Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives

Size: px
Start display at page:

Download "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives"

Transcription

1 Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Simon Man Chung Fung, Katja Ignatieva and Michael Sherris School of Risk & Actuarial Studies University of New South Wales Australia ASTIN, AFIR/ERM and IACA Colloquia Sydney, August, 25 Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 / 26

2 Introduction Provision of Retirement Income Products Examples of retirement income products: life annuities, deferred annuities, variable annuities with guarantees (financial options) Selling them can be risky - long term nature Duration of payments depend on survival of annuitants Idiosyncratic mortality risk can be handled by diversification Systematic mortality risk (longevity risk) is significant Hedging longevity risk using longevity swaps and caps Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 2 / 26

3 Outline Pricing and hedging analysis of longevity derivatives on a hypothetical life annuity portfolio subject to longevity risk" Propose and calibrate a two-factor Gaussian mortality model Derive analytical pricing formulas for longevity swaps and caps Investigate hedging features of longevity swaps and caps w.r.t. different assumptions on () the market price of longevity risk (2) term to maturity of the hedging instruments (3) portfolio size Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 3 / 26

4 Longevity risk modelling How to model survival probability? Intensity-based approach: Cox process with stochastic intensity µ. If µ is known then deal with inhomogeneous Poisson process, where probability of k events in [t, T ] is given by ( T t ) k µ(s) ds µ(s) ds P(N T N t = k F T ) = e T t k! Death time is modelled as the first jump time of a Cox process Given only F t, we set k = in Eq. () and use iterated expectation to obtain the expected survival probability ( S x+t (t, T ) = E P e T ) µ x+s (s)ds t Ft (2) Useful for pricing and the corresponding density function of death time can be obtained () Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 4 / 26

5 Mortality model The mortality intensity µ x (t) (in full: µ x+t (t)) of a cohort aged x at time t = is modelled by µ x (t) = Y (t) + Y 2 (t), (3) where Y (t) is a general trend that is common to all ages, and Y 2 (t) is an age-specific factor, satisfying the following dynamics where dw (t) dw 2 (t) = ρdt dy (t) = α Y (t) dt + σ dw (t) (4) dy 2 (t) = (αx + β)y 2 (t) dt + σe γx dw 2 (t) (5) Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 5 / 26

6 Survival probability Proposition Under the two-factor mortality model, the expected (T t)-survival probability of a person aged x + t at time t is given by S x+t (t, T ) = Et (e P T ) µ x (s)ds t = e 2 Γ(t,T ) Θ(t,T ) (6) where Θ(t, T ) and Γ(t, T ) are the mean and the variance of the integral µ x (s) ds respectively. T t We will use the fact that the integral T µ t x (s) ds is normally distributed with known mean and variance to derive analytical pricing formulas for longevity derivatives Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 6 / 26

7 Parameter estimation Figure: Central death rates m(x, t)..4.3 m (x,t) Age (x) Year (t) 2 2 Australian male ages x = 6,..., 95 and years t = 97,...28 Intensity assumed constant over each integer age and calendar year; approximated by central death rates m(x, t) Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 7 / 26

8 Parameter estimation Figure: Difference of central death rates m(x, t)..5. m (x,t) Age (x) Year (t) 2 2 Sample variance: Var( m x ); Model variance: Var( µ x )=(σ 2 + 2σ σρe γx + σ 2 e 2γx ) t Minimizing 9 x=6,65... (Var( µ x σ, σ, γ, ρ) Var( m x )) 2 with respect to the parameters {σ, σ, γ, ρ}. Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 8 / 26

9 Age x = 65 5th perc. 25th perc. 5th perc. 75th perc. 95th perc Age x = 75 5th perc. 25th perc. 5th perc. 75th perc. 95th perc. µ x (t) 2 µ x (t) t t Survival Probability S x (,T) Age x = 65 99% CI Mean Survival Probability S x (,T) Age x = 75 99% CI Mean T T Other parameters are calibrated to the empirical survival curves aged 65 and 75 in 28 by minimizing T x x=65,75 j= ) 2 (Ŝx (, j) S x (, j) (7) Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 9 / 26

