGY PORTFOLIO GME Workshop on FINANCIAL MARKETS IMPACT ON ENERGY PRICES Responsabile Pricing and Structuring Edison Trading Rome, 4 December

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

Financial Giffen Goods: Examples and Counterexamples

Financial Giffen Goods: Examples and Counterexamples Financial Giffen Goods: Examples and Counterexamples RolfPoulsen and Kourosh Marjani Rasmussen Abstract In the basic Markowitz and Merton models, a stock s weight in efficient portfolios goes up if its

More information

Financial Transmission Rights Markets: An Overview

Financial Transmission Rights Markets: An Overview Financial Transmission Rights Markets: An Overview Golbon Zakeri A. Downward Department of Engineering Science, University of Auckland October 26, 2010 Outline Introduce financial transmission rights (FTRs).

More information

Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming

Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming Downloaded from orbit.dtu.dk on: Aug 19, 2018 Mortgage Loan Portfolio Optimization Using Multi-Stage Stochastic Programming Rasmussen, Kourosh Marjani; Clausen, Jens Published in: Journal of Economic Dynamics

More information

Multistage Stochastic Programs

Multistage Stochastic Programs Multistage Stochastic Programs Basic Formulations Multistage Stochastic Linear Program with Recourse: all functions are linear in decision variables Problem of Private Investor Revisited Horizon and Stages

More information

Assessing Policy Quality in Multi-stage Stochastic Programming

Assessing Policy Quality in Multi-stage Stochastic Programming Assessing Policy Quality in Multi-stage Stochastic Programming Anukal Chiralaksanakul and David P. Morton Graduate Program in Operations Research The University of Texas at Austin Austin, TX 78712 January

More information

Assortment Planning under the Multinomial Logit Model with Totally Unimodular Constraint Structures

Assortment Planning under the Multinomial Logit Model with Totally Unimodular Constraint Structures Assortment Planning under the Multinomial Logit Model with Totally Unimodular Constraint Structures James Davis School of Operations Research and Information Engineering, Cornell University, Ithaca, New

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b Chris Edmond hcpedmond@unimelb.edu.aui Aiyagari s model Arguably the most popular example of a simple incomplete markets model is due to Rao Aiyagari (1994,

More information

Revenue Management Under the Markov Chain Choice Model

Revenue Management Under the Markov Chain Choice Model Revenue Management Under the Markov Chain Choice Model Jacob B. Feldman School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853, USA jbf232@cornell.edu Huseyin

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

Two-stage Robust Optimization for Power Grid with Uncertain Demand Response

Two-stage Robust Optimization for Power Grid with Uncertain Demand Response Proceedings of the 2012 Industrial and Systems Engineering Research Conference G. Lim and J.W. Herrmann, eds. wo-stage Robust Optimization for Power Grid with Uncertain Demand Response Chaoyue Zhao Department

More information

Appendix to: Long-Run Asset Pricing Implications of Housing Collateral Constraints

Appendix to: Long-Run Asset Pricing Implications of Housing Collateral Constraints Appendix to: Long-Run Asset Pricing Implications of Housing Collateral Constraints Hanno Lustig UCLA and NBER Stijn Van Nieuwerburgh June 27, 2006 Additional Figures and Tables Calibration of Expenditure

More information

Dynamic Asset and Liability Management Models for Pension Systems

Dynamic Asset and Liability Management Models for Pension Systems Dynamic Asset and Liability Management Models for Pension Systems The Comparison between Multi-period Stochastic Programming Model and Stochastic Control Model Muneki Kawaguchi and Norio Hibiki June 1,

More information

Lecture 5: Iterative Combinatorial Auctions

Lecture 5: Iterative Combinatorial Auctions COMS 6998-3: Algorithmic Game Theory October 6, 2008 Lecture 5: Iterative Combinatorial Auctions Lecturer: Sébastien Lahaie Scribe: Sébastien Lahaie In this lecture we examine a procedure that generalizes

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a Trinomial Tree Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a The three stock prices at time t are S, Su, and Sd, where ud = 1. Impose the matching of mean and

More information

The value of multi-stage stochastic programming in capacity planning under uncertainty

The value of multi-stage stochastic programming in capacity planning under uncertainty The value of multi-stage stochastic programming in capacity planning under uncertainty Kai Huang and Shabbir Ahmed School of Industrial & Systems Engineering Georgia Institute of Technology April 26, 2005

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints Zongxia Liang Department of Mathematical Sciences Tsinghua University, Beijing 100084, China zliang@math.tsinghua.edu.cn Joint

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

Approximate Dynamic Programming for a Spare Parts Problem: The Challenge of Rare Events

Approximate Dynamic Programming for a Spare Parts Problem: The Challenge of Rare Events Approximate Dynamic Programming for a Spare Parts Problem: The Challenge of Rare Events INFORMS Seattle November 2007 Hugo P. Simão Warren B. Powell CASTLE Laboratory Princeton University http://www.castlelab.princeton.edu

