X t. ( t. x 1 (t) x 2 (t) T T. t 2 (u)du. t 1 (u)du T. 0 Xd s ds X

Size: px
Start display at page:

Download "X t. ( t. x 1 (t) x 2 (t) T T. t 2 (u)du. t 1 (u)du T. 0 Xd s ds X"

Transcription

1 r X X sds, X E Q e X sds X r X Xd s ds, X d, X e, ˆX f E d e Xd s ds X d, X e, ˆX f ν ν h ν H x 1 x x 1 x x 1 udu x udu

2 r X Q dr b κr d + σ dw, κ b σ W r e κ r +e κ eκs b s ds+e κ eκs σ s dw s θ e κ r +e κ eκs b s ds X e κ eκs σ s dw s θ X e κ eκs σsds r θ + X, dx κx d + σ dw, X, E Q X, E Q X e κ e κs σsds P, P, X } P, P, ; X P, P, H X + ν h + 1 νh P, } θ sds + ν H d d νh ν h h e κ H hsds ν e κ eκs σsds ν h h v e κ s νsds ν H H ν H sνsds. α σ e κ X h α sdw s u > u X u e κu α s dw s + e κu α s dw s hu X + hu P, ; X x E Q e r udu F, X x e η η u θ udu H x E Q e α s dw s. hu u α sdw s du hu u α sdw s du η Hu H u α s dw s u u Huα u dw u α s dw s H α s dw s Huα u dw u + Huα u dw u.

3 η E Q η H P, ; X x e θ u du H x + 1 αsds H Hsαsds + H sαsds θudu H x E Q e η e H 1 θudu H x } V arη αsds + H sαsds H Hsα sds }. P, θ udu + 1 P, θ udu + 1 P, P, P, ; X x H α sds + H sαsds H α sds + H sα sds H x + 1 H 1 H α sds + α sds + H x + 1 H H P, ; X x P, P, H x 1 H H H He κ e κ e κ κ P, ; X x P, P, P, P, P, P, H H H e κ H He κ αsds e κ Hsαsds h H H sαsds + H H } Hsα sds H } Hsα sds. H sαsds H } Hsαsds α sds H H α sds + H H H + H } x + e κ α sds e κ Hsαsds x + He κ αsds + e κ αsds e κ H H x + He κ αsds + 1 } H ν e κ Hsαsds. h α sds Hs e κs νsds ν h, αudu P, ; X x P, P, H x + ν h + 1 } νh, + } Hsαsds } Hsαsds. } Hsαsds } Hsαsds hs αudu ds

4 X sds, X E Q e X sds X fx V E Q e rsds fx e θsds E Q e Xsds fx e θsds E Q E Q e X sds X fx. X sds, X E Q e Xsds X Z : X sds X EX EZ v X EX, v Z EZ, ρ XZ EX Z v X v Z, c XZ EX Z. vx EX e κ eκs σsds ν X Z Z s dx s + c XZ κ X s ds κ X s Z s ds + c XZ sds + νsds. c XZ e κ e κs νsds ν h. X s ds +. d d E Z EZ X c XZ ν h vz EZ νh sds ν H vx EX ν vz EZ ν H c XZ EX Z ν h ρ XZ EX Z vx v Z νh νν H Σ Z, X EZ Σ EX Z ν EX Z EX H ν h ν h ν Σ ρ XZ X, Z 1 vz ρ XZ v X v Z ρ XZ 1 v X v Z vx gx, z; Σ 1 π e 1 x,zσ 1 x,z 1 πv X v Z 1 x 1 ρ XZ 1 ρ XZ vx ρ xz XZ v X v Z + } z vz

5 X x cxz Z N vx x, v Z c XZ vx N x νh ν, νh νh. ν E Q e Z ν h X X ν + νh νh } ν fx V E Q e rsds fx e θsds E Q e Xsds fx e θsds E Q E Q e X sds X fx } θ s ds + ν H νh E Q ν h } fx X ν ν P, νh } E Q ν h } fx X ν ν r X Q D Q Q D : dq F dq F P, /P, e. rudu d D d P, d r u du d P, P, H X + ν h + 1 νh r d d H σ dw. D Q dd /D Q dd D H σ dw L H uσ udw u D EL : L 1 L } W : W W, L W + H uσ u du Q Q X X e κ s X s + s e κ u σ u dw u s e κ u H uσ udu, X.

6 ν κν + σ h + κh 1 e κ u H uσ udu H ν H ν H ν + H ν + H ν + ν h. X h sx s + s h uh u νu + κνu du νud u h uh u + κ νu κh uh u h uh u h uh uνudu νu κh uh u + h uh u du νuh udu du + κ h uh uνudu } h uσ u dwu H ν + ν h h s H sνs + ν h s. F s X > s h sx s H ν + ν h + h s H sνs + ν h s s e κ u σudu ν h s; κνs Q r θ + X X h sx s + } s h uσ udwu H ν + ν h h s H sνs + ν h s E X X s h sx s H ν + ν h + h s H sνs + ν h s V ar X X s ν h s; κνs. W Q X X s s < F ; s, e s e s < e F ;, s, e 1 τ P, s P, e P, e τ s, e f s P, 1+τK e τ τ, 1 P, s τ P, V, σ e B, 1 < f P, e τf f ; s, e K + f σ B H e s h s f ; κν f h s ; κν

7 K, F, v, w F wφwd 1 K, F, v KwΦwd K, F, v d 1 K, F, v F /K + v / v d K, F, v F /K v /. v V P, e τ K + 1 τ, F ; s, e + 1 τ, H e f H s f ν f, 1. S S s, e : P, s P, e, < s < e e Q e S d S d H s H e X + ν h 1 ν H s H e d H s H e dx d + H e s h s σ dw e ds S H e s h s σ dw, S P, s P, e F ; s, e 1 τ S s, e 1, τ s, e f f < s < e s, e V τ P, e E e K, F, v, w F f ; s, e K + P, e E e Sf 1 + τk +. K, F, v, w F wφwd 1 K, F, v KwΦwd K, F, v d 1 K, F, v F /K + v / v d K, F, v F /K v /, v V P, e 1 + τk, P, s P,, σ e B, 1 P, e τf f ; s, e K + < f f

