Choosing the Wrong Portfolio of Projects Part 4: Inattention to Risk. Risk Tolerance

Size: px
Start display at page:

Download "Choosing the Wrong Portfolio of Projects Part 4: Inattention to Risk. Risk Tolerance"

Transcription

1 Risk Tolerance Part 3 of this paper explained how to construct a project selection decision model that estimates the impact of a project on the organization's objectives and, based on those impacts, estimates the value of the project. The project selection decision model is flexible with regard to the number of objectives that can be accommodated. For many companies and many projects, only one objective is considered; namely profit. In this case the project selection decision model is simply a calculation of net present value (NPV). Other organizations, particularly those with non-financial objectives, will want the project selection decision model to account for impacts on the organization's non-financial objectives. Figure 45: The project selection decision model computes the value of projects. This Part 4 of the paper explained the various ways that organizations identify and characterize project risks. Identifying risks helps the project team come up with ways to eliminate and reduce those risks, but some residual risks will likely remain. Because of these risks, at the time the project portfolio is being selected the value to be derived from conducting a risky project is uncertain. What I've not yet explained is how the value of a project can be adjusted based on risk. That question is the topic of this subsection. Traditional Methods Before describing the formal method for adjusting project value based on risk, let's review the traditional methods still being used by most organizations. For convenience, I've summarized them in the table below. Use the links to go to other locations on this website that explain the methods in more detail. With the exception of risk-adjusted discount rates, all of the traditional methods rely on managerial judgment to determine exactly how the results of applying the method should be used to adjust the value or priority of a project. In the case of risk adjusted discount rates, also called hurdle rates, the method does produce a risk-adjusted value, but the logic is not defensible and the results are biased depending on the timing of project costs and benefits. In contrast, what is described below is a formal, logic-based method for determining the impact of risk on value. The method takes into account uncertainty over the project outcomes and the decision maker's willingness to take on risk

2 If You Don't Mind Risk, Maximize Expected Value If decision makers did not care about risk, they would want to "go with the odds;" that is, they would want to make decisions so as to maximize expected value. The expected value is defined as the probability-weighted sum of the possible uncertain outcomes. Decision makers unconcerned about risk would want to maximize expected value because the expected value is the amount that they would obtain on average each time the uncertainty is faced. As an example, the expected value of a coin flip that pays $1 on "heads" and zero on "tails" is 50 cents. If you played this gamble over and over again, you'd earn approximately 50 cents times the number of coin flips, and, the more times you played the closer your earnings would be to the expected value estimate. The Certain Equivalent For substantial risks, most organizations (and individuals) are risk averse, meaning that they value uncertainties at less than their expected values. The certain equivalent is defined as the amount of money for which a decision maker would be indifferent between receiving that amount for certain and receiving the uncertain outcomes of the gamble. For example, a risk-averse decision maker might assign a certain equivalent of $500,000 to a risky project with equal chances of yielding $0 and $2,000,000, even though the expected value of the project is $1,000,000. Note that this same logic means that a gamble with negative expected value (large downside risk) has a certain equivalent that is even more negative than its expected value (which is why individuals and organizations are willing to pay more for insurance premiums than the expected loss that they are eliminating). The goal of a risk averse decision maker is to maximize the certain equivalent. For risks with complex payoff distributions, it is generally difficult for an individual to estimate the

3 certain equivalent directly. However, the certain equivalent can be estimated for a simple gamble and the results used to infer the certain equivalents of more complicated risks. The approach involves constructing a utility function that represents the degree of aversion to taking risks. Utility Function An exponential form is most often chosen for the utility function: U(x) = 1 - e -x/r where x is value, R is a positive parameter called risk tolerance, and e is Euler's constant, the base of the natural logarithm. Figure 46 shows a plot of the utility function for several different risk tolerances. The horizontal x-axis shows possible values or certain equivalents expressed in monetary units. The vertical y-axis shows the corresponding "utility," where utility is a numerical rating assigned to every possible x value. With this form of the exponential utility function, utilities are scaled from 0 to 1 when the x values are positive. The utility numbers on the vertical scale do not have specific meanings, except that larger numbers are more preferred. Figure 46: The exponential utility function is often used to model risk aversion. The shape of the utility function determines the degree of aversion to taking risks. The more the plot curves or bends over, the more risk aversion is represented. With the exponential utility function, the degree of curvature is determined by R. Thus, risk tolerance is an indicator of a decision maker's or organization's willingness to accept risk. Risk tolerance, as defined here, is not the maximum amount that the decision maker can afford to lose, although decision makers and organizations with greater wealth generally have larger risk tolerances