More information

Stochastic Dual Dynamic integer Programming

Stochastic Dual Dynamic integer Programming Stochastic Dual Dynamic integer Programming Shabbir Ahmed Georgia Tech Jikai Zou Andy Sun Multistage IP Canonical deterministic formulation ( X T ) f t (x t,y t ):(x t 1,x t,y t ) 2 X t 8 t x t min x,y

More information

Optimal liquidation with market parameter shift: a forward approach

Optimal liquidation with market parameter shift: a forward approach Optimal liquidation with market parameter shift: a forward approach (with S. Nadtochiy and T. Zariphopoulou) Haoran Wang Ph.D. candidate University of Texas at Austin ICERM June, 2017 Problem Setup and

More information

Stochastic Programming in Gas Storage and Gas Portfolio Management. ÖGOR-Workshop, September 23rd, 2010 Dr. Georg Ostermaier

Stochastic Programming in Gas Storage and Gas Portfolio Management. ÖGOR-Workshop, September 23rd, 2010 Dr. Georg Ostermaier Stochastic Programming in Gas Storage and Gas Portfolio Management ÖGOR-Workshop, September 23rd, 2010 Dr. Georg Ostermaier Agenda Optimization tasks in gas storage and gas portfolio management Scenario

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives

Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives Finance Winterschool 2007, Lunteren NL Policy iterated lower bounds and linear MC upper bounds for Bermudan style derivatives Pricing complex structured products Mohrenstr 39 10117 Berlin schoenma@wias-berlin.de

More information

Equilibrium, uncertainty and risk in hydro-thermal electricity systems

Equilibrium, uncertainty and risk in hydro-thermal electricity systems Equilibrium, uncertainty and risk in hydro-thermal electricity systems Andy Philpott Michael Ferris Roger Wets August 31, 2015 Abstract The correspondence of competitive partial equilibrium with a social

More information

MULTI-STAGE STOCHASTIC ELECTRICITY PORTFOLIO OPTIMIZATION IN LIBERALIZED ENERGY MARKETS

MULTI-STAGE STOCHASTIC ELECTRICITY PORTFOLIO OPTIMIZATION IN LIBERALIZED ENERGY MARKETS MULTI-STAGE STOCHASTIC ELECTRICITY PORTFOLIO OPTIMIZATION IN LIBERALIZED ENERGY MARKETS R. ~ochreiter,' G. Ch. pflug,' and D. ~ozabal' Department ofstatistics and Decision Support Systems, Universizy of

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

Online Appendix: Extensions

Online Appendix: Extensions B Online Appendix: Extensions In this online appendix we demonstrate that many important variations of the exact cost-basis LUL framework remain tractable. In particular, dual problem instances corresponding

More information

Electricity Market Optimization - F.-Javier Heredia et al. - NUMOPEN CRM Barcelona October 14, /58. gnom.upc.edu

Electricity Market Optimization - F.-Javier Heredia et al. - NUMOPEN CRM Barcelona October 14, /58. gnom.upc.edu Electricity Market Optimization - F.-Javier Heredia et al. - NUMOPEN 2010 - CRM Barcelona October 14, 2010 1/58 Electricity Market Optimization: finding the best bid through stochastic programming. F.J.

More information

Vladimir Spokoiny (joint with J.Polzehl) Varying coefficient GARCH versus local constant volatility modeling.

Vladimir Spokoiny (joint with J.Polzehl) Varying coefficient GARCH versus local constant volatility modeling. W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly sis u n d S to c h a stik STATDEP 2005 Vladimir Spokoiny (joint with J.Polzehl) Varying coefficient GARCH versus local constant volatility modeling.

More information

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009)

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009) Technical Report Doc ID: TR-1-2009. 14-April-2009 (Last revised: 02-June-2009) The homogeneous selfdual model algorithm for linear optimization. Author: Erling D. Andersen In this white paper we present

More information

Optimal Security Liquidation Algorithms

Optimal Security Liquidation Algorithms Optimal Security Liquidation Algorithms Sergiy Butenko Department of Industrial Engineering, Texas A&M University, College Station, TX 77843-3131, USA Alexander Golodnikov Glushkov Institute of Cybernetics,

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

Optimal construction of a fund of funds

Optimal construction of a fund of funds Optimal construction of a fund of funds Petri Hilli Matti Koivu Teemu Pennanen January 23, 21 Abstract We study the problem of diversifying a given initial capital over a finite number of investment funds

More information

Payment mechanisms and risk-aversion in electricity markets with uncertain supply

Payment mechanisms and risk-aversion in electricity markets with uncertain supply Payment mechanisms and risk-aversion in electricity markets with uncertain supply Ryan Cory-Wright Joint work with Golbon Zakeri (thanks to Andy Philpott) ISMP, Bordeaux, July 2018. ORC, Massachusetts

More information

Shape-Preserving Dynamic Programming

Shape-Preserving Dynamic Programming Shape-Preserving Dynamic Programming Kenneth Judd and Yongyang Cai July 20, 2011 1 Introduction The multi-stage decision-making problems are numerically challenging. When the problems are time-separable,