8 σ B H e s h s f ; κν f h s ; κν. P, 1+τK e τ τ, 1 P, s τ P, V e, σ B, 1 < f P, e τf f ; s, e K + f <, n i 1, i i i 1 i K i τ i i 1, i i V mk i P, i τ i K i, F ; i 1, i, σ mk i i, 1 σi mk i V model P, i τ i K i + 1, F ; i 1, i + 1, H i i H i 1 i ν i, 1. τ i τ i κ ν i i 1,, n K i, F ; i 1, i, σi mk i, 1 K i + 1, F ; i 1, i + 1, H i i H i 1 i ν i, 1 τ i τ i H i i H i 1 i h i 1 i H i i 1 σ σ σ i 1 1 i 1 < i } + σ n 1 1 n }, σ i 1 i 1,, n σ i 1 eκ i ν i e κ i 1 ν i 1 i i 1 e κu du ν i e κ i i 1 ν i 1 i i 1 e κu du ν i hκ; i i 1 ν i 1 Hκ; i i 1 σ σ n 1 ν ν h ν H s, e 1,, n a i, b i i 1,, n w i i < e τ s, e n w if i ; a i, b i τ s, e n w if i ; a i, b i K + τ s, e K n w if i ; a i, b i + τ s, e s, e F i ; a i, b i a i, b i F i ; a i, b i 1 P i, a i P i, b i. τ i P i, b i τ i a i, b i i a i < e b i e b i > e

9 s, e n V P, τ s, e w i F i ; a i, b i 1 i } + w i τ i Ai e BiX 1 1 <i } A i P,ai P,b i 1 ν i H a i i H b i i λ i α i + 1 λ i β } i B i λ i h i λ i Ha i i Hb i i α i H i ν i + ν h i + h i H ν + ν h β i ν i h i ; κν l i s i i n V P, τ s, e w i li F ; a i, b i + s i 1i } + w i l i τ i A i e B ix 1 s iτ i 1 <i } l i V P, τ s, e w i l i τ i A i 1 s iτ i l i A i P,ai P,b i 1 ν ih a i i H b i i λ i α i + 1 λ i ν i } λ i Ha i i Hb i i α i H i ν i + ν h i V P, τ s, e w i E F i ; a i, b i P, τ s, e w i τ i E P i, a i 1. P i, b i P i, a i P i, b i P, a i P, b i Ha i i Hb i i X i 1 ν i H a i i H b i i } i E F i ; a i, b i F i ; a i, b i < i i, X i Q i X i h i X + h i uσ u dwu H i ν i + ν h i h i H ν + ν h }. F X i h i X H i ν i + ν h i +h i H ν + ν h ν i h i ; κν e λx i E λh i X + λh i ν i + ν h i λh i H ν + ν h + 1 } λ ν i h i ; κν.

10 P E i, a i P, a i P i, b i P, b i 1 ν i H a i i H b i i } λ i h i X λ i α i + 1 } λi β i λ i Ha i i Hb i i α i H i ν i + ν h i + h i H ν + ν h β i ν i h i ; κν n V P, τ s, e w i F i ; a i, b i 1 i } + w i τ i Ai e B ix 1 1 <i } A i P,a i P,b i 1 ν i H a i i H b i i λ i α i + 1 λ i β } i B i λ i h i λ i Ha i i Hb i i α i H i ν i + ν h i + h i H ν + ν h β i ν i h i ; κν V P, τ s, e w i τ i +λ i H i ν i + ν h i + 1 λ i ν i P, ai P, b i 1 ν i H a i i H b i i } 1 l i s i i V P, τ s, e n V P, τ s, e w i li F ; a i, b i + s i 1i } + w i E l i F i ; a i, b i + s i w i l i τ i A i e B ix 1 s iτ i 1 <i} l i w V P, τ s, e E we ξ K + P, τ s, e K, eˆµ+ 1 ˆσ, ˆσ, w

11 ˆµ ˆσ i i i > ˆσ V M ˆµ M 1 ˆσ M n ii w i eµ i+ 1 Σ ii V n i,ji w i w j eµ i+µ j + 1 Σ ii+σ jj +Σ ij K n w i ii τ i + K + i 1 w if i ; a i, b i w i w i P,a i τ i P,b i 1 ν i H a i i H b i i Ha i i Hb i i ν h i } µ i Ha i i Hb i i h i X H i ν i + ν h i + h i H ν + ν h Σ ij Ha i i Hb i i Ha j j Hb j j h i + j i j ν i j h i j ; κν ˆσ V M ˆµ M 1 ˆσ M n V n V P, τ s, e E we ξ K + P, τ s, e K, eˆµ+ 1 ˆσ, ˆσ, w w i eµ i+ 1 Σ ii i,j1 w i w j eµi+µj+ 1 ii + jj + ij K n w i τ i + K w i w i P,a i τ i P,b i 1 ν i H a i i H b i i Ha i i Hb i i ν h i } µ i Ha i i Hb i i H i ν i + ν h i Σ ij Ha i i Hb i i Ha j j Hb j j h i + j i j ν i j w τ s, e w w i F i ; a i, b i wk < e X i Q F X i Q i X i h i X + h i uσ u dwu H i ν i + ν h i h i H ν + ν h }, Cov X i X j E i h i uσ u dw u j h j vσ v dw v h i + j i j ν i j h i j ; κν. i i i > w i F i ; a i, b i K w i F i ; a i, b i K + ii w i P i, a i τ ii i P i, b i n i 1 ii w i τ i + K + i j e κ i+ j w i F i ; a i, b i i 1 w i F i ; a i, b i e κu σ udu