4 Computing the Certain Equivalent To calculate the certain equivalent for a risky project you must first convert the equivalent dollar values associated with each possible project outcome to utilities, using the utility function. Then, you calculate the expected value of these utilities using the same procedure that you'd use to calculate any other expected value. First, locate each possible outcome value x on the horizontal axis and determine the corresponding utility U(x) on the vertical axis. For example, if risk tolerance is $1 million and the risk is 50% chance of $0 or $2 million, the corresponding utilities (from Figure 46) are 0 [U(0) = 1 - e -0/1 = 0] and 0.86 [U(2) = 1 - e -2/1 = 0.86]. Second, compute the expected utility by multiplying each utility by its probability and summing the products. For the example, the expected utility is = Third, locate the expected utility on the vertical axis and determine the corresponding certain equivalent on the horizontal axis [CE = - 1 * ln(1-0.43) =.56]. The result for the example is approximately $560,000. In other words, a 50/50 gamble for $2 million (which has an expected value of $1 million), is worth only $560,000 to a decision maker with a risk tolerance of $1 million. As we saw in the previous subsection, the output of a Monte Carlo or decision tree analysis of project risk is a probability distribution or frequency plot identifying many possible outcome values for the project. In that case, each of the possible outcome values is converted to a utility. Computing the expected utility and then translating the result back into dollar units gives the certain equivalent for the risky project. With a decision tree, you can replace the monetary values in the tree with their utilities. Rolling back the tree in the usual fashion then provides the certain equivalent and optimal decision policy for the risk averse decision maker. To understand why applying the utility function produces a certain equivalent less than an expected value, note that the utility function grows less rapidly as the value measure increases, while it drops off rapidly as the value measure becomes goes negative. Intuitively, this is saying that what we lose from each unit of decrease of value becomes increasingly great as the level become more negative. Therefore, if we take an expected value of the utilities of the value measure, projects that have a significant probability of yielding bad outcomes will be penalized more heavily in the calculation procedure than if expected value were used to evaluate the alternatives. Hence, an alternative with a significant chance of yielding bad outcomes will be down rated more using a utility function than from using expected value to evaluate projects. Risk Tolerance and Project Deferral Risk Occasionally, hazardous facilities, such as gas pipelines, chemical processing plants, oil pumping stations, and electric generating plants experience accidents, sometimes quite serious. To reduce risk, operators of hazardous facilities conduct inspection and maintenance activities and install protections. However, maintenance and inspection aren't perfect and can sometimes be expensive. How much should the organization spend in an attempt to minimize low-probability, high-consequence accidents?

5 San Bruno Pipeline Explosion As an example, the 2010 San Bruno explosion of a PG&E gas pipeline leveled 35 homes and killed 8 people. The cause of the accident was eventually determined to be faulty welding. PG&E had been using an inspection method in pipe segments in the vicinity of the pipe that exploded. That method was capable of detecting corrosion problems, but not welding problems. A more expensive test that could have identified the welding problem that caused the explosion would have been to pump the pipe segment full with high-pressurized water. Suppose a risk assessment conducted for a company operating some hazardous facility concludes that there is one-chance-in-10,000 of an accident that, all told, could cost the company $500 million in losses. The expected value (probability-weighted) cost of this risk is times $500 million, or $50,000. If the company is risk neutral, logic would say that no more than $50,000 should be spent to eliminate this risk. I suspect most organizations would be willing to spend more than this to avoid a risk that could cost the company a half billion dollars. Let's see what an analysis based on risk tolerance says. Suppose the company has a risk tolerance of $50 million. Applying the risk transform to the $500 million loss gives a utility of: U(-500) = 1 - e (-500/50) = -22,025. The expected utility is then -22,025/10,000 = The certain equivalent is: CE = -50 * ln( ) = Accounting for risk tolerance, the company should reasonably spend up to $12.43 million to eliminate the risk! Risk tolerance provides a logical way to determine how much to spend to manage risks, including lowprobability, high-consequence risks. Adopting the risk tolerance approach can ensure that risk management decisions are made consistently throughout the organization. If each such decision is made based on judgment, the organization is certain to spend more in some cases to reduce risk and less in others. Determining Risk Tolerance There are several ways to determine the risk tolerance for an organization. One is to ask senior decision makers (ideally, the CEO) to answer the following hypothetical question. Suppose you have an opportunity to make a risky, but potentially profitable investment. The required investment is an amount R that, for the moment, is unspecified. The investment has a chance of success. If it succeeds, it will generate the full amount invested, including the cost of capital, plus that amount again. In other words, the return will be R if the investment is successful. If the investment fails, half the investment will be lost, so the return is minus R/2. Figure 47 illustrates the opportunity. Note that the expected value of the investment is R/

6 Figure 47: What is the maximum amount R you would accept in this gamble? If R were very low, most CEOs would want to make the investment. If R were very large, for example, close to the market value of the enterprise, most CEOs would not take the investment. The risk tolerance is the amount R for which decision makers would just be indifferent between making and not making the investment. In other words, the risk tolerance is the value of R for which the certain equivalent of the investment is zero. Empirical studies have been conducted to measure organizational risk tolerances. The results show that risk tolerances obtained from different executives within the same organization vary tremendously. Generally, those lower in the organization have lower risk tolerances. Howard [9] reports that assessments from CEO's in the oil and chemicals industry concluded that risk tolerance is typically about six per cent of sales, one to one and a half times net income, or one-sixth of equity. McNamee and Celona [10] add to this list a ratio of market value to risk tolerance of one-fifth. They also comment that the ratio of risk tolerance to equity or market value usually translates best between companies in different industries. Once risk tolerance has been established, the certain equivalent for any risky project or project portfolio can be obtained via the utility function. The effect, as illustrated in Figure 48, is to subtract a risk adjustment factor from the expected value (if projects allow you to avoid risks, the effect is to add, rather than subtract, adjustment factors). The risk adjustment depends on the risk tolerance and the amount of risk. If the projects are independent (i.e., their risks are uncorrelated), then the certain equivalent of the project portfolio will be the sum of the certain equivalents of the individual projects. If project risks are correlated, the certain equivalent for the portfolio can be obtained once the distribution of payoffs for the portfolio are computed (accounting for correlations as described above). Figure 48: Adjusting project value for risk

7 An advantage of this approach is that a single risk tolerance can be established for the organization. Use of the common risk tolerance ensures that risks are treated consistently, thus avoiding the common bias in which greater levels of risk aversion tend to be applied by lower-level managers. Note that the method presented in this paper do not guarantee that the outcome of a particular risky decision will be optimal or "good," but only that the decision will be rational in the face of uncertainty and that repeated application of these methods will maximize the decision maker's welfare over the long run. For a demonstration of the importance in the context of project prioritization of addressing risk and risk tolerance, see the Risk Demo at \riskdemo.html

8 References for Part 4 1. L. Kahaner and A. Greenspan, The Quotations of Chairman Greenspan, Adams Media Corporation, S. Labarge, "Valuing the Risk Management Function," Presentation at the Risk Management Association's Capital Management Conference, Washington DC. April 10, M Boucher, "Project Portfolio Management: Selecting the Right Projects for Optimal Investment Opportunity," Aberdeen Group, p. 9, March Project Risk Mitigation: A Holistic Approach to Project Risk Management, Assurance & Advisory Business Services, Ernst & Young, D. Aswath, Strategic Risk Taking: A Framework For Risk Management, Pearson Prentice Hall, S. Savage, S Scholtes and D. Zweidler, Probability Management, ORMS Today, February 2006, M. R. Durrenberger, True Estimates Reduce Project Risk, Oak Associates, Inc., Behind AIG s Fall, Risk Models Failed to Pass Real-World Test, The Wall Street Journal, p. 1, November 3, R. Howard R. H Decision analysis: practice and promise, Management Science , McNamee, P., J. Celona. Decision Analysis with Supertree, Second Edition. The Scientific Press, South San Francisco, CA

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives CHAPTER Duxbury Thomson Learning Making Hard Decision Third Edition RISK ATTITUDES A. J. Clark School of Engineering Department of Civil and Environmental Engineering 13 FALL 2003 By Dr. Ibrahim. Assakkaf

More information

Key concepts: Certainty Equivalent and Risk Premium

Key concepts: Certainty Equivalent and Risk Premium Certainty equivalents Risk premiums 19 Key concepts: Certainty Equivalent and Risk Premium Which is the amount of money that is equivalent in your mind to a given situation that involves uncertainty? Ex:

More information

Managerial Economics

Managerial Economics Managerial Economics Unit 9: Risk Analysis Rudolf Winter-Ebmer Johannes Kepler University Linz Winter Term 2015 Managerial Economics: Unit 9 - Risk Analysis 1 / 49 Objectives Explain how managers should

More information

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Duan LI Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong http://www.se.cuhk.edu.hk/

More information

Measuring and Utilizing Corporate Risk Tolerance to Improve Investment Decision Making

Measuring and Utilizing Corporate Risk Tolerance to Improve Investment Decision Making Measuring and Utilizing Corporate Risk Tolerance to Improve Investment Decision Making Michael R. Walls Division of Economics and Business Colorado School of Mines mwalls@mines.edu January 1, 2005 (Under

More information

Decision Theory. Refail N. Kasimbeyli

Decision Theory. Refail N. Kasimbeyli Decision Theory Refail N. Kasimbeyli Chapter 3 3 Utility Theory 3.1 Single-attribute utility 3.2 Interpreting utility functions 3.3 Utility functions for non-monetary attributes 3.4 The axioms of utility

More information

Unit 4.3: Uncertainty

Unit 4.3: Uncertainty Unit 4.: Uncertainty Michael Malcolm June 8, 20 Up until now, we have been considering consumer choice problems where the consumer chooses over outcomes that are known. However, many choices in economics

More information

Chapter 23: Choice under Risk

Chapter 23: Choice under Risk Chapter 23: Choice under Risk 23.1: Introduction We consider in this chapter optimal behaviour in conditions of risk. By this we mean that, when the individual takes a decision, he or she does not know

More information

Managerial Economics Uncertainty

Managerial Economics Uncertainty Managerial Economics Uncertainty Aalto University School of Science Department of Industrial Engineering and Management January 10 26, 2017 Dr. Arto Kovanen, Ph.D. Visiting Lecturer Uncertainty general

More information

Project Selection Risk

Project Selection Risk Project Selection Risk As explained above, the types of risk addressed by project planning and project execution are primarily cost risks, schedule risks, and risks related to achieving the deliverables

More information

ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008

ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008 ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008 Game Theory: FINAL EXAMINATION 1. Under a mixed strategy, A) players move sequentially. B) a player chooses among two or more pure

More information

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h Learning Objectives After reading Chapter 15 and working the problems for Chapter 15 in the textbook and in this Workbook, you should be able to: Distinguish between decision making under uncertainty and

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Fundamentals of Managerial and Strategic Decision-Making

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Fundamentals of Managerial and Strategic Decision-Making Resource Allocation and Decision Analysis ECON 800) Spring 0 Fundamentals of Managerial and Strategic Decision-Making Reading: Relevant Costs and Revenues ECON 800 Coursepak, Page ) Definitions and Concepts:

More information

Expected utility theory; Expected Utility Theory; risk aversion and utility functions

Expected utility theory; Expected Utility Theory; risk aversion and utility functions ; Expected Utility Theory; risk aversion and utility functions Prof. Massimo Guidolin Portfolio Management Spring 2016 Outline and objectives Utility functions The expected utility theorem and the axioms

More information

ECON 312: MICROECONOMICS II Lecture 11: W/C 25 th April 2016 Uncertainty and Risk Dr Ebo Turkson

ECON 312: MICROECONOMICS II Lecture 11: W/C 25 th April 2016 Uncertainty and Risk Dr Ebo Turkson ECON 312: MICROECONOMICS II Lecture 11: W/C 25 th April 2016 Uncertainty and Risk Dr Ebo Turkson Chapter 17 Uncertainty Topics Degree of Risk. Decision Making Under Uncertainty. Avoiding Risk. Investing

More information

Special Reports Tax Notes, Apr. 16, 1990, p Tax Notes 341 (Apr. 16, 1990)

Special Reports Tax Notes, Apr. 16, 1990, p Tax Notes 341 (Apr. 16, 1990) WHY ARE TAXES SO COMPLEX AND WHO BENEFITS? Special Reports Tax Notes, Apr. 16, 1990, p. 341 47 Tax Notes 341 (Apr. 16, 1990) Michelle J. White is Professor of Economics at the University of Michigan. This

More information

Choice under risk and uncertainty

Choice under risk and uncertainty Choice under risk and uncertainty Introduction Up until now, we have thought of the objects that our decision makers are choosing as being physical items However, we can also think of cases where the outcomes

More information

Project Risk Analysis and Management Exercises (Part II, Chapters 6, 7)

Project Risk Analysis and Management Exercises (Part II, Chapters 6, 7) Project Risk Analysis and Management Exercises (Part II, Chapters 6, 7) Chapter II.6 Exercise 1 For the decision tree in Figure 1, assume Chance Events E and F are independent. a) Draw the appropriate

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Multistage decision-making

Multistage decision-making Multistage decision-making 1. What is decision making? Decision making is the cognitive process leading to the selection of a course of action among variations. Every decision making process produces a

More information

Financial Economics Field Exam August 2011

Financial Economics Field Exam August 2011 Financial Economics Field Exam August 2011 There are two questions on the exam, representing Macroeconomic Finance (234A) and Corporate Finance (234C). Please answer both questions to the best of your

More information

AP/ECON 2300 FF Answers to Assignment 2 November 2010

AP/ECON 2300 FF Answers to Assignment 2 November 2010 AP/ECON 2300 FF Answers to Assignment 2 November 2010 Q1. If a person earned Y P when young, and Y F when old, how would her saving vary with the net rate of return r to saving, if her preferences could

More information

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options Real Options for Engineering Systems Session 4: Valuation of financial options Stefan Scholtes Judge Institute of Management, CU Slide 1 Financial Options Option: Right (but not obligation) to buy ( call

More information

Chapter 1 Microeconomics of Consumer Theory

Chapter 1 Microeconomics of Consumer Theory Chapter Microeconomics of Consumer Theory The two broad categories of decision-makers in an economy are consumers and firms. Each individual in each of these groups makes its decisions in order to achieve

More information

BEEM109 Experimental Economics and Finance

BEEM109 Experimental Economics and Finance University of Exeter Recap Last class we looked at the axioms of expected utility, which defined a rational agent as proposed by von Neumann and Morgenstern. We then proceeded to look at empirical evidence

More information

Rational theories of finance tell us how people should behave and often do not reflect reality.

Rational theories of finance tell us how people should behave and often do not reflect reality. FINC3023 Behavioral Finance TOPIC 1: Expected Utility Rational theories of finance tell us how people should behave and often do not reflect reality. A normative theory based on rational utility maximizers

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Reinsuring Group Revenue Insurance with. Exchange-Provided Revenue Contracts. Bruce A. Babcock, Dermot J. Hayes, and Steven Griffin

Reinsuring Group Revenue Insurance with. Exchange-Provided Revenue Contracts. Bruce A. Babcock, Dermot J. Hayes, and Steven Griffin Reinsuring Group Revenue Insurance with Exchange-Provided Revenue Contracts Bruce A. Babcock, Dermot J. Hayes, and Steven Griffin CARD Working Paper 99-WP 212 Center for Agricultural and Rural Development

More information

Models and Decision with Financial Applications UNIT 1: Elements of Decision under Uncertainty

Models and Decision with Financial Applications UNIT 1: Elements of Decision under Uncertainty Models and Decision with Financial Applications UNIT 1: Elements of Decision under Uncertainty We always need to make a decision (or select from among actions, options or moves) even when there exists

More information

Chapter 18: Risky Choice and Risk

Chapter 18: Risky Choice and Risk Chapter 18: Risky Choice and Risk Risky Choice Probability States of Nature Expected Utility Function Interval Measure Violations Risk Preference State Dependent Utility Risk-Aversion Coefficient Actuarially

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Notes 10: Risk and Uncertainty

Notes 10: Risk and Uncertainty Economics 335 April 19, 1999 A. Introduction Notes 10: Risk and Uncertainty 1. Basic Types of Uncertainty in Agriculture a. production b. prices 2. Examples of Uncertainty in Agriculture a. crop yields

More information

Mean-Variance Portfolio Theory

Mean-Variance Portfolio Theory Mean-Variance Portfolio Theory Lakehead University Winter 2005 Outline Measures of Location Risk of a Single Asset Risk and Return of Financial Securities Risk of a Portfolio The Capital Asset Pricing

More information

UNCERTAINTY AND INFORMATION

UNCERTAINTY AND INFORMATION UNCERTAINTY AND INFORMATION M. En C. Eduardo Bustos Farías 1 Objectives After studying this chapter, you will be able to: Explain how people make decisions when they are uncertain about the consequences

More information

PAULI MURTO, ANDREY ZHUKOV

PAULI MURTO, ANDREY ZHUKOV GAME THEORY SOLUTION SET 1 WINTER 018 PAULI MURTO, ANDREY ZHUKOV Introduction For suggested solution to problem 4, last year s suggested solutions by Tsz-Ning Wong were used who I think used suggested

More information

Price Theory Lecture 9: Choice Under Uncertainty

Price Theory Lecture 9: Choice Under Uncertainty I. Probability and Expected Value Price Theory Lecture 9: Choice Under Uncertainty In all that we have done so far, we've assumed that choices are being made under conditions of certainty -- prices are

More information

CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY

CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY PART ± I CHAPTER 1 CHAPTER 2 CHAPTER 3 Foundations of Finance I: Expected Utility Theory Foundations of Finance II: Asset Pricing, Market Efficiency,

More information

Choose between the four lotteries with unknown probabilities on the branches: uncertainty

Choose between the four lotteries with unknown probabilities on the branches: uncertainty R.E.Marks 2000 Lecture 8-1 2.11 Utility Choose between the four lotteries with unknown probabilities on the branches: uncertainty A B C D $25 $150 $600 $80 $90 $98 $ 20 $0 $100$1000 $105$ 100 R.E.Marks

More information

RISK POLICY AS A UTILITY FUNCTION by John Schuyler

RISK POLICY AS A UTILITY FUNCTION by John Schuyler Utility_20160812b.docx RISK POLICY AS A UTILITY FUNCTION by John Schuyler Contents OVERVIEW... 2 Decision Policy... 2 Expected Value... 3 Decision Analysis... 5 Simple Decision Tree... 5 Need for Risk

More information

NOTES ON THE BANK OF ENGLAND OPTION IMPLIED PROBABILITY DENSITY FUNCTIONS

NOTES ON THE BANK OF ENGLAND OPTION IMPLIED PROBABILITY DENSITY FUNCTIONS 1 NOTES ON THE BANK OF ENGLAND OPTION IMPLIED PROBABILITY DENSITY FUNCTIONS Options are contracts used to insure against or speculate/take a view on uncertainty about the future prices of a wide range

More information

Decision Analysis under Uncertainty. Christopher Grigoriou Executive MBA/HEC Lausanne

Decision Analysis under Uncertainty. Christopher Grigoriou Executive MBA/HEC Lausanne Decision Analysis under Uncertainty Christopher Grigoriou Executive MBA/HEC Lausanne 2007-2008 2008 Introduction Examples of decision making under uncertainty in the business world; => Trade-off between

More information

Expected value is basically the average payoff from some sort of lottery, gamble or other situation with a randomly determined outcome.

Expected value is basically the average payoff from some sort of lottery, gamble or other situation with a randomly determined outcome. Economics 352: Intermediate Microeconomics Notes and Sample Questions Chapter 18: Uncertainty and Risk Aversion Expected Value The chapter starts out by explaining what expected value is and how to calculate

More information

NOTES ON ATTITUDE TOWARD RISK TAKING AND THE EXPONENTIAL UTILITY FUNCTION. Craig W. Kirkwood

NOTES ON ATTITUDE TOWARD RISK TAKING AND THE EXPONENTIAL UTILITY FUNCTION. Craig W. Kirkwood NOTES ON ATTITUDE TOWARD RISK TAKING AND THE EXPONENTIAL UTILITY FUNCTION Craig W Kirkwood Department of Management Arizona State University Tempe, AZ 85287-4006 September 1991 Corrected April 1993 Reissued

More information

Project Risk Evaluation and Management Exercises (Part II, Chapters 4, 5, 6 and 7)

Project Risk Evaluation and Management Exercises (Part II, Chapters 4, 5, 6 and 7) Project Risk Evaluation and Management Exercises (Part II, Chapters 4, 5, 6 and 7) Chapter II.4 Exercise 1 Explain in your own words the role that data can play in the development of models of uncertainty

More information

THE CODING OF OUTCOMES IN TAXPAYERS REPORTING DECISIONS. A. Schepanski The University of Iowa

THE CODING OF OUTCOMES IN TAXPAYERS REPORTING DECISIONS. A. Schepanski The University of Iowa THE CODING OF OUTCOMES IN TAXPAYERS REPORTING DECISIONS A. Schepanski The University of Iowa May 2001 The author thanks Teri Shearer and the participants of The University of Iowa Judgment and Decision-Making

More information

UEP USER GUIDE. Preface. Contents

UEP USER GUIDE. Preface. Contents UEP_User_Guide_20171203.docx UEP USER GUIDE Preface For questions, problem reporting, and suggestions, please contact: John Schuyler, Decision Precision john@maxvalue.com 001-303-693-0067 www.maxvalue.com

More information

Total /20 /30 /30 /20 /100. Economics 142 Midterm Exam NAME Vincent Crawford Winter 2008

Total /20 /30 /30 /20 /100. Economics 142 Midterm Exam NAME Vincent Crawford Winter 2008 1 2 3 4 Total /20 /30 /30 /20 /100 Economics 142 Midterm Exam NAME Vincent Crawford Winter 2008 Your grade from this exam is one third of your course grade. The exam ends promptly at 1:50, so you have

More information

Problem Set. Solutions to the problems appear at the end of this document.

Problem Set. Solutions to the problems appear at the end of this document. Problem Set Solutions to the problems appear at the end of this document. Unless otherwise stated, any coupon payments, cash dividends, or other cash payouts delivered by a security in the following problems

More information

Chapter 6: Supply and Demand with Income in the Form of Endowments

Chapter 6: Supply and Demand with Income in the Form of Endowments Chapter 6: Supply and Demand with Income in the Form of Endowments 6.1: Introduction This chapter and the next contain almost identical analyses concerning the supply and demand implied by different kinds

More information

Exploring the Scope of Neurometrically Informed Mechanism Design. Ian Krajbich 1,3,4 * Colin Camerer 1,2 Antonio Rangel 1,2

Exploring the Scope of Neurometrically Informed Mechanism Design. Ian Krajbich 1,3,4 * Colin Camerer 1,2 Antonio Rangel 1,2 Exploring the Scope of Neurometrically Informed Mechanism Design Ian Krajbich 1,3,4 * Colin Camerer 1,2 Antonio Rangel 1,2 Appendix A: Instructions from the SLM experiment (Experiment 1) This experiment

More information

TECHNIQUES FOR DECISION MAKING IN RISKY CONDITIONS

TECHNIQUES FOR DECISION MAKING IN RISKY CONDITIONS RISK AND UNCERTAINTY THREE ALTERNATIVE STATES OF INFORMATION CERTAINTY - where the decision maker is perfectly informed in advance about the outcome of their decisions. For each decision there is only

More information

Problem Set 2. Theory of Banking - Academic Year Maria Bachelet March 2, 2017

Problem Set 2. Theory of Banking - Academic Year Maria Bachelet March 2, 2017 Problem Set Theory of Banking - Academic Year 06-7 Maria Bachelet maria.jua.bachelet@gmai.com March, 07 Exercise Consider an agency relationship in which the principal contracts the agent, whose effort

More information

First Rule of Successful Investing: Setting Goals

First Rule of Successful Investing: Setting Goals Morgan Keegan The Lynde Group 4400 Post Oak Parkway Suite 2670 Houston, TX 77027 (713)840-3640 hal.lynde@morgankeegan.com hal.lynde.mkadvisor.com First Rule of Successful Investing: Setting Goals Morgan

More information

Decision making under uncertainty

Decision making under uncertainty Decision making under uncertainty 1 Outline 1. Components of decision making 2. Criteria for decision making 3. Utility theory 4. Decision trees 5. Posterior probabilities using Bayes rule 6. The Monty

More information

The Kelly Criterion. How To Manage Your Money When You Have an Edge

The Kelly Criterion. How To Manage Your Money When You Have an Edge The Kelly Criterion How To Manage Your Money When You Have an Edge The First Model You play a sequence of games If you win a game, you win W dollars for each dollar bet If you lose, you lose your bet For

More information

Optimizing Portfolios

Optimizing Portfolios Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Investors may wish to adjust the allocation of financial resources including a mixture

More information

Econ 101A Final Exam We May 9, 2012.

Econ 101A Final Exam We May 9, 2012. