Portfolios that Contain Risky Assets Portfolio Models 9. Long Portfolios with a Safe Investment

Size: px
Start display at page:

Download "Portfolios that Contain Risky Assets Portfolio Models 9. Long Portfolios with a Safe Investment"

Transcription

1 Portfolios that Contain Risky Assets Portfolio Models 9. Long Portfolios with a Safe Investment C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling March 21, 2016 version c 2016 Charles David Levermore

2 Portfolios that Contain Risky Assets Part I: Portfolio Models 1. Risk and Reward 2. Covariance Matrices 3. Markowitz Portfolios 4. Solvent Portfolios 5. Leveraged Portfolios 6. Basic Markowitz Portfolio Theory 7. Unlimited Portfolios with Risk-Free Assets 8. Long Portfolios without Risk-Free Assets 9. Long Portfolios with a Safe Investment 10. Limited Leverage Portfolios

3 Portfolio Models 9. Long Portfolios with a Safe Investment 1. Efficient Long Frontier 2. Efficient Long Frontier Portfolios 3. General Portfolio with Two Risky Assets. 4. Simple Portfolio with Three Risky Assets.

4 Portfolio Models 9. Long Portfolios with a Safe Investment We now consider investors who will not hold a short position in any asset. Such an investor will not borrow to invest in a risky asset, so the safe investment is the only risky-free asset that we need to consider. We will use the capital allocation line construction to obtain the efficient long frontier for long portfolios that might include the safe investment. Efficient Long Frontier. We assume that the long frontier has already been constructed, and is given by σ = σ lf (µ) for µ [µ mn, µ mx ], where µ mn = min{m i : i = 1,, N}, µ mx = max{m i : i = 1,, N}. We will assume that µ si < µ mx, because otherwise the safe investment is more efficient than any portfolio of risky assets.

5 The capital allocation line between the safe investment and the portfolio on the long frontier with return µ is the line segment in the σµ-plane between the points (0, µ si ) and (σ lf (µ), µ). The slope of this line segment is ν ca (µ) = µ µ si σ lf (µ). The efficient long frontier is obtained by finding the capital allocation line with the greatest slope. In other words, we want to solve µ st = arg max { ν ca (µ) : µ [µ mn, µ mx ] }. (1) We set ν st = ν ca (µ st ) and σ st = σ lf (µ st ). The efficient long frontier is then given by µ = µ ef (σ) where µ ef (σ) = µ si + ν st σ for σ [0, σ st ], σ 1 lf (σ) for σ [σ st, σ mx ], where σ σ 1 lf (σ) is the inverse function of µ σ lf (µ). (2)

6 Let us consider the maximization problem given in (1). Recall that the function µ σ lf (µ) is positive and continuous over [µ mn, µ mx ]. This implies that the function µ ν ca (µ) is continuous over [µ mn, µ mx ], which implies that it has a maximum over [µ mn, µ mx ]. Because µ si < µ mx we see that ν ca (µ mx ) = µ mx µ si σ lf (µ mx ) = µ mx µ si σ mx > 0, which implies that the maximum must be positive. Because the function µ σ lf (µ) is strictly convex over [µ mn, µ mx ], the maximizer µ st must be unique. We will suppose that σ lf (µ mx ) > 0 and that σ lf (µ mn ) 0, which is a common situation.

7 Efficient Long Frontier. The tangent line to the curve σ = σ lf (µ) at the point (σ mx, µ mx ) will intersect the µ-axis at µ = η mx where η mx = µ mx σ lf (µ mx) σ lf (µ mx). We will consider the cases µ si η mx and µ si < η mx separately.

8 For the case when µ si η mx we will make the additional assumption that µ si < µ mx. Then the efficient long frontier is simply given by µ ef (σ) = µ si + µ mx µ si σ mx σ for σ [0, σ mx ]. Our additional assumption states that there is at least one risky asset that has a return mean greater than the return for the safe investment. This is usually the case. If it is not, the formula for µ ef (σ) can be modified by appealing to the capital allocation line construction. Remark. Notice that µ ef (σ) given above is increasing over σ [0, σ mx ]. When µ si = µ mx the capital allocation line construction would produce an expression for µ ef (σ) that is constant, but might be defined over an interval larger than [0, σ mx ]. When µ si > µ mx the capital allocation line construction would produce an expression for µ ef (σ) that is decreasing over an interval larger than [0, σ mx ].

9 For the case when µ si < η mx there is a frontier portfolio (σ st, µ st ) such that the capital allocation between it and (0, µ si ) lies above the efficient long frontier. This means that µ st > µ si and µ µ si µ st µ si σ st σ lf (µ) for every µ [µ mn, µ mx ]. Because σ lf (µ) is an increasing, continuous function over [µ st, µ mx ] with image [σ st, σ mx ], it has an increasing, continuous inverse function σlf 1 (σ) over [σ st, σ mx ] with image [µ st, µ mx ]. The efficient long frontier is then given by µ ef (σ) = µ si + µ st µ si σ for σ [0, σ σ st ], st σ 1 lf (σ) for σ [σ st, σ mx ]. Because σ lf (µ) can be expressed as a list function, we can also express σ 1 lf (σ) as a list function. We illustrate this below for the case f mv 0.