10 Risk-adjusted measure Assuming, under the risk-adjusted measure Q, we have dy (t) = α Y (t) dt + σ d W (t) (8) dy 2 (t) = (αx + β λσe γx ) Y 2 (t) dt + σe γx d W 2 (t) (9) where λ is the market price of longevity risk; λ is estimated using the proposed price of the BNP/EIB longevity bond (Meyricke & Sherris (24)) Survival Probability S 65 (,T) λ = λ = 4.5 λ = 8.5 λ = Horizon T Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 / 26

11 (Index-based) Longevity swaps Consider an annuity provider/hedger who has a future liability that depends on the (stochastic) survival probability of a cohort The provider wants certainty for the estimated survival probability S-forward: At maturity T, pays fixed leg, K(T ) (, ), and receives floating leg - the realized survival probability e T µ x (s) ds. The payoff from the S-forward is, assuming the notional amount is, e T Zero price at inception means that e r T E Q (e T µ x (s) ds K(T ) () ) µ x (s) ds K(T ) = () and hence K(T ) = E Q (e T ) µ x (s) ds (2) A longevity swap is a portfolio of S-forwards Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 / 26

12 The mark-to-market price process F (t) of an S-forward is F (t) = e r(t t) Et (e Q T ) µ x (s) ds K = e r(t t) Et (e Q t µx (s) ds e T ) µ x (s) ds t K = e r(t t) ( Sx (, t) S x+t (t, T ) K ) (3) S x (, t) := e t µx (s) ds Ft is the realized survival probability, which is observable given F t. Let ˆn denotes the number of survivors in [, t] and the initial population of the cohort is n, then we have S x (, t) ˆn n (4) S x+t (t, T ) is the risk-adjusted survival probability; If an analytical expression for S x+t (t, T ) is available then an explicit formula for F (t) is obtained Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 2 / 26

13 where S t = S x (, t), S t = S x+t (t, T ), d = Γ(t,T ) ( ln {K/( St St )} + 2 Γ(t, T ) ) and Φ( ) denotes the CDF of the standard normal R.V. Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 3 / 26 (Index-based) Longevity caps A longevity cap is a portfolio of caplets - the payoff of a longevity caplet is max {(e T ) } µ x (s) ds K, (5) Similar to an S-forward but is able to capture the upside potential - when survival probability is overestimated The price of the longevity caplet: Cl(t) = e r(t t) Et ((e Q T )) + µ x (s) ds K Proposition Under the two-factor mortality model, the price at time t of a longevity caplet Cl(t), with maturity T and strike K, is given by ( ) Cl(t) = S t S t e r (T t) Φ Γ(t, T ) d Ke r (T t) Φ ( d) (6)

14 Idea of proof: since the integral I := T µ t x (s) ds is normally distributed, e I is a log-normal random variable The standard deviation Γ(t, T ) of the integral can be interpreted as the volatility of the (risk-adjusted) aggregated longevity risk for an individual aged x + t at time t, for the period from t to T Figure: Caplet price as a function of (left panel) T and K and (right panel) λ where K =.4 and T = Cl ( ; T, K).3.2 Caplet Price Time to Maturity (T) Strike (K) λ Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 4 / 26

15 Managing longevity risk in a life annuity portfolio Consider a life annuity portfolio consists of n policyholders aged 65 in year 28; Premium of the annuity ($ per year upon survival) is given by ω x a x = B(, T ) S x (, T ; λ) (7) T = For the annuity provider the present value (P.V.) of asset is A = n a x P.V. of (random) liability for policyholder k: τ k L k = B(, T ) (8) T = P.V. of liability for the whole portfolio: L = n k= L k Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 5 / 26