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Electricity Swing Options: Behavioral Models and Pricing

Electricity Swing Options: Behavioral Models and Pricing Electricity Swing Options: Behavioral Models and Pricing Georg C.Pflug University of Vienna, georg.pflug@univie.ac.at Nikola Broussev University of Vienna, nikola.broussev@univie.ac.at ABSTRACT. Electricity

More information

Optimal Switching Games in Emissions Trading

Optimal Switching Games in Emissions Trading Emissions Trading Numerics Conclusion Optimal in Emissions Trading Mike Department of Statistics & Applied Probability University of California Santa Barbara Bachelier Congress, June 24, 2010 1 / 26 Emissions

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Stochastic Optimization Methods in Scheduling. Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms

Stochastic Optimization Methods in Scheduling. Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms Stochastic Optimization Methods in Scheduling Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms More expensive and longer... Eurotunnel Unexpected loss of 400,000,000

More information

Optimal energy management and stochastic decomposition

Optimal energy management and stochastic decomposition Optimal energy management and stochastic decomposition F. Pacaud P. Carpentier J.P. Chancelier M. De Lara JuMP-dev workshop, 2018 ENPC ParisTech ENSTA ParisTech Efficacity 1/23 Motivation We consider a

More information

Stochastic Proximal Algorithms with Applications to Online Image Recovery

Stochastic Proximal Algorithms with Applications to Online Image Recovery 1/24 Stochastic Proximal Algorithms with Applications to Online Image Recovery Patrick Louis Combettes 1 and Jean-Christophe Pesquet 2 1 Mathematics Department, North Carolina State University, Raleigh,

More information

Dynamic Appointment Scheduling in Healthcare

Dynamic Appointment Scheduling in Healthcare Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-12-05 Dynamic Appointment Scheduling in Healthcare McKay N. Heasley Brigham Young University - Provo Follow this and additional

More information

Valuing American Options by Simulation

Valuing American Options by Simulation Valuing American Options by Simulation Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Valuing American Options Course material Slides Longstaff, F. A. and Schwartz,

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2009

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2009 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Spring, 2009 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements,

More information

Individual Asset Liability Management: Dynamic Stochastic Programming Solution

Individual Asset Liability Management: Dynamic Stochastic Programming Solution EU HPCF Conference New Thinking in Finance 14.2.2014 Pensions & Insurance 1 Individual Asset Liability Management: Dynamic Stochastic Programming Solution Elena Medova joint work with Michael Dempster,

More information

Markov Decision Processes II

Markov Decision Processes II Markov Decision Processes II Daisuke Oyama Topics in Economic Theory December 17, 2014 Review Finite state space S, finite action space A. The value of a policy σ A S : v σ = β t Q t σr σ, t=0 which satisfies

More information

The Uncertain Volatility Model

The Uncertain Volatility Model The Uncertain Volatility Model Claude Martini, Antoine Jacquier July 14, 008 1 Black-Scholes and realised volatility What happens when a trader uses the Black-Scholes (BS in the sequel) formula to sell

More information

Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming 1 / 43 Stochastic Dual Dynamic Programming Operations Research Anthony Papavasiliou 2 / 43 Contents [ 10.4 of BL], [Pereira, 1991] 1 Recalling the Nested L-Shaped Decomposition 2 Drawbacks of Nested Decomposition

More information

Options Pricing Using Combinatoric Methods Postnikov Final Paper

Options Pricing Using Combinatoric Methods Postnikov Final Paper Options Pricing Using Combinatoric Methods 18.04 Postnikov Final Paper Annika Kim May 7, 018 Contents 1 Introduction The Lattice Model.1 Overview................................ Limitations of the Lattice

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Is intertemporal choice theory testable?

Is intertemporal choice theory testable? Journal of Mathematical Economics 40 (2004) 177 189 Is intertemporal choice theory testable? Felix Kubler Department of Economics, Stanford University, Stanford, CA 94305-6072, USA Received 14 May 2001;

More information

Investigations on Factors Influencing the Operational Benefit of Stochastic Optimization in Generation and Trading Planning

Investigations on Factors Influencing the Operational Benefit of Stochastic Optimization in Generation and Trading Planning Investigations on Factors Influencing the Operational Benefit of Stochastic Optimization in Generation and Trading Planning Introduction Stochastic Optimization Model Exemplary Investigations Summary Dipl.-Ing.

More information

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a Trinomial Tree Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a The three stock prices at time t are S, Su, and Sd, where ud = 1. Impose the matching of mean and

More information

IMPLEMENTING THE SPECTRAL CALIBRATION OF EXPONENTIAL LÉVY MODELS

IMPLEMENTING THE SPECTRAL CALIBRATION OF EXPONENTIAL LÉVY MODELS IMPLEMENTING THE SPECTRAL CALIBRATION OF EXPONENTIAL LÉVY MODELS DENIS BELOMESTNY AND MARKUS REISS 1. Introduction The aim of this report is to describe more precisely how the spectral calibration method

More information