10 Suppose that f mv 0 and set µ 0 = µ mv. Then σ lf (µ) has the form σ lf (µ) = σ fk (µ) ( ) σ 2 µ µmvk 2 mvk + for µ [µ k, µ k+1 ], ν ask where σ mvk, µ mvk, and ν ask are the frontier parameters associated with the vector m k and matrix V k that determined σ fk (µ) in the k th step of our iterative construction of σ lf (µ). In particular, σ mv0 = σ mv, µ mv0 = µ mv, and ν as0 = ν as because m 0 = m and V 0 = V. Then σlf 1 (σ) has the form σ 1 lf (σ) = µ mvk + ν ask σ 2 σ 2 mv k for σ [σ k, σ k+1 ], where σ k = σ lf (µ k ) and σ k+1 = σ lf (µ k+1 ).

11 Finally, we must find the tangency portfolio (σ st, µ st ). The tangent line to the long frontier at the point (σ k, µ k ) intercepts the µ-axis at µ = η k where η k = µ k σ lf (µ k ) σ lf (µ k ) = µ mv k ν 2 as k σ 2 mv k µ k µ mvk. These intercepts satisfy η k < η k+1 η mx when µ k < µ k+1 µ mx. If we set η 0 = then for every µ si < η mx there is a unique j such that η j µ si < η j+1. For this value of j we have the tangency parameters ν st = ν asj 1 + ( ) µmvj µ 2 si, σ ν asj σ st = σ mvj 1 + mvj ( νasj σ mvj µ mvj µ si ) 2.

12 Therefore when µ si < η mx the efficient long frontier is given by µ ef (σ) = µ si + ν st σ for σ [0, σ st ], µ mvj + ν asj σ 2 σ 2 mv j for σ [σ st, σ j+1 ], µ mvk + ν ask σ 2 σ 2 mv k for σ [σ k, σ k+1 ] and k > j. Efficient Long Frontier Portfolios. Recall that the allocations associated with the efficient long frontier portfolios without the safe investment are given over [µ mv, µ mx ] by f lf (µ) = µ k+1 µ µ k+1 µ k f k + µ µ k µ k+1 µ k f k+1 for µ [µ k, µ k+1 ], where µ 0 = µ mv, f 0 = f mv, while f k is the nodal portfolio allocation associated with µ k for any k 1.

13 The return mean and allocation for the safe tangency portolio are µ st = µ mvj + ν 2 as j σ 2 mv j µ mvj µ si, f st = f lf (µ st ) = µ j+1 µ st µ j+1 µ j f j + µ st µ j µ j+1 µ j f j+1. The allocation of risky assets for any efficient long frontier portfolio is f ef (σ) = σ f σ st for σ [0, σ st ], st µ j+1 µ ef (σ) µ j+1 µ st f st + µ ef (σ) µ st µ j+1 µ st f j+1 for σ [σ st, σ j+1 ], µ k+1 µ ef (σ) µ k+1 µ k f k + µ ef (σ) µ k µ k+1 µ k f k+1 for σ [σ k, σ k+1 ], where k > j in the last case.

14 Remark. If we had also added a credit line to the portolio then we would have had to find the credit tangency portfolio and added the appropriate capital allocation line to the efficient long frontier. Typically there are two kinds of credit lines an investor might consider. One available from your broker usually requires that some of your risky assets be held as collateral. A downside of using this kind of credit line is that when the market goes down then your broker can force you either to add assets to your collateral or to sell assets in a low market to pay off your loan. Another kind of credit line might use real estate as collateral. Of course, if the price of real estate falls then you again might be forced to sell assets in a low market to pay off your loan. For investors who hold short positions in risky assets, these risks are hedged because they also make money when markets go down. Investors who hold only long positions in risky assets and use a credit line can find themselves highly exposed to large losses in a market downturn. It is not a wise position to take yet many do in a bubble.

15 General Portfolio with Two Risky Assets. Recall the portfolio of two risky assets with mean vector m and covarience matrix V given by m = ( m1 m 2 ), V = ( v11 v 12 v 12 v 22 Here we will assume that m 1 < m 2, so that µ mn = m 1 and µ mx = m 2. The long frontier associated with just these two risky assets is given by σ lf (µ) = σ 2 mv + ( µ µmv ν as where the frontier parameters are σ mv = v 11v 22 v 2 12 v 11 + v 22 2v 12, ν as = ) ) 2 for µ [m 1, m 2 ],. (m 2 m 1 ) 2, v 11 + v 22 2v 12 µ mv = (v 22 v 12 )m 1 + (v 11 v 12 )m 2 v 11 + v 22 2v 12.

16 The minimum volatility portfolio is ( ) 1 v22 v f mv = 12. v 11 + v 22 2v 12 v 11 v 12 We will assume that v 12 v 11 and v 12 v 22, so that f mv 0 and µ mv = f T mvm [m 1, m 2 ]. The efficient long frontier associated with just these two risky assets is then given by (σ lf (µ), µ) where µ [µ mv, m 2 ]. We now show how this is modified by the inclusion of a safe investment. The parameters associated with the construction of σ lf (µ) are µ 0 = µ mv, µ 1 = µ mx = m 2, σ 0 = σ mv, σ 1 = σ mx = σ 2 = v 22. The µ-intercept of the tangent line through (σ mx, µ mx ) = (σ 2, m 2 ) is η mx = µ mx σ lf (µ mx) σ lf (µ mx) = m 2 ν 2 as σ 2 2 m 2 µ mv = v 22 m 1 v 12 m 2 v 22 v 12.

17 We will present the two cases that arise in order of increasing complexity: η mx µ si and µ si < η mx. When η mx µ si the efficient long frontier is determined by µ ef (σ) = µ si + m 2 µ si σ 2 σ for σ [0, σ 2 ]. When µ si < η mx the tangency portfolio parameters are given by ν st = ν mv 1 + ( µmv µ si ν as σ mv ) 2, σ st = σ mv and the efficient long frontier is determined by µ ef (σ) = 1 + ( νas σ mv µ mv µ si µ si + ν st σ for σ [0, σ st ], µ mv + ν as σ 2 σ 2 mv for σ [σ st, σ 2 ]. ) 2,

18 Simple Portfolio with Three Risky Assets. Recall the portfolio of three risky assets with mean vector m and covarience matrix V given by m = m 1 m 2 = m 3 m d m m + d, V = s 2 1 r r r 1 r r r 1 The efficient long frontier associated with just these three risky assets is given by (σ lf (µ), µ) where µ [m, m + d] and σ lf (µ) = r s + 1 r ( ) µ m 2 for µ [m, m d 3 d], s 1 + r + 1 r ( µ m 1 ) 2 d 2 for µ [m d, m + d]. We now show how this is modified by including a safe investment. 2 d

19 In the construction of σ lf (µ) we found that µ 0 = m, µ 1 = m d, µ 2 = µ mx = m + d, 1 + 2r 5 + 4r σ 0 = s, σ 3 1 = s 9 The frontier parameters for σ f0 (µ) were, σ 2 = σ mx = s r σ mv0 = s, 3 µ mv0 = m, ν as0 = d s while those for σ f1 (µ) were 2 1 r, σ mv1 = s 1 + r 2, µ mv 1 = m d, ν as 1 = d 2s 2 1 r.

20 Because σ lf (µ)σ lf r (µ) = s21 2 µ m d 2, for µ [m, m d], µ m 1 2 d, for µ [m d2 3d, m + d], we can see that the µ-intercepts of the tangent lines through the points (σ 1, µ 1 ) and (σ 2, µ 2 ) = (σ mx, µ mx ) are respectively η 1 = µ 1 σ lf (µ 1 ) σ lf (µ 1 ) = m d 5 + 4r 3 3r d = m 1 + 2r 1 r d, η mx = µ mx σ lf (µ mx) σ lf (µ mx) = m + d 1 1 r d = m r 1 r d. We will present the three cases that arise in order of increasing complexity: η mx µ si, η 1 µ si < η mx, and µ si < η 1.

21 When η mx µ si the efficient long frontier is determined by µ ef (σ) = µ si + µ mx µ si σ mx σ for σ [0, σ mx ]. When η 1 µ si < η mx the tangency portfolio parameters are given by ν st = ν as1 1 + ( µmv1 µ si ν as1 σ mv1 ) 2, σ st = σ mv1 and the efficient long frontier is determined by µ ef (σ) = 1 + ( νas1 σ mv1 µ mv1 µ si µ si + ν st σ for σ [0, σ st ], µ mv1 + ν as1 σ 2 σ 2 mv 1 for σ [σ st, σ mx ]. ) 2,

22 When µ si < η 1 the tangency portfolio parameters are given by ν st = ν as0 1 + ( µmv0 µ si ν as0 σ mv0 ) 2, σ st = σ mv0 and the efficient long frontier is determined by µ ef (σ) = 1 + ( νas0 σ mv0 µ mv0 µ si µ si + ν st σ for σ [0, σ st ], µ mv0 + ν as0 σ 2 σ 2 mv 0 for σ [σ st, σ 1 ], µ mv1 + ν as1 σ 2 σ 2 mv 1 for σ [σ 1, σ mx ]. ) 2, Remark. The above formulas for µ ef (σ) can be made more explicit by replacing σ mv0, µ mv0, ν as0, σ mv1, µ mv1, ν as1, σ mx, µ mx, and σ 1 with their explicit expressions in terms of m, d, s and r.