16 Interested in the discounted surplus distribution per policy where D no = A L D no n (9) Discounted Surplus Distribution Per Policy n = 2 n = 4 n = 6 n = 8 6 Density $ Figure: No longevity risk (σ = σ = ); Idiosyncratic mortality risk is reduced as n increases Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 6 / 26

17 Swap-hedged annuity portfolio: where F swap = n ˆT T = D swap = A L + F swap (2) B(, T ) (e T ) µ x (s) ds S x (, T ) is the random cash flow from the longevity swap; n here acts as the notional amount; ˆT : term to maturity Cap-hedged annuity portfolio: where F cap = n ˆT T = (2) D cap = A L + F cap C cap (22) B(, T ) max {(e T ) } µ x (s) ds S x (, T ), is the random cash flow from the longevity cap and C cap = n ˆT T = (23) Cl (; T, S x (, T )) (24) is the price of the longevity cap Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 7 / 26

18 Examining hedge features of longevity swaps and caps with respect to (w.r.t.) different assumptions on () the market price of longevity risk λ (2) term to maturity of the hedging instruments ˆT and (3) the portfolio size n Table: Parameters for the base case. λ ˆT (years) n , Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 8 / 26

19 λ = no hedge swap cap λ = 4.5 no hedge swap cap λ = 8.5 no hedge swap cap λ = 2.5 no hedge swap cap Figure: Effect of the market price of longevity risk λ on the discounted surplus distribution per policy Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 9 / 26

20 Table: Hedging features of a longevity swap and a cap w.r.t. market price of longevity risk λ. Mean Std.dev. Skewness VaR.99 ES.99 λ = No hedge Swap-hedged Cap-hedged λ = 4.5 No hedge Swap-hedged Cap-hedged λ = 8.5 No hedge Swap-hedged Cap-hedged λ = 2.5 No hedge Swap-hedged Cap-hedged Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 2 / 26

21 Term = years no hedge swap cap Term = 2 years no hedge swap cap Term = 3 years no hedge swap cap Term = 4 years no hedge swap cap Figure: Effect of the term to maturity ˆT of the hedging instruments on the discounted surplus distribution per policy Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney 25 2 / 26

22 Table: Hedging features of a longevity swap and cap w.r.t. term to maturity ˆT. Mean Std.dev. Skewness VaR.99 ES.99 ˆT = Years No hedge Swap-hedged Cap-hedged ˆT = 2 Years No hedge Swap-hedged Cap-hedged ˆT = 3 Years No hedge Swap-hedged Cap-hedged ˆT = 4 Years No hedge Swap-hedged Cap-hedged Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney / 26

23 Table: Longevity risk reduction R = Var( D ) of a longevity swap and a cap w.r.t. Var( D) different portfolio size (n). n 2, 4, 6, 8, R swap 92.6% 96.% 97.2% 97.7% R cap 64.9% 67.3% 68.% 68.6% Var( D ) variance of discounted surplus for hedged portfolio Var( D) variance of discounted surplus for unhedged portfolio Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney / 26

24 Table: Hedging features of a longevity swap and a cap w.r.t. portfolio size (n). Mean Std.dev. Skewness VaR.99 ES.99 n = 2, No hedge Swap-hedged Cap-hedged n = 4, No hedge Swap-hedged Cap-hedged n = 6, No hedge Swap-hedged Cap-hedged n = 8, No hedge Swap-hedged Cap-hedged Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney / 26

25 Summary The proposed two-factor Gaussian mortality model is capable of modelling mortality intensities of different ages simultaneously Longevity swaps and caps can be priced analytically under the model; Standard derivation of the integral T µ t x (s) ds plays the role of volatility in longevity derivatives pricing Swap-hedged annuity portfolio is insensitive to the market price of risk λ Longevity swaps and caps are markedly different as hedging instruments when term to maturity ˆT or portfolio size n is large Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney / 26

26 Thank you for your attention Katja Ignatieva ASTIN, AFIR/ERM and IACA 25 Sydney / 26

arxiv: v1 [q-fin.cp] 1 Aug 2015

arxiv: v1 [q-fin.cp] 1 Aug 2015 Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives his version: 4 August 5 Man Chung Fung a, Katja Ignatieva b, Michael Sherris c arxiv:58.9v [q-fin.cp] Aug 5

More information

Pension Risk Management with Funding and Buyout Options

Pension Risk Management with Funding and Buyout Options Pension Risk Management with Funding and Buyout Options Samuel H. Cox, Yijia Lin and Tianxiang Shi Presented at Eleventh International Longevity Risk and Capital Markets Solutions Conference Lyon, France

More information

Pricing Pension Buy-ins and Buy-outs 1

Pricing Pension Buy-ins and Buy-outs 1 Pricing Pension Buy-ins and Buy-outs 1 Tianxiang Shi Department of Finance College of Business Administration University of Nebraska-Lincoln Longevity 10, Santiago, Chile September 3-4, 2014 1 Joint work

More information

Annuity Decisions with Systematic Longevity Risk. Ralph Stevens

Annuity Decisions with Systematic Longevity Risk. Ralph Stevens Annuity Decisions with Systematic Longevity Risk Ralph Stevens Netspar, CentER, Tilburg University The Netherlands Annuity Decisions with Systematic Longevity Risk 1 / 29 Contribution Annuity menu Literature

More information

ROBUST HEDGING OF LONGEVITY RISK. Andrew Cairns Heriot-Watt University, and The Maxwell Institute, Edinburgh

ROBUST HEDGING OF LONGEVITY RISK. Andrew Cairns Heriot-Watt University, and The Maxwell Institute, Edinburgh 1 ROBUST HEDGING OF LONGEVITY RISK Andrew Cairns Heriot-Watt University, and The Maxwell Institute, Edinburgh June 2014 In Journal of Risk and Insurance (2013) 80: 621-648. 2 Plan Intro + model Recalibration

More information

Longevity risk: past, present and future

Longevity risk: past, present and future Longevity risk: past, present and future Xiaoming Liu Department of Statistical & Actuarial Sciences Western University Longevity risk: past, present and future Xiaoming Liu Department of Statistical &

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Geographical Diversification of life-insurance companies: evidence and diversification rationale

Geographical Diversification of life-insurance companies: evidence and diversification rationale of life-insurance companies: evidence and diversification rationale 1 joint work with: Luca Regis 2 and Clemente De Rosa 3 1 University of Torino, Collegio Carlo Alberto - Italy 2 University of Siena,

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Robust Longevity Risk Management

Robust Longevity Risk Management Robust Longevity Risk Management Hong Li a,, Anja De Waegenaere a,b, Bertrand Melenberg a,b a Department of Econometrics and Operations Research, Tilburg University b Netspar Longevity 10 3-4, September,

More information

Evaluating Hedge Effectiveness for Longevity Annuities

Evaluating Hedge Effectiveness for Longevity Annuities Outline Evaluating Hedge Effectiveness for Longevity Annuities Min Ji, Ph.D., FIA, FSA Towson University, Maryland, USA Rui Zhou, Ph.D., FSA University of Manitoba, Canada Longevity 12, Chicago September

More information

The Impact of Natural Hedging on a Life Insurer s Risk Situation

The Impact of Natural Hedging on a Life Insurer s Risk Situation The Impact of Natural Hedging on a Life Insurer s Risk Situation Longevity 7 September 2011 Nadine Gatzert and Hannah Wesker Friedrich-Alexander-University of Erlangen-Nürnberg 2 Introduction Motivation

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Enhancing Insurer Value Via Reinsurance Optimization

Enhancing Insurer Value Via Reinsurance Optimization Enhancing Insurer Value Via Reinsurance Optimization Actuarial Research Symposium 2004 @UNSW Yuriy Krvavych and Michael Sherris University of New South Wales Sydney, AUSTRALIA Actuarial Research Symposium

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Risk analysis of annuity conversion options with a special focus on decomposing risk

Risk analysis of annuity conversion options with a special focus on decomposing risk Risk analysis of annuity conversion options with a special focus on decomposing risk Alexander Kling, Institut für Finanz- und Aktuarwissenschaften, Germany Katja Schilling, Allianz Pension Consult, Germany

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

A Cohort-Based Value Index for Longevity Risk Management

A Cohort-Based Value Index for Longevity Risk Management A Cohort-Based Value Index for Longevity Risk Management Prepared by Yang Chang and Michael Sherris Presented to the Actuaries Institute ASTIN, AFIR/ERM and IACA Colloquia 23-27 August 205 Sydney This

More information

COMPARING LIFE INSURER LONGEVITY RISK MANAGEMENT STRATEGIES IN A FIRM VALUE MAXIMIZING FRAMEWORK

COMPARING LIFE INSURER LONGEVITY RISK MANAGEMENT STRATEGIES IN A FIRM VALUE MAXIMIZING FRAMEWORK p. 1/15 p. 1/15 COMPARING LIFE INSURER LONGEVITY RISK MANAGEMENT STRATEGIES IN A FIRM VALUE MAXIMIZING FRAMEWORK CRAIG BLACKBURN KATJA HANEWALD ANNAMARIA OLIVIERI MICHAEL SHERRIS Australian School of Business

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Comparison of Pricing Approaches for Longevity Markets

Comparison of Pricing Approaches for Longevity Markets Comparison of Pricing Approaches for Longevity Markets Melvern Leung Simon Fung & Colin O hare Longevity 12 Conference, Chicago, The Drake Hotel, September 30 th 2016 1 / 29 Overview Introduction 1 Introduction

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

HEDGING LONGEVITY RISK: A FORENSIC, MODEL-BASED ANALYSIS AND DECOMPOSITION OF BASIS RISK

HEDGING LONGEVITY RISK: A FORENSIC, MODEL-BASED ANALYSIS AND DECOMPOSITION OF BASIS RISK 1 HEDGING LONGEVITY RISK: A FORENSIC, MODEL-BASED ANALYSIS AND DECOMPOSITION OF BASIS RISK Andrew Cairns Heriot-Watt University, and The Maxwell Institute, Edinburgh Longevity 6, Sydney, 9-10 September

More information

Calculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the

Calculating VaR. There are several approaches for calculating the Value at Risk figure. The most popular are the VaR Pro and Contra Pro: Easy to calculate and to understand. It is a common language of communication within the organizations as well as outside (e.g. regulators, auditors, shareholders). It is not really

More information

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 5, 2015

More information

Immunization and Hedging of Longevity Risk

Immunization and Hedging of Longevity Risk Immunization and Hedging of Longevity Risk Changyu Estelle Liu and Michael Sherris CEPAR and School of Risk and Actuarial Studies UNSW Business School, UNSW Australia 2052 This presentation has been prepared

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20 1 of 17 1/4/2008 12:01 PM 1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7 b. 22 3 c. 23 3 d. 20 3 e. 8 2. Suppose 1 for 0 x 1 s(x) = 1 ex 100 for 1

More information

Market Price of Longevity Risk for A Multi-Cohort Mortality Model with Application to Longevity Bond Option Pricing

Market Price of Longevity Risk for A Multi-Cohort Mortality Model with Application to Longevity Bond Option Pricing 1/51 Market Price of Longevity Risk for A Multi-Cohort Mortality Model with Application to Longevity Bond Option Pricing Yajing Xu, Michael Sherris and Jonathan Ziveyi School of Risk & Actuarial Studies,

More information

Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps

Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps Anatoliy Swishchuk Department of Mathematics and Statistics University of Calgary Calgary, AB, Canada QMF 2009

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Interest rate models and Solvency II

Interest rate models and Solvency II www.nr.no Outline Desired properties of interest rate models in a Solvency II setting. A review of three well-known interest rate models A real example from a Norwegian insurance company 2 Interest rate

More information

Inflation-indexed Swaps and Swaptions

Inflation-indexed Swaps and Swaptions Inflation-indexed Swaps and Swaptions Mia Hinnerich Aarhus University, Denmark Vienna University of Technology, April 2009 M. Hinnerich (Aarhus University) Inflation-indexed Swaps and Swaptions April 2009

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Advances in Valuation Adjustments. Topquants Autumn 2015

Advances in Valuation Adjustments. Topquants Autumn 2015 Advances in Valuation Adjustments Topquants Autumn 2015 Quantitative Advisory Services EY QAS team Modelling methodology design and model build Methodology and model validation Methodology and model optimisation

More information

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given: Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any

More information

Structural Models of Credit Risk and Some Applications

Structural Models of Credit Risk and Some Applications Structural Models of Credit Risk and Some Applications Albert Cohen Actuarial Science Program Department of Mathematics Department of Statistics and Probability albert@math.msu.edu August 29, 2018 Outline

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Near-expiration behavior of implied volatility for exponential Lévy models

Near-expiration behavior of implied volatility for exponential Lévy models Near-expiration behavior of implied volatility for exponential Lévy models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Mathematics Seminar The Stevanovich Center for

More information

HEALTH INSURANCE: ACTUARIAL ASPECTS

HEALTH INSURANCE: ACTUARIAL ASPECTS HEALTH INSURANCE: ACTUARIAL ASPECTS Ermanno Pitacco University of Trieste (Italy) ermanno.pitacco@econ.units.it p. 1/152 Agenda 1. The need for health-related insurance covers 2. Products in the area of

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Longevity Risk Management and the Development of a Value-Based Longevity Index

Longevity Risk Management and the Development of a Value-Based Longevity Index risks Article Longevity Risk Management and the Development of a Value-Based Longevity Index Yang Chang ID and Michael Sherris * ID School of Risk and Actuarial Studies and CEPAR, UNSW Business School,

More information

Pricing and Risk Management of guarantees in unit-linked life insurance

Pricing and Risk Management of guarantees in unit-linked life insurance Pricing and Risk Management of guarantees in unit-linked life insurance Xavier Chenut Secura Belgian Re xavier.chenut@secura-re.com SÉPIA, PARIS, DECEMBER 12, 2007 Pricing and Risk Management of guarantees

More information

Immunization and Hedging of Longevity Risk

Immunization and Hedging of Longevity Risk Immunization and Hedging of Longevity Risk Changyu Liu, Michael Sherris CEPAR and School of Risk and Actuarial Studies UNSW Business School, University of New South Wales, Sydney, Australia, 2052 June

More information

1. For a special whole life insurance on (x), payable at the moment of death:

1. For a special whole life insurance on (x), payable at the moment of death: **BEGINNING OF EXAMINATION** 1. For a special whole life insurance on (x), payable at the moment of death: µ () t = 0.05, t > 0 (ii) δ = 0.08 x (iii) (iv) The death benefit at time t is bt 0.06t = e, t

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts

Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts M.Sghairi M.Kouki February 16, 2007 Abstract Ordinary mixed life insurance is a mix between temporary deathinsurance and pure endowment.

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY Exploring Volatility Derivatives: New Advances in Modelling Bruno Dupire Bloomberg L.P. NY bdupire@bloomberg.net Global Derivatives 2005, Paris May 25, 2005 1. Volatility Products Historical Volatility

More information

DEFERRED ANNUITY CONTRACTS UNDER STOCHASTIC MORTALITY AND INTEREST RATES: PRICING AND MODEL RISK ASSESSMENT

DEFERRED ANNUITY CONTRACTS UNDER STOCHASTIC MORTALITY AND INTEREST RATES: PRICING AND MODEL RISK ASSESSMENT DEFERRED ANNUITY CONTRACTS UNDER STOCHASTIC MORTALITY AND INTEREST RATES: PRICING AND MODEL RISK ASSESSMENT DENIS TOPLEK WORKING PAPERS ON RISK MANAGEMENT AND INSURANCE NO. 41 EDITED BY HATO SCHMEISER

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

Modelling, Estimation and Hedging of Longevity Risk

Modelling, Estimation and Hedging of Longevity Risk IA BE Summer School 2016, K. Antonio, UvA 1 / 50 Modelling, Estimation and Hedging of Longevity Risk Katrien Antonio KU Leuven and University of Amsterdam IA BE Summer School 2016, Leuven Module II: Fitting

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

An Overview of Volatility Derivatives and Recent Developments

An Overview of Volatility Derivatives and Recent Developments An Overview of Volatility Derivatives and Recent Developments September 17th, 2013 Zhenyu Cui Math Club Colloquium Department of Mathematics Brooklyn College, CUNY Math Club Colloquium Volatility Derivatives

More information

induced by the Solvency II project

induced by the Solvency II project Asset Les normes allocation IFRS : new en constraints assurance induced by the Solvency II project 36 th International ASTIN Colloquium Zürich September 005 Frédéric PLANCHET Pierre THÉROND ISFA Université

More information

Decomposition of life insurance liabilities into risk factors theory and application to annuity conversion options

Decomposition of life insurance liabilities into risk factors theory and application to annuity conversion options Decomposition of life insurance liabilities into risk factors theory and application to annuity conversion options Joint work with Daniel Bauer, Marcus C. Christiansen, Alexander Kling Katja Schilling

More information

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1.

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. Solutions to the Spring 213 Course MLC Examination by Krzysztof Ostaszewski, http://wwwkrzysionet, krzysio@krzysionet Copyright 213 by Krzysztof Ostaszewski All rights reserved No reproduction in any form

More information

GLWB Guarantees: Hedge E ciency & Longevity Analysis

GLWB Guarantees: Hedge E ciency & Longevity Analysis GLWB Guarantees: Hedge E ciency & Longevity Analysis Etienne Marceau, Ph.D. A.S.A. (Full Prof. ULaval, Invited Prof. ISFA, Co-director Laboratoire ACT&RISK, LoLiTA) Pierre-Alexandre Veilleux, FSA, FICA,

More information

Basis Risk and Optimal longevity hedging framework for Insurance Company

Basis Risk and Optimal longevity hedging framework for Insurance Company Basis Risk and Optimal longevity hedging framework for Insurance Company Sharon S. Yang National Central University, Taiwan Hong-Chih Huang National Cheng-Chi University, Taiwan Jin-Kuo Jung Actuarial

More information

Managing Systematic Mortality Risk with Group Self Pooling and Annuitisation Schemes

Managing Systematic Mortality Risk with Group Self Pooling and Annuitisation Schemes Managing Systematic Mortality Ris with Group Self Pooling and Annuitisation Schemes Prepared by Chao Qiao and Michael Sherris Presented to the Institute of Actuaries of Australia Biennial Convention 10-13

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k Solutions to the November 202 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 202 by Krzysztof Ostaszewski All rights reserved. No reproduction in

More information

MORNING SESSION. Date: Friday, May 11, 2007 Time: 8:30 a.m. 11:45 a.m. INSTRUCTIONS TO CANDIDATES

MORNING SESSION. Date: Friday, May 11, 2007 Time: 8:30 a.m. 11:45 a.m. INSTRUCTIONS TO CANDIDATES SOCIETY OF ACTUARIES Exam APMV MORNING SESSION Date: Friday, May 11, 2007 Time: 8:30 a.m. 11:45 a.m. INSTRUCTIONS TO CANDIDATES General Instructions 1. This examination has a total of 120 points. It consists

More information

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is $60. (ii) The call option currently sells for $0.15 more

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

A Consistent Pricing Model for Index Options and Volatility Derivatives

A Consistent Pricing Model for Index Options and Volatility Derivatives A Consistent Pricing Model for Index Options and Volatility Derivatives 6th World Congress of the Bachelier Society Thomas Kokholm Finance Research Group Department of Business Studies Aarhus School of

More information

Immunization and Hedging of Post Retirement Income Annuity Products

Immunization and Hedging of Post Retirement Income Annuity Products risks Article Immunization and Hedging of Post Retirement Income Annuity Products Changyu Liu and Michael Sherris * CEPAR and School of Risk and Actuarial Studies, UNSW Business School, University of New

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Risk management. VaR and Expected Shortfall. Christian Groll. VaR and Expected Shortfall Risk management Christian Groll 1 / 56

Risk management. VaR and Expected Shortfall. Christian Groll. VaR and Expected Shortfall Risk management Christian Groll 1 / 56 Risk management VaR and Expected Shortfall Christian Groll VaR and Expected Shortfall Risk management Christian Groll 1 / 56 Introduction Introduction VaR and Expected Shortfall Risk management Christian

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

www.coachingactuaries.com Raise Your Odds The Problem What is Adapt? How does Adapt work? Adapt statistics What are people saying about Adapt? So how will these flashcards help you? The Problem Your confidence

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Solvency, Capital Allocation and Fair Rate of Return in Insurance

Solvency, Capital Allocation and Fair Rate of Return in Insurance Solvency, Capital Allocation and Fair Rate of Return in Insurance Michael Sherris Actuarial Studies Faculty of Commerce and Economics UNSW, Sydney, AUSTRALIA Telephone: + 6 2 9385 2333 Fax: + 6 2 9385

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 1 Hacettepe University Department of Actuarial Sciences 06800, TURKEY 2 Middle

More information

Asset-based Estimates for Default Probabilities for Commercial Banks

Asset-based Estimates for Default Probabilities for Commercial Banks Asset-based Estimates for Default Probabilities for Commercial Banks Statistical Laboratory, University of Cambridge September 2005 Outline Structural Models Structural Models Model Inputs and Outputs

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

Geographical diversification in annuity portfolios

Geographical diversification in annuity portfolios Geographical diversification in annuity portfolios Clemente De Rosa, Elisa Luciano, Luca Regis March 27, 2017 Abstract This paper studies the problem of an insurance company that has to decide whether

More information

GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS

GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS Patrick GAGLIARDINI and Christian GOURIÉROUX INTRODUCTION Risk measures such as Value-at-Risk (VaR) Expected

More information

ACTUARIAL APPLICATIONS OF THE LINEAR HAZARD TRANSFORM

ACTUARIAL APPLICATIONS OF THE LINEAR HAZARD TRANSFORM ACTUARIAL APPLICATIONS OF THE LINEAR HAZARD TRANSFORM by Lingzhi Jiang Bachelor of Science, Peking University, 27 a Project submitted in partial fulfillment of the requirements for the degree of Master

More information

Chapter 2 ( ) Fall 2012

Chapter 2 ( ) Fall 2012 Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 2 (2.1-2.6) Fall 2012 Definitions and Notation There are several equivalent ways to characterize the probability distribution of a survival

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Stat 475 Winter 2018

Stat 475 Winter 2018 Stat 475 Winter 208 Homework Assignment 4 Due Date: Tuesday March 6 General Notes: Please hand in Part I on paper in class on the due date. Also email Nate Duncan natefduncan@gmail.com the Excel spreadsheet

More information

Interest Rate Caps and Vaulation

Interest Rate Caps and Vaulation Interest Rate Caps and Vaulation Alan White FinPricing http://www.finpricing.com Summary Interest Rate Cap Introduction The Benefits of a Cap Caplet Payoffs Valuation Practical Notes A real world example

More information