12 K n w i ii τ i + K + i 1 w i w i τ i P, a i P, b i Z i Ha i i Hb i i X i. w if i ; a i, b i i i 1 ν i H a i i H b i i Ha i i Hb i i ν h i w i F i ; a i, b i K F Z i ii w ie Zi K. µ i Ha i i Hb i i h i X H i ν i + ν h i + h i H ν + ν h Σ ij Ha i i Hb i i Ha j j Hb j j h i + j i j ν i j h i j ; κν. ξ Nˆµ, ˆσ w i F i ; a i, b i K ii w ie Zi K e ξ K ˆσ V M ˆµ M 1 ˆσ M n ii w i eµ i+ 1 Σ ii V n i,ji w i w j eµi+µj+ 1 Σii+Σjj+Σij }, V P, τ s, e E we ξ K + P, τ s, e K, eˆµ+ 1 ˆσ, ˆσ, w. M f P f M d P d Y M d, P d, Y M f, Y P f. Q d P d, Y M f M d M d Q d Y r d θ d + X d, dx d κ d X d d + σ d dw d, X d dy Y µ e d + σ e dw e,, Y Pf M d Q d σ e W e dw e dw d ρ de d ρ de

13 P d, E d } F r d sds E d Q d dy Y r d r f d + σ e dw e M d Y, Pd Y, M f, P f. Q f M d P, d, Pf Y M f Y M f M f Q f r f θ f + X f, dx f κ f X f d + σ f dw f, X f W f Q f dw f dw d ρ df d dw f dw e ρ ef d ρ df ρ ef r f Q d Q f M d, P d, Y M f, Y P f Y M f Q f Q f Y M f r f Q d Q f dq d F dq f 1 } rs d rs f ds F Y σsdw e s e + 1 } σ e s ds σsdw e s e σsds e 1 } σ e s ds E σsdw e s e σudu e, E W e σe sds Q f W f W f, σ e sdw e s σ e udu W f + ρ ef σsds e : Ŵ f Q d r f Q d r f ˆθ f + ˆX f, d ˆX f κ f ˆXf d + σ f dŵ f, ˆXf ˆθ f θ f ρ ef e κf eκf s σ f s σ e sds W d W f i W d i W d i 1 W f i W f i 1 Q d Q f W d, W f ρ df ρ ef

14 Q d W d Ŵ f W e Q d r d θ d + X d, dx d κ d X d d + σ d dw d, X d r f ˆθ f + ˆX f, d ˆX f κ f ˆXf d + σ f dŵ f, ˆXf, ˆθ f θ f ρ ef e κf s σ eκf s f σsds e Y Y e θe +Xe, θ e θd s ˆθ s f ds 1 σe s ds, X e Xd s ˆX s f ds + σe sdws e dw d dw e ρ de d, dw d dŵ f ρ df d, dw e dŵ f ρ ef d ξ ξ fg 1 X d, g X f Y f g 1 g E d Q d V E d e rd d fg 1 X d, g X f Y e θd d E d e Xd d f g 1 X d, g ˆX f + ˆθ f θf Y e θe +Xe P d, e νh d E d e Xd d f g 1 X d, g ˆX f ρ ef e κf P f, H P d, e ν f +νh d +ρ ef e κf eκf s σ f s σe s ds 1 σe d A E d e Xd d f g 1 X d, g ˆX f B C Y e Xe, A P d, e νh d B ρ ef e κf s σ eκf s f σsds e C P f, P d, e νh f +νh d +ρ ef e κf eκf s σ f s σe s ds 1 σe d e κf s σ f s σ e sdsy e Xe Z, X d, ˆX f, Xe Z Xd d V A e 1 σ E d e µxd,xe, ˆX f, f g 1 X d, g ˆX f B C Y e Xe vd c de c df µx d, x e, x f, c zd, c ze, c zf c ed v e c ef c fd c fe vf v σ vz d c de c df c zd, c ze, c zf c ed v e c ef c fd c fe vf 1 x d x e x f 1 c dz c ez c fz Z vz c zd c ze c zf Σ E X d X e Z, X d, X e, X f c dz vd c de c df c ez c X f ed v e c ef c fz c fd c fe vf

15 Xd s ds, X d, X e, ˆX f E d e Xd s ds X d, X e, ˆX f Z Xd s ds X d e κd e κds σ d sdw d s, X e X d s ˆX f s ds + σ e sdw e s, ˆXf e κf e κf s σ f s dŵ f s, W d Ŵ f W e Q d dw d dŵ f ρ df d, dw d dw e ρ de d, dŵ f dw e ρ fe d. Z, X d, ˆX f, X e vz E d Z νd H vd Ed X d ν d ve c ze vz + νf H + σe s ds ρ ξ ξ s ef σ e κf sσ e eκf s f dsdξ vf Ed ˆX f ν f c zd E d X d Z νd h c ze ρ s s de e κd eκdu σuσ d ududs e s ξ ρ df e e κd κd +κ f ξ ξ +κ f u σ uσ d udu f dξds eκd s ξ ρ df e e κf κd +κ f ξ ξ +κ f u σ uσ d udu f dξds + vz eκd s c zf ρ df e e κf κd +κ f s s +κ f u σ uσ d udu f ds eκd c de νd h ρ s df e e κd κd +κ f s s +κ f u σ uσ d udu f ds + ρ eκd de e κd eκds σsσ d sds e c df E d X d X f ρ df e κd +κ f +κ f s σ sσ d f eκd s ds s c ef ρ df e e κf κd +κ f s s +κ f u σ d uσudu f ds ν h eκd f + ρ ef e κf s σ sσ e f eκf s ds vz c zd c ze c zf Σ c dz vd c de c df c ez c ed v e c ef. c fz c fd c fe vf X d, X e, X f, Z gx z, x d, x e, x f ; Σ 1 4π e 1 x 1 z,x d,x e,x f Σ E d e Z X d x d, X e x e, ˆX f x f. x z,x d,x e,x f. X d, X e, ˆX f Z Nµ, σ vd v de v df µx d, x e, x f, v zd, v ze, v zf ved v e v ef v fd v fe vf 1 x d x e x f v σ vz d v de v df v zd, v ze, v zf ved v e v ef v fd v fe vf v dz v ez v fz 1

16 E d e Z X d x d, X e x e, ˆX f x f µx d, x e, x f, + 1 } σ. X d v d Ed X d e κd eκds σ d s ds ν d ˆX f v f Ed ˆX f e κf eκf s σ f s ds ν f X d Z c zd E d X d Z E d X d s ds + E d vdsds κ d c zd sds. Z s κ d X d s ds + σ d sdw d s d d c zd κ d c zd + ν d c zd ν h d Z v z E d Z Ed Z s X d s ds ν H d X d X d ˆX f c df E d X d ˆX f e κd +κ f E d ρ df e κd +κ f X e e κd +κ f s σ d s σ f s ds. c de E d X d X e E d Xs d Xs d ˆX s f ds + c de c de e κd ν h d e κd ν h d ρ df e κds σ d sdw d s d d c de v d c df κ d c de + ρ de σ d σ e. e κds v ds c df s + ρ de σ d sσ e sds e κf s σ f s dŵ f s Xs e κ d Xs d ds + ρ de σsσ d sds e ρ df e κf s e κd +κ f s σuσ d ududs f + ρ de e κd e κds σsσ d sds e e κd +κ f s e κd +κ f u σuσ d udu f ds + ρ de e κd e κd s Z ˆX f e κds σ d sσ e sds. dc zf E d dz ˆXf E d ˆX f X d d + Z κ f ˆXf d c df d κ f c zf d. c zf e κf ρ df e κf s c df sds e κf e κf s e κd +κ f s ρ df e κd s e κd +κ f u σuσ d ududs f e κd +κ f u σuσ d udu f ds.

17 X e ˆX f c ef e κf e κf ρ df dc ef E d dx e ˆX f E d ˆX f X d ˆX f d + X e κ f ˆXf d + σ e dw e σ f dŵ f c df d v f d κ f c ef d + ρ ef σ e σ f d. e κf s c df s v f s + ρ ef σ e sσ f s ds ρ df e κd s e κf s e κd +κ f s Z X e c ze e κd +κ f u σ d uσ f udu e κf s e κf u σu f du ds + ρ ef e κf e κd +κ f u σuσ d udu f νf h + ρ ef e κf e κf s σ e sσ f s ds. dc ze E d dz X e E d X d X e + Z X d ˆX f d c de + c zd c zf d. c de s + c zd s c zf s ds ρ df ν h d s + ρ de e κd s e κf s ξ ν H d + ρ de ρ df e κdu σ d uσ e udu ρ df ξ e κd +κ f ξ e κd s e κdu σ d uσ e ududs e κd +κ f u σ d uσ f udu e κd s ξ + e κf s ξ e κd +κ f ξ e κd s ξ ξ dξ ds ξ e κd +κ f ξ e κd +κ f u σ d uσ f udu e κf s σ e sσ f s ds e κd +κ f u σ d uσ f udu dξds dξ X e v e d d v e E d X e dx e + E d dx e E d X e X d ˆX f d + E d σ e d c de c ef + σ e d. c de s c ef s + σ e s ds ν H d + ν H f + ρ df ρ ef ξ e κf ξ s ξ e κf ξ c ze v z + ν H f + σ e s ds ρ df e κd +κ f s e κf s σ e sσ f s dsdξ ξ σ e s ds ρ ef e κd ξ s e κd +κ f s e κd +κ f u σuσ d udu f dsdξ + ρ de ξ e κf ξ e κf s σ e sσ f s dsdξ e κd +κ f u σuσ d udu f dsdξ ξ e κd ξ e κds σ d s σ e sdsdξ

18 < 1 < < < N C f i N Ci dn Cf i N Cd i N C f i Ci d < 1 } N N C f i P f, i ; X f Ci d P d, i ; X d,. Y V E e N + N rd s ds Y C f i Xf P f, i ; X f Ci d X d P d, i ; X d Ae 1 σ E d e µxd,xe, ˆX f, f A B C g 1 x N Cd i xp d, i ; x g x N Cf i xp f, i ; x fx, y y x, } g 1 X d, g ˆX f B CY e Xe µx d, x e, x f, + V AE d e Xd s ds CY e Xe ν h; κ H; κ h; κ e κ, H; κ N C f i ˆX f BP f, i ; ˆX N f B Ci d X d P d, i ; X d hs; κds κ 1 e κ κ κ < 1 < < n 1 < n : σ σ 1 σ n 1 σ i 1 i 1, i i 1,,, n ν; κ e κ eκs σsds ν ; κ ν 1 ; κ ν n 1 ; κ ν ; κ ν; κ i 1,, n ν i ; κ e κ i i 1 i e κs σsds + e κs σsds i 1 e κ i i 1 ν i 1 ; κ + e κi σ i 1 i i 1 e κs ds h i i 1 ; κν i 1 ; κ + σ i 1H i i 1 ; κ.

19 ν ; κ ν 1 ; κ ν n 1 ; κ i 1, i ν; κ h i 1 ; κν i 1 ; κ + H i 1 ; κσ i 1 ν h ν h ; κ e κ s νs; κds. ν h ; κ ν h ; κ ν h ; κ i 1, i i 1,, n i 1 ν h ; κ e κ s νs; κds e κ e κs νs; κds + e κs νs; κds i 1 i 1, i e κ i 1 ν h i 1 ; κ + e κ i 1 e κs νs; κds ν h ; κ h i 1 ; κν h i 1 ; κ + ν i 1 ; κh i 1 ; κh i 1 ; κ + 1 σ i 1H i 1 ; κ ν H ν H ν H ; κ, κ H s, κ νs; κds, ν; κ e κ eκs σ sds H, κ e κ s ds κ κ ν H ; κ, κ ν H ; κ, 1 e κ s κ νs; κds 1 κ ν h ; κ, ν h ; κ, κ. sνs; κds νsds sνsds. ν : νsds ν1 : sνsds ν ν 1 i 1, i ν ν i 1 + νsds i 1 ν i 1 + i 1 ν i 1 + σi 1 s i 1ds κ ν i 1 + i 1 e κs i 1 ν i 1 + σi 1 1 e κs i 1 κ ds κ ν i 1 + ν i 1 i 1 + σ i 1 i 1 κ ν i 1 + ν i 1 σ i 1 κ 1 e κ i 1 κ + σ i 1 κ i 1 κ

20 ν 1 ν 1 i 1 + sνsds i 1 ν 1 i 1 + i 1 sν i 1 + σi 1 ss i 1ds κ ν 1 i 1 + i 1 s e κs i 1 ν i 1 + σi 1 1 e κs i 1 κ ds κ ν 1 i 1 + νi 1 i σ 3 i 1 i 1 3 i 1 i 1 ν 1 i 1 + σ i 1 4κ i 1 + ν i 1 κ σ i 1 κ i 1 e κ i e κ i 1 κ κ κ ν ν 1 ν H ν H ν ν 1 r r X 1 + X + θ, r r, X 1 X dx 1 κ 1 X 1 d + σ 1 dw 1, X 1 dx κ X d + σ dw, X W 1, W ρ dw 1 dw ρd, r κ 1 κ σ 1 σ ρ 1, 1 θ x 1 x x 1 e κ 1 s x 1 s + s e κ 1 u σ 1 udw 1 u, x 1 x e κ s x s + s e κ u σ udw u, x F s x 1, x µs, Ex 1, x F s µ 1 s,, µ s, h 1 sx 1 s, h sx s Σs, s e κ1 u σ 1udu s e κ1+κ u σ 1 uσ uρdu ν11 s, ν 1 s, ν 1 s, ν s, s e κ1+κ u σ 1 uσ uρdu s e κ u σudu

21 x 1 x Q Q Q ζ E Q dq P, /P,. dq rudu d ζ d P, d rudu d φudu e H i x i + 1 V, rd φd + h i x i d H i dx i + 1 V, rd x i + h i x i + 1 V, + H i κ i x i d d ζ dζ /ζ 1 dζ /ζ dζ d ζ ζ dζ d ζ + 1 dζ ζ ζ x i + h i x i + H i σ i dw i H i σi d + ρh 1 H σ 1 σ d V,. H i κ i x i d 1 + h i + H i κ i x i d H i σ i dw i, H i σ i dw i H i σ i dw i L H i uσ i udw i u ζ EL : L 1 L } W 1 W 1 W 1, L W 1 + W W W, L W + ρ H 1 uσ 1 udu + ρ H 1 uσ 1 udu + H uσ udu H uσ udu Q Q x 1 e κ 1 s x 1 s M 1 s, + s e κ 1 u σ 1 udw 1 u, x 1 x e κ s x s M s, + s e κ u σ udw u, x W1, W Q ρ M1 s, s e κ1 u σ 1 uh 1 uσ 1 u + ρh uσ udu M s, s e κ u σ uρh 1 uσ 1 u + H uσ udu

22 F s x 1, x µ s, E s x 1, x h 1 sx 1 s M 1 s,, h sx M s, Q x 1 udu x udu xudu x x κ udxu udxu + x u κxudu + σudw u + x uxudu + uσudw u + x κ κ uxudu κ κ κ κx x uxudu u e κu x + u ue κu du κ ude κu κ x + xh κ e κs σsdw s ve κv dv u e κu s σsdw s du u u u ve κv dv κ e κu σu ve κv dv dw u e κu σu u σu u e κs σsdw sd u u e κu s σsdw sdu ve κv dv ve κv dv e κu σudw u, ue κu κ ue κu u u u u e κv u dv e κv dv κ e κv dv dw u dw u

23 κ xudu κ uxudu + x + xh uσudw u + x σu u + uσudw u + x xh + σu e κv u dv dw u xh + σuh udw u u u e κv u dv dw u x 1 udu x 1 H 1 + x udu x H + σ 1 uh 1 udw 1 u σ uh udw u F µ, inegral E x 1 udu, x udu x 1 udu, x udu F H 1 x 1, H x σ Σ, inegral 1uH1 udu σ 1 uσ uh 1 H ρdu σ 1 uσ uh 1 H ρdu σuh udu V, P, E Q e rudu F e φudu E Q e x1u+xudu F φudu H 1 x 1 H x + 1 V, } σ1uh 1 udu + σuh udu + ρ σ 1 uσ uh 1 uh udu. Ω, F, P Q Q F P F D Q P F D F, P

24 D F, P F, Q M F, P M M D 1. M, D F, Q N P M, Ñ M, N M, N. D L D L 1 } L, L EL ; L L D + D 1 s dd s. Q EL P M P M M D 1 M, D M M, L Q P E L 1 Q E L Q Z 1,, Z n n µ Σ n w ie Z i w 1 w n X Nµ, Σ ϕ Ee i X e i µ 1 Σ, Ee X e µ+ 1 Σ n M : E w i e Z i w i e µ i+ 1 Σ ii. n V : E w i e Z i w i w j Ee Z i+z j i,j1 w i w j e µ i+µ j + 1 Σ ii+σ jj +Σ ij, i,j1 Z i + Z j Nµ i + µ j, Σ ii + Σ jj + Σ ij ξ Nˆµ, ˆσ Ee ξ E n w ie Zi Ee ξ E n w ie i Z eˆµ+ 1 ˆσ M e ˆµ+ˆσ V ˆσ V M ˆµ M 1 ˆσ

25 X Nµ, Σ ϕ Ee i X e i µ 1 Σ.

N a.. n o s.. c a l e.. S.. y.. s t e.. m.. s.. M.. M.. T.. A bullet.. I SSN : hyphen 3290 \ centerline

N a.. n o s.. c a l e.. S.. y.. s t e.. m.. s.. M.. M.. T.. A bullet.. I SSN : hyphen 3290 \ centerline N S M M SSN : 99 39 S N D O : 4 7 8 S 8 N M N SSN : S 99 39 M M SSN : 99-39 V 4 S D O : 4 7 8 / 8 N M M V M S 4 D O : 4 7 8 / M 8 N M M V W - 4 F X - * C D J 3 S S M - W F X À V C D J 3 S - H 8 D 93 B

More information

Equity Default Swaps under the Jump-to-Default Extended CEV Model

Equity Default Swaps under the Jump-to-Default Extended CEV Model Equity Default Swaps under the Jump-to-Default Extended CEV Model Rafael Mendoza-Arriaga Northwestern University Department of Industrial Engineering and Management Sciences Presentation of Paper to be

More information

A Full Asymptotic Series of European Call Option Prices in the SABR Model with

A Full Asymptotic Series of European Call Option Prices in the SABR Model with A Full Asymptotic Series of European Call Option Prices in the SABR Model with β = 1 Z. Guo, H. Schellhorn November 17, 2018 Stochastic Alpha Beta Rho(SABR) Model The Black-Scholes Theory Generalization

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Slides 4. Matthieu Gomez Fall 2017

Slides 4. Matthieu Gomez Fall 2017 Slides 4 Matthieu Gomez Fall 2017 How to Compute Stationary Distribution of a Diffusion? Kolmogorov Forward Take a diffusion process dx t = µ(x t )dt + σ(x t )dz t How does the density of x t evolves?

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

Rewriting the Income Tax Act: Exposure Draft. Foreword

Rewriting the Income Tax Act: Exposure Draft. Foreword Foreword The Government welcomes the publication of this exposure draft of the rewritten Parts A to E of the Income Tax Act 1994. Legislation that is clear, written in plain language, and easy to use has

More information

, c G G(c) = c σ σ p 1 F ( p) F p q(p) q(p) = G(p) q (p)p/q(p) q (p)p/q(p) = σ c c b p 1 F ( p) p p α 1 α α α α α = 0 α = 1 α (0, 1) α W S (c, p, b) = ((1 b) p c)(1 F ( p)) b p W S dw S /d p = 0 Φ( p)

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Initial Value Problem for the European Call The main objective of this lesson is solving

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

1980 2007 2007 20 30 25 8% 2% 5% 1% 30 50 3% 10 5 8 4 6 3 4 2 2 1 0 20 30 40 50 60 0 20 30 40 50 60 / + 2 3% 11 50 55 +/ 2.5 1.7 5 3 15 10 6 8 5 10 6 4 5 mean tenure median tenure 4 2 3 2 1 0 20 30 40

More information

Interest Rate Volatility

Interest Rate Volatility Interest Rate Volatility III. Working with SABR Andrew Lesniewski Baruch College and Posnania Inc First Baruch Volatility Workshop New York June 16-18, 2015 Outline Arbitrage free SABR 1 Arbitrage free

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

A discretionary stopping problem with applications to the optimal timing of investment decisions.

A discretionary stopping problem with applications to the optimal timing of investment decisions. A discretionary stopping problem with applications to the optimal timing of investment decisions. Timothy Johnson Department of Mathematics King s College London The Strand London WC2R 2LS, UK Tuesday,

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Initial Value Problem for the European Call rf = F t + rsf S + 1 2 σ2 S 2 F SS for (S,

More information

Advanced topics in continuous time finance

Advanced topics in continuous time finance Based on readings of Prof. Kerry E. Back on the IAS in Vienna, October 21. Advanced topics in continuous time finance Mag. Martin Vonwald (martin@voni.at) November 21 Contents 1 Introduction 4 1.1 Martingale.....................................

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

PAYER SPECIFICATION SHEET. June 1, Bin #:

PAYER SPECIFICATION SHEET. June 1, Bin #: June 1, 2009 PAYER SPECIFICATION SHEET Bin #: States: National Destination: Integrated Prescription Management Accepting: Claim Adjudication, Reversals Fmat: Version 5.1 1. Segment And Requirements By

More information

The Lognormal Interest Rate Model and Eurodollar Futures

The Lognormal Interest Rate Model and Eurodollar Futures GLOBAL RESEARCH ANALYTICS The Lognormal Interest Rate Model and Eurodollar Futures CITICORP SECURITIES,INC. 399 Park Avenue New York, NY 143 Keith Weintraub Director, Analytics 1-559-97 Michael Hogan Ex

More information

Hedging under Model Uncertainty

Hedging under Model Uncertainty Hedging under Model Uncertainty Efficient Computation of the Hedging Error using the POD 6th World Congress of the Bachelier Finance Society June, 24th 2010 M. Monoyios, T. Schröter, Oxford University

More information

ISSN BWPEF Variance Dispersion and Correlation Swaps. Antoine Jacquier Birkbeck, University of London. Saad Slaoui AXA IM, Paris

ISSN BWPEF Variance Dispersion and Correlation Swaps. Antoine Jacquier Birkbeck, University of London. Saad Slaoui AXA IM, Paris ISSN 745-8587 Birkbeck Working Papers in Economics & Finance School of Economics, Mathematics and Statistics BWPEF 7 Variance Dispersion and Correlation Swaps Antoine Jacquier Birkbeck, University of London

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

EXPLICIT BOND OPTION AND SWAPTION FORMULA IN HEATH-JARROW-MORTON ONE FACTOR MODEL

EXPLICIT BOND OPTION AND SWAPTION FORMULA IN HEATH-JARROW-MORTON ONE FACTOR MODEL EXPLICIT BOND OPTION AND SWAPTION FORMULA IN HEATH-JARROW-MORTON ONE FACTOR MODEL MARC HENRARD Abstract. We present an explicit formula for European options on coupon bearing bonds and swaptions in the

More information

Principal Curvatures

Principal Curvatures Principal Curvatures Com S 477/577 Notes Yan-Bin Jia Oct 26, 2017 1 Definition To furtheranalyze thenormal curvatureκ n, we make useof the firstandsecond fundamental forms: Edu 2 +2Fdudv +Gdv 2 and Ldu

More information

Bulk Upload Standard File Format

Bulk Upload Standard File Format Bulk Upload Standard File Format QLD Motor Vehicle Register May 2017 1800 773 773 confirm@citec.com.au Innovative Information Solutions Standard CSV Result Format A Comma Separated Values (CSV) file will

More information

is a standard Brownian motion.

is a standard Brownian motion. Stochastic Calculus Final Examination Solutions June 7, 25 There are 2 problems and points each.. (Property of Brownian Bridge) Let Bt = {B t, t B = } be a Brownian bridge, and define dx t = Xt dt + db

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

MEDICARE PART D PAYER SPECIFICATION SHEET

MEDICARE PART D PAYER SPECIFICATION SHEET MEDICARE PART D PAYER SPECIFICATION SHEET January 1, 2006 Bin #: 610468 States: National Destination: PharmaCare / RxClaim Accepting: Claim Adjudication, Reversals Format: Version 5.1 I. VERSION 5.1 GENERAL

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Brownian Motion as Limit of Random Walk

Brownian Motion as Limit of Random Walk Brownian Motion as Limit of Random Walk Claim 1 A (µ, σ) Brownian motion is the limiting case of random walk. A particle moves x to the left with probability 1 p. It moves to the right with probability

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

MAS6012. MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Sampling, Design, Medical Statistics

MAS6012. MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Sampling, Design, Medical Statistics t r r r t s t SCHOOL OF MATHEMATICS AND STATISTICS Sampling, Design, Medical Statistics Spring Semester 206 207 3 hours t s 2 r t t t t r t t r s t rs t2 r t s s rs r t r t 2 r t st s rs q st s r rt r

More information

Averaging fast subsystems

Averaging fast subsystems First Prev Next Go To Go Back Full Screen Close Quit 1 Martingale problems General approaches to averaging Convergence of random measures Convergence of occupation measures Well-mixed reactions Michaelis-Menten

More information

Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs

Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs Martin Forde King s College London, May 2014 (joint work with Christoph Czichowsky, Philipp Deutsch

More information

Insiders Hedging in a Stochastic Volatility Model with Informed Traders of Multiple Levels

Insiders Hedging in a Stochastic Volatility Model with Informed Traders of Multiple Levels Insiders Hedging in a Stochastic Volatility Model with Informed Traders of Multiple Levels Kiseop Lee Department of Statistics, Purdue University Mathematical Finance Seminar University of Southern California

More information

Exact replication under portfolio constraints: a viability approach

Exact replication under portfolio constraints: a viability approach Exact replication under portfolio constraints: a viability approach CEREMADE, Université Paris-Dauphine Joint work with Jean-Francois Chassagneux & Idris Kharroubi Motivation Complete market with no interest

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari Parametric Inference and Dynamic State Recovery from Option Panels Nicola Fusari Joint work with Torben G. Andersen and Viktor Todorov July 2012 Motivation Under realistic assumptions derivatives are nonredundant

More information

Introduction to Affine Processes. Applications to Mathematical Finance

Introduction to Affine Processes. Applications to Mathematical Finance and Its Applications to Mathematical Finance Department of Mathematical Science, KAIST Workshop for Young Mathematicians in Korea, 2010 Outline Motivation 1 Motivation 2 Preliminary : Stochastic Calculus

More information

PDE Approach to Credit Derivatives

PDE Approach to Credit Derivatives PDE Approach to Credit Derivatives Marek Rutkowski School of Mathematics and Statistics University of New South Wales Joint work with T. Bielecki, M. Jeanblanc and K. Yousiph Seminar 26 September, 2007

More information

Black-Scholes Model and Risk Neutral Pricing

Black-Scholes Model and Risk Neutral Pricing Inroducion echniques Exercises in Financial Mahemaics Lis 3 UiO-SK45 Soluions Hins Auumn 5 eacher: S Oriz-Laorre Black-Scholes Model Risk Neural Pricing See Benh s book: Exercise 44, page 37 See Benh s

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Financial Economics & Insurance

Financial Economics & Insurance Financial Economics & Insurance Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability A336 Wells Hall Michigan State University East Lansing MI 48823

More information

Multi-asset derivatives: A Stochastic and Local Volatility Pricing Framework

Multi-asset derivatives: A Stochastic and Local Volatility Pricing Framework Multi-asset derivatives: A Stochastic and Local Volatility Pricing Framework Luke Charleton Department of Mathematics Imperial College London A thesis submitted for the degree of Master of Philosophy January

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

Invariant Variational Problems & Integrable Curve Flows. Peter J. Olver University of Minnesota olver

Invariant Variational Problems & Integrable Curve Flows. Peter J. Olver University of Minnesota   olver Invariant Variational Problems & Integrable Curve Flows Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Cocoyoc, November, 2005 1 Variational Problems x = (x 1,..., x p ) u = (u 1,...,

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Fourier, Wavelet and Monte Carlo Methods in Computational Finance

Fourier, Wavelet and Monte Carlo Methods in Computational Finance Fourier, Wavelet and Monte Carlo Methods in Computational Finance Kees Oosterlee 1,2 1 CWI, Amsterdam 2 Delft University of Technology, the Netherlands AANMPDE-9-16, 7/7/26 Kees Oosterlee (CWI, TU Delft)

More information

Market Price of Longevity Risk for A Multi-Cohort Mortality Model with Application to Longevity Bond Option Pricing

Market Price of Longevity Risk for A Multi-Cohort Mortality Model with Application to Longevity Bond Option Pricing 1/51 Market Price of Longevity Risk for A Multi-Cohort Mortality Model with Application to Longevity Bond Option Pricing Yajing Xu, Michael Sherris and Jonathan Ziveyi School of Risk & Actuarial Studies,

More information

Market models for the smile Local volatility, local-stochastic volatility

Market models for the smile Local volatility, local-stochastic volatility Market models for the smile Local volatility, local-stochastic volatility Lorenzo Bergomi lorenzo.bergomi@sgcib.com Global Markets Quantitative Research European Summer School in Financial Mathematics

More information

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Simon Man Chung Fung, Katja Ignatieva and Michael Sherris School of Risk & Actuarial Studies University of

More information

Qualifying Exam Solutions: Theoretical Statistics

Qualifying Exam Solutions: Theoretical Statistics Qualifying Exam Solutions: Theoretical Statistics. (a) For the first sampling plan, the expectation of any statistic W (X, X,..., X n ) is a polynomial of θ of degree less than n +. Hence τ(θ) cannot have

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

Calibration Lecture 4: LSV and Model Uncertainty

Calibration Lecture 4: LSV and Model Uncertainty Calibration Lecture 4: LSV and Model Uncertainty March 2017 Recap: Heston model Recall the Heston stochastic volatility model ds t = rs t dt + Y t S t dw 1 t, dy t = κ(θ Y t ) dt + ξ Y t dw 2 t, where

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Statistics Stevanovich Center The University

More information

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory).

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory). 5. Itô Calculus Types of derivatives Consider a function F (S t,t) depending on two variables S t (say, price) time t, where variable S t itself varies with time t. In stard calculus there are three types

More information

Modeling Portfolios Containing Risky Assets

Modeling Portfolios Containing Risky Assets Modeling Portfolios Containing Risky Assets C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park, MD lvrmr@math.umd.edu presented

More information

Topics in Volatility Models

Topics in Volatility Models Topics in Volatility Models Cong YI cong.yi@imperial.ac.uk A Thesis submitted for the degree of Doctor of Philosophy Institute for Mathematical Sciences Imperial College of Science, Technology and Medicine,

More information

Heath Jarrow Morton Framework

Heath Jarrow Morton Framework CHAPTER 7 Heah Jarrow Moron Framework 7.1. Heah Jarrow Moron Model Definiion 7.1 (Forward-rae dynamics in he HJM model). In he Heah Jarrow Moron model, brieflyhjm model, he insananeous forward ineres rae

More information

Futures Price under the BOPM

Futures Price under the BOPM Futures Price under the BOPM Futures prices form a martingale under the risk-neutral probability. The expected futures price in the next period is a ( 1 d p f Fu+(1 p f ) Fd = F u d u + u 1 ) u d d = F.

More information

Unifying Volatility Models

Unifying Volatility Models The University of Reading THE BUSINESS SCHOOL FOR FINANCIAL MARKETS Unifying Volatility Models Carol Alexander (Co-authored works with E. Lazar and L. Nogueira) ISMA Centre, University of Reading Email:

More information

Structural Models of Credit Risk and Some Applications

Structural Models of Credit Risk and Some Applications Structural Models of Credit Risk and Some Applications Albert Cohen Actuarial Science Program Department of Mathematics Department of Statistics and Probability albert@math.msu.edu August 29, 2018 Outline

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

On systematic mortality risk. and. quadratic hedging with mortality derivatives

On systematic mortality risk. and. quadratic hedging with mortality derivatives On systematic mortality risk and quadratic hedging with mortality derivatives University of Ulm, December 2, 2006 Thomas Møller, PFA Pension, Copenhagen (www.math.ku.dk/ tmoller) Outline. Introduction

More information

Pricing and Modelling in Electricity Markets

Pricing and Modelling in Electricity Markets Pricing and Modelling in Electricity Markets Ben Hambly Mathematical Institute University of Oxford Pricing and Modelling in Electricity Markets p. 1 Electricity prices Over the past 20 years a number

More information

Efficient valuation of exotic derivatives in Lévy models

Efficient valuation of exotic derivatives in Lévy models Efficient valuation of exotic derivatives in models Ernst Eberlein and Antonis Papapantoleon Department of Mathematical Stochastics and Center for Data Analysis and Modeling (FDM) University of Freiburg

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

Girsanov s Theorem. Bernardo D Auria web: July 5, 2017 ICMAT / UC3M

Girsanov s Theorem. Bernardo D Auria   web:   July 5, 2017 ICMAT / UC3M Girsanov s Theorem Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M Girsanov s Theorem Decomposition of P-Martingales as Q-semi-martingales Theorem

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Understanding Predictability (JPE, 2004)

Understanding Predictability (JPE, 2004) Understanding Predictability (JPE, 2004) Lior Menzly, Tano Santos, and Pietro Veronesi Presented by Peter Gross NYU October 19, 2009 Presented by Peter Gross (NYU) Understanding Predictability October

More information

CONTINUOUS-TIME DYNAMIC PRICING FOR STABILIZING STOCHASTIC DEMAND

CONTINUOUS-TIME DYNAMIC PRICING FOR STABILIZING STOCHASTIC DEMAND Journal of the Operations Research Society of Japan Vol. 6, No. 2, April 217, pp. 178 191 c The Operations Research Society of Japan CONTINUOUS-TIME DYNAMIC PRICING FOR STABILIZING STOCHASTIC DEMAND Kimitoshi

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Tentamen i 5B1575 Finansiella Derivat. Måndag 27 augusti 2007 kl Answers and suggestions for solutions.

Tentamen i 5B1575 Finansiella Derivat. Måndag 27 augusti 2007 kl Answers and suggestions for solutions. Tenamen i 5B1575 Finansiella Deriva. Måndag 27 augusi 2007 kl. 14.00 19.00. Answers and suggesions for soluions. 1. (a) For he maringale probabiliies we have q 1 + r d u d 0.5 Using hem we obain he following

More information

Decomposing swap spreads

Decomposing swap spreads Decomposing swap spreads Peter Feldhütter Copenhagen Business School David Lando Copenhagen Business School (visiting Princeton University) Stanford, Financial Mathematics Seminar March 3, 2006 1 Recall

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch) The Black-Scholes Model Options Markets 1 / 55 Outline 1 Brownian motion 2 Ito s lemma 3

More information

Dynamic Protection for Bayesian Optimal Portfolio

Dynamic Protection for Bayesian Optimal Portfolio Dynamic Protection for Bayesian Optimal Portfolio Hideaki Miyata Department of Mathematics, Kyoto University Jun Sekine Institute of Economic Research, Kyoto University Jan. 6, 2009, Kunitachi, Tokyo 1

More information

Developments in Volatility Derivatives Pricing

Developments in Volatility Derivatives Pricing Developments in Volatility Derivatives Pricing Jim Gatheral Global Derivatives 2007 Paris, May 23, 2007 Motivation We would like to be able to price consistently at least 1 options on SPX 2 options on

More information

Physics of muscle contraction

Physics of muscle contraction Review Article Physics of muscle contraction M. Caruel matthieu.caruel@u-pec.fr L. Truskinovsky lev.truskinovsky@espci.fr Abstract. Contents . Introduction.. Background Z disk M line half-sarcomere cross-bridge

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Inference for Stochastic Volatility Models Driven by Lévy Processes

Inference for Stochastic Volatility Models Driven by Lévy Processes Inference for Stochastic Volatility Models Driven by Lévy Processes By MATTHEW P. S. GANDER and DAVID A. STEPHENS Department of Mathematics, Imperial College London, SW7 2AZ, London, UK d.stephens@imperial.ac.uk

More information

Multiple Defaults and Counterparty Risks by Density Approach

Multiple Defaults and Counterparty Risks by Density Approach Multiple Defaults and Counterparty Risks by Density Approach Ying JIAO Université Paris 7 This presentation is based on joint works with N. El Karoui, M. Jeanblanc and H. Pham Introduction Motivation :

More information