Portfolios that Contain Risky Assets 10: Limited Portfolios with Risk-Free Assets

Portfolios that Contain Risky Assets 10: Limited Portfolios with Risk-Free Assets Portfolios that Contain Risky Assets 10: Limited Portfolios with Risk-Free Assets C. David Levermore University of Maryland, College Park, MD Math 420: Mathematical Modeling March 21, 2018 version c 2018

More information

Modeling Portfolios that Contain Risky Assets Optimization II: Model-Based Portfolio Management

Modeling Portfolios that Contain Risky Assets Optimization II: Model-Based Portfolio Management Modeling Portfolios that Contain Risky Assets Optimization II: Model-Based Portfolio Management C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 26, 2012

More information

Portfolios that Contain Risky Assets 3: Markowitz Portfolios

Portfolios that Contain Risky Assets 3: Markowitz Portfolios Portfolios that Contain Risky Assets 3: Markowitz Portfolios C. David Levermore University of Maryland, College Park, MD Math 42: Mathematical Modeling March 21, 218 version c 218 Charles David Levermore

More information

Portfolios that Contain Risky Assets Portfolio Models 3. Markowitz Portfolios

Portfolios that Contain Risky Assets Portfolio Models 3. Markowitz Portfolios Portfolios that Contain Risky Assets Portfolio Models 3. Markowitz Portfolios C. David Levermore University of Maryland, College Park Math 42: Mathematical Modeling March 2, 26 version c 26 Charles David

More information

Modeling Portfolios that Contain Risky Assets Risk and Reward II: Markowitz Portfolios

Modeling Portfolios that Contain Risky Assets Risk and Reward II: Markowitz Portfolios Modeling Portfolios that Contain Risky Assets Risk and Reward II: Markowitz Portfolios C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling February 4, 2013 version c

More information

Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory

Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 30, 2013

More information

Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory

Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling March 26, 2014

More information

Portfolios that Contain Risky Assets 1: Risk and Reward

Portfolios that Contain Risky Assets 1: Risk and Reward Portfolios that Contain Risky Assets 1: Risk and Reward C. David Levermore University of Maryland, College Park, MD Math 420: Mathematical Modeling March 21, 2018 version c 2018 Charles David Levermore

More information

Portfolios that Contain Risky Assets Portfolio Models 1. Risk and Reward

Portfolios that Contain Risky Assets Portfolio Models 1. Risk and Reward Portfolios that Contain Risky Assets Portfolio Models 1. Risk and Reward C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 31, 2017 version c 2017 Charles

More information

Mean-Variance Portfolio Choice in Excel

Mean-Variance Portfolio Choice in Excel Mean-Variance Portfolio Choice in Excel Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Let s suppose you can only invest in two assets: a (US) stock index (here represented by the

More information

Modeling Portfolios that Contain Risky Assets Risk and Return I: Introduction

Modeling Portfolios that Contain Risky Assets Risk and Return I: Introduction Modeling Portfolios that Contain Risky Assets Risk and Return I: Introduction C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 26, 2012 version c 2011 Charles

More information

Modeling Portfolios that Contain Risky Assets

Modeling Portfolios that Contain Risky Assets Modeling Portfolios that Contain Risky Assets C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 18, 2012 version c 2011 Charles David Levermore Outline 1.

More information

Lecture 2: Fundamentals of meanvariance

Lecture 2: Fundamentals of meanvariance Lecture 2: Fundamentals of meanvariance analysis Prof. Massimo Guidolin Portfolio Management Second Term 2018 Outline and objectives Mean-variance and efficient frontiers: logical meaning o Guidolin-Pedio,

More information

Portfolios that Contain Risky Assets 12 Growth Rate Mean and Variance Estimators

Portfolios that Contain Risky Assets 12 Growth Rate Mean and Variance Estimators Portfolios that Contain Risky Assets 12 Growth Rate Mean and Variance Estimators C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 11, 2017 version c 2017 Charles

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory

Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory Shuoxun Hellen Zhang WISE & SOE XIAMEN UNIVERSITY April, 2015 1 / 95 Outline Modern portfolio theory The backward induction,

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Asset Allocation and Risk Management Martin B. Haugh Department of Industrial Engineering and Operations Research Columbia University Outline Review of Mean-Variance Analysis

More information

Lecture Notes 9. Jussi Klemelä. December 2, 2014

Lecture Notes 9. Jussi Klemelä. December 2, 2014 Lecture Notes 9 Jussi Klemelä December 2, 204 Markowitz Bullets A Markowitz bullet is a scatter plot of points, where each point corresponds to a portfolio, the x-coordinate of a point is the standard

More information

Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset

Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling March 25, 2014 version c 2014

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Optimal Investment with Risky Assets There are N risky assets, named 1, 2,, N, but no risk-free asset. With fixed total dollar

More information

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Mean-variance analysis 1/ 51 Introduction How does one optimally choose among multiple risky assets? Due to diversi cation, which depends on assets return covariances, the attractiveness

More information

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall 2014 Reduce the risk, one asset Let us warm up by doing an exercise. We consider an investment with σ 1 =

More information

Modeling Portfolios that Contain Risky Assets Risk and Reward I: Introduction

Modeling Portfolios that Contain Risky Assets Risk and Reward I: Introduction Modeling Portfolios that Contain Risky Assets Risk and Reward I: Introduction C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 2, 2014 version c 2014 Charles

More information

The Markowitz framework

The Markowitz framework IGIDR, Bombay 4 May, 2011 Goals What is a portfolio? Asset classes that define an Indian portfolio, and their markets. Inputs to portfolio optimisation: measuring returns and risk of a portfolio Optimisation

More information

Portfolios that Contain Risky Assets Portfolio Models 1. Risk and Reward

Portfolios that Contain Risky Assets Portfolio Models 1. Risk and Reward Portfolios that Contain Risky Assets Portfolio Models 1. Risk and Reward C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling February 17, 2016 version c 2016 Charles

More information

In terms of covariance the Markowitz portfolio optimisation problem is:

In terms of covariance the Markowitz portfolio optimisation problem is: Markowitz portfolio optimisation Solver To use Solver to solve the quadratic program associated with tracing out the efficient frontier (unconstrained efficient frontier UEF) in Markowitz portfolio optimisation

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Solutions to Problem Set Theory of Banking - Academic Year 06-7 Maria Bachelet maria.jua.bachelet@gmail.com February 4, 07 Exercise. An individual consumer has an income stream (Y 0, Y ) and can borrow

More information

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén

PORTFOLIO THEORY. Master in Finance INVESTMENTS. Szabolcs Sebestyén PORTFOLIO THEORY Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Portfolio Theory Investments 1 / 60 Outline 1 Modern Portfolio Theory Introduction Mean-Variance

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

Hedging and Pricing in the Binomial Model

Hedging and Pricing in the Binomial Model Hedging and Pricing in the Binomial Model Peter Carr Bloomberg LP and Courant Institute, NYU Continuous Time Finance Lecture 2 Wednesday, January 26th, 2005 One Period Model Initial Setup: 0 risk-free

More information

This appendix discusses two extensions of the cost concepts developed in Chapter 10.

This appendix discusses two extensions of the cost concepts developed in Chapter 10. CHAPTER 10 APPENDIX MATHEMATICAL EXTENSIONS OF THE THEORY OF COSTS This appendix discusses two extensions of the cost concepts developed in Chapter 10. The Relationship Between Long-Run and Short-Run Cost

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis If the investor s objective is to Maximize the Expected Rate of Return for a given level of Risk (or, Minimize Risk for a given level of Expected Rate of Return), and If the investor

More information

Understand general-equilibrium relationships, such as the relationship between barriers to trade, and the domestic distribution of income.

Understand general-equilibrium relationships, such as the relationship between barriers to trade, and the domestic distribution of income. Review of Production Theory: Chapter 2 1 Why? Understand the determinants of what goods and services a country produces efficiently and which inefficiently. Understand how the processes of a market economy

More information

MARKOWITS EFFICIENT PORTFOLIO (HUANG LITZENBERGER APPROACH)

MARKOWITS EFFICIENT PORTFOLIO (HUANG LITZENBERGER APPROACH) MARKOWITS EFFICIENT PORTFOLIO (HUANG LITZENBERGER APPROACH) Huang-Litzenberger approach allows us to find mathematically efficient set of portfolios Assumptions There are no limitations on the positions'

More information

Lecture 10: Performance measures

Lecture 10: Performance measures Lecture 10: Performance measures Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe Portfolio and Asset Liability Management Summer Semester 2008 Prof.

More information

Modeling Portfolios Containing Risky Assets

Modeling Portfolios Containing Risky Assets Modeling Portfolios Containing Risky Assets C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park, MD lvrmr@math.umd.edu presented

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 ortfolio Allocation Mean-Variance Approach Validity of the Mean-Variance Approach Constant absolute risk aversion (CARA): u(w ) = exp(

More information

Section Linear Functions and Math Models

Section Linear Functions and Math Models Section 1.1 - Linear Functions and Math Models Lines: Four basic things to know 1. The slope of the line 2. The equation of the line 3. The x-intercept 4. The y-intercept 1. Slope: If (x 1, y 1 ) and (x

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Optimizing Portfolios

Optimizing Portfolios Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Investors may wish to adjust the allocation of financial resources including a mixture

More information

You are responsible for upholding the University of Maryland Honor Code while taking this exam.

You are responsible for upholding the University of Maryland Honor Code while taking this exam. Econ 300 Spring 013 First Midterm Exam version W Answers This exam consists of 5 multiple choice questions. The maximum duration of the exam is 50 minutes. 1. In the spaces provided on the scantron, write

More information

Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization

Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization Kai Hao Yang 09/26/2017 1 Production Function Just as consumer theory uses utility function a function that assign

More information

Math 103: The Mean Value Theorem and How Derivatives Shape a Graph

Math 103: The Mean Value Theorem and How Derivatives Shape a Graph Math 03: The Mean Value Theorem and How Derivatives Shape a Graph Ryan Blair University of Pennsylvania Thursday October 27, 20 Math 03: The Mean Value Theorem and How Derivatives Thursday October Shape

More information

Topic 3: The Standard Theory of Trade. Increasing opportunity costs. Community indifference curves.

Topic 3: The Standard Theory of Trade. Increasing opportunity costs. Community indifference curves. Topic 3: The Standard Theory of Trade. Outline: 1. Main ideas. Increasing opportunity costs. Community indifference curves. 2. Marginal rates of transformation and of substitution. 3. Equilibrium under

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

Financial Market Analysis (FMAx) Module 6

Financial Market Analysis (FMAx) Module 6 Financial Market Analysis (FMAx) Module 6 Asset Allocation and iversification This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for

More information

PRODUCTION COSTS. Econ 311 Microeconomics 1 Lecture Material Prepared by Dr. Emmanuel Codjoe

PRODUCTION COSTS. Econ 311 Microeconomics 1 Lecture Material Prepared by Dr. Emmanuel Codjoe PRODUCTION COSTS In this section we introduce production costs into the analysis of the firm. So far, our emphasis has been on the production process without any consideration of costs. However, production

More information

Some useful optimization problems in portfolio theory

Some useful optimization problems in portfolio theory Some useful optimization problems in portfolio theory Igor Melicherčík Department of Economic and Financial Modeling, Faculty of Mathematics, Physics and Informatics, Mlynská dolina, 842 48 Bratislava

More information

Portfolio theory and risk management Homework set 2

Portfolio theory and risk management Homework set 2 Portfolio theory and risk management Homework set Filip Lindskog General information The homework set gives at most 3 points which are added to your result on the exam. You may work individually or in

More information

Mean Variance Analysis and CAPM

Mean Variance Analysis and CAPM Mean Variance Analysis and CAPM Yan Zeng Version 1.0.2, last revised on 2012-05-30. Abstract A summary of mean variance analysis in portfolio management and capital asset pricing model. 1. Mean-Variance

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Eliminating Substitution Bias. One eliminate substitution bias by continuously updating the market basket of goods purchased.

Eliminating Substitution Bias. One eliminate substitution bias by continuously updating the market basket of goods purchased. Eliminating Substitution Bias One eliminate substitution bias by continuously updating the market basket of goods purchased. 1 Two-Good Model Consider a two-good model. For good i, the price is p i, and

More information

CHAPTER 6: PORTFOLIO SELECTION

CHAPTER 6: PORTFOLIO SELECTION CHAPTER 6: PORTFOLIO SELECTION 6-1 21. The parameters of the opportunity set are: E(r S ) = 20%, E(r B ) = 12%, σ S = 30%, σ B = 15%, ρ =.10 From the standard deviations and the correlation coefficient

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Financial Giffen Goods: Examples and Counterexamples

Financial Giffen Goods: Examples and Counterexamples Financial Giffen Goods: Examples and Counterexamples RolfPoulsen and Kourosh Marjani Rasmussen Abstract In the basic Markowitz and Merton models, a stock s weight in efficient portfolios goes up if its

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Mathematical Analysis II- Group Project

Mathematical Analysis II- Group Project Mathematical Analysis II- Group Project Student #1: Last Name First Name Student #2: Last Name First Name Functions used for the project: Price Function: Problem 1 Cost Function: Revenue Function: Problem

More information

Firm s demand for the input. Supply of the input = price of the input.

Firm s demand for the input. Supply of the input = price of the input. Chapter 8 Costs Functions The economic cost of an input is the minimum payment required to keep the input in its present employment. It is the payment the input would receive in its best alternative employment.

More information

Consumer Choice and Demand

Consumer Choice and Demand Consumer Choice and Demand 1 Utility Utility Analysis Sense of pleasure, or satisfaction that comes from consumption Subjective Assumption Taste are given Tastes are relatively stable 2 Total utility Utility

More information

Problem 1: Markowitz Portfolio (Risky Assets) cov([r 1, r 2, r 3 ] T ) = V =

Problem 1: Markowitz Portfolio (Risky Assets) cov([r 1, r 2, r 3 ] T ) = V = Homework II Financial Mathematics and Economics Professor: Paul J. Atzberger Due: Monday, October 3rd Please turn all homeworks into my mailbox in Amos Eaton Hall by 5:00pm. Problem 1: Markowitz Portfolio

More information

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3

Estimation. Focus Points 10/11/2011. Estimating p in the Binomial Distribution. Section 7.3 Estimation 7 Copyright Cengage Learning. All rights reserved. Section 7.3 Estimating p in the Binomial Distribution Copyright Cengage Learning. All rights reserved. Focus Points Compute the maximal length

More information

Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati

Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati Module No. # 03 Illustrations of Nash Equilibrium Lecture No. # 02

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Consumer Budgets, Indifference Curves, and Utility Maximization 1 Instructional Primer 2

Consumer Budgets, Indifference Curves, and Utility Maximization 1 Instructional Primer 2 Consumer Budgets, Indifference Curves, and Utility Maximization 1 Instructional Primer 2 As rational, self-interested and utility maximizing economic agents, consumers seek to have the greatest level of

More information

ECON Micro Foundations

ECON Micro Foundations ECON 302 - Micro Foundations Michael Bar September 13, 2016 Contents 1 Consumer s Choice 2 1.1 Preferences.................................... 2 1.2 Budget Constraint................................ 3

More information

The Baumol-Tobin and the Tobin Mean-Variance Models of the Demand

The Baumol-Tobin and the Tobin Mean-Variance Models of the Demand Appendix 1 to chapter 19 A p p e n d i x t o c h a p t e r An Overview of the Financial System 1 The Baumol-Tobin and the Tobin Mean-Variance Models of the Demand for Money The Baumol-Tobin Model of Transactions

More information

Portfolio Risk Management and Linear Factor Models

Portfolio Risk Management and Linear Factor Models Chapter 9 Portfolio Risk Management and Linear Factor Models 9.1 Portfolio Risk Measures There are many quantities introduced over the years to measure the level of risk that a portfolio carries, and each

More information

1 Consumer Choice. 2 Consumer Preferences. 2.1 Properties of Consumer Preferences. These notes essentially correspond to chapter 4 of the text.

1 Consumer Choice. 2 Consumer Preferences. 2.1 Properties of Consumer Preferences. These notes essentially correspond to chapter 4 of the text. These notes essentially correspond to chapter 4 of the text. 1 Consumer Choice In this chapter we will build a model of consumer choice and discuss the conditions that need to be met for a consumer to

More information

Fundamental Theorems of Welfare Economics

Fundamental Theorems of Welfare Economics Fundamental Theorems of Welfare Economics Ram Singh October 4, 015 This Write-up is available at photocopy shop. Not for circulation. In this write-up we provide intuition behind the two fundamental theorems

More information

GMM Estimation. 1 Introduction. 2 Consumption-CAPM

GMM Estimation. 1 Introduction. 2 Consumption-CAPM GMM Estimation 1 Introduction Modern macroeconomic models are typically based on the intertemporal optimization and rational expectations. The Generalized Method of Moments (GMM) is an econometric framework

More information

Mean Variance Portfolio Theory

Mean Variance Portfolio Theory Chapter 1 Mean Variance Portfolio Theory This book is about portfolio construction and risk analysis in the real-world context where optimization is done with constraints and penalties specified by the

More information

The University of Sydney School of Mathematics and Statistics. Computer Project

The University of Sydney School of Mathematics and Statistics. Computer Project The University of Sydney School of Mathematics and Statistics Computer Project MATH2070/2970: Optimisation and Financial Mathematics Semester 2, 2018 Web Page: http://www.maths.usyd.edu.au/u/im/math2070/

More information

LECTURE NOTES 3 ARIEL M. VIALE

LECTURE NOTES 3 ARIEL M. VIALE LECTURE NOTES 3 ARIEL M VIALE I Markowitz-Tobin Mean-Variance Portfolio Analysis Assumption Mean-Variance preferences Markowitz 95 Quadratic utility function E [ w b w ] { = E [ w] b V ar w + E [ w] }

More information

MATH362 Fundamentals of Mathematical Finance. Topic 1 Mean variance portfolio theory. 1.1 Mean and variance of portfolio return

MATH362 Fundamentals of Mathematical Finance. Topic 1 Mean variance portfolio theory. 1.1 Mean and variance of portfolio return MATH362 Fundamentals of Mathematical Finance Topic 1 Mean variance portfolio theory 1.1 Mean and variance of portfolio return 1.2 Markowitz mean-variance formulation 1.3 Two-fund Theorem 1.4 Inclusion

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College April 26, 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Portfolio Management

Portfolio Management Portfolio Management 010-011 1. Consider the following prices (calculated under the assumption of absence of arbitrage) corresponding to three sets of options on the Dow Jones index. Each point of the

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

Section 7C Finding the Equation of a Line

Section 7C Finding the Equation of a Line Section 7C Finding the Equation of a Line When we discover a linear relationship between two variables, we often try to discover a formula that relates the two variables and allows us to use one variable

More information

Math1090 Midterm 2 Review Sections , Solve the system of linear equations using Gauss-Jordan elimination.

Math1090 Midterm 2 Review Sections , Solve the system of linear equations using Gauss-Jordan elimination. Math1090 Midterm 2 Review Sections 2.1-2.5, 3.1-3.3 1. Solve the system of linear equations using Gauss-Jordan elimination. 5x+20y 15z = 155 (a) 2x 7y+13z=85 3x+14y +6z= 43 x+z= 2 (b) x= 6 y+z=11 x y+

More information

LYXOR Research. Managing risk exposure using the risk parity approach

LYXOR Research. Managing risk exposure using the risk parity approach LYXOR Research Managing risk exposure using the risk parity approach january 2013 Managing Risk Exposures using the Risk Parity Approach Benjamin Bruder Research & Development Lyxor Asset Management, Paris

More information

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION Abstract. This is the rst part in my tutorial series- Follow me to Optimization Problems. In this tutorial, I will touch on the basic concepts of portfolio

More information

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School)

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) SDMR Finance (2) Olivier Brandouy University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) Outline 1 Formal Approach to QAM : concepts and notations 2 3 Portfolio risk and return

More information

Markowitz portfolio theory. May 4, 2017

Markowitz portfolio theory. May 4, 2017 Markowitz portfolio theory Elona Wallengren Robin S. Sigurdson May 4, 2017 1 Introduction A portfolio is the set of assets that an investor chooses to invest in. Choosing the optimal portfolio is a complex

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 OPTION RISK Introduction In these notes we consider the risk of an option and relate it to the standard capital asset pricing model. If we are simply interested

More information

Aversion to Risk and Optimal Portfolio Selection in the Mean- Variance Framework

Aversion to Risk and Optimal Portfolio Selection in the Mean- Variance Framework Aversion to Risk and Optimal Portfolio Selection in the Mean- Variance Framework Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2017 Outline and objectives Four alternative

More information

FIN 6160 Investment Theory. Lecture 7-10

FIN 6160 Investment Theory. Lecture 7-10 FIN 6160 Investment Theory Lecture 7-10 Optimal Asset Allocation Minimum Variance Portfolio is the portfolio with lowest possible variance. To find the optimal asset allocation for the efficient frontier

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

E&G, Ch. 1: Theory of Choice; Utility Analysis - Certainty

E&G, Ch. 1: Theory of Choice; Utility Analysis - Certainty 1 E&G, Ch. 1: Theory of Choice; Utility Analysis - Certainty I. Summary: All decision problems involve: 1) determining the alternatives available the Opportunities Locus. 2) selecting criteria for choosing

More information

Freeman School of Business Fall 2003

Freeman School of Business Fall 2003 FINC 748: Investments Ramana Sonti Freeman School of Business Fall 2003 Lecture Note 3B: Optimal risky portfolios To be read with BKM Chapter 8 Statistical Review Portfolio mathematics Mean standard deviation

More information

Using derivatives to find the shape of a graph

Using derivatives to find the shape of a graph Using derivatives to find the shape of a graph Example 1 The graph of y = x 2 is decreasing for x < 0 and increasing for x > 0. Notice that where the graph is decreasing the slope of the tangent line,

More information

ECO101 PRINCIPLES OF MICROECONOMICS Notes. Consumer Behaviour. U tility fro m c o n s u m in g B ig M a c s

ECO101 PRINCIPLES OF MICROECONOMICS Notes. Consumer Behaviour. U tility fro m c o n s u m in g B ig M a c s ECO101 PRINCIPLES OF MICROECONOMICS Notes Consumer Behaviour Overview The aim of this chapter is to analyse the behaviour of rational consumers when consuming goods and services, to explain how they may

More information

Smart Beta: Managing Diversification of Minimum Variance Portfolios

Smart Beta: Managing Diversification of Minimum Variance Portfolios Smart Beta: Managing Diversification of Minimum Variance Portfolios Jean-Charles Richard and Thierry Roncalli Lyxor Asset Management 1, France University of Évry, France Risk Based and Factor Investing

More information

Professor Christina Romer SUGGESTED ANSWERS TO PROBLEM SET 5

Professor Christina Romer SUGGESTED ANSWERS TO PROBLEM SET 5 Economics 2 Spring 2017 Professor Christina Romer Professor David Romer SUGGESTED ANSWERS TO PROBLEM SET 5 1. The tool we use to analyze the determination of the normal real interest rate and normal investment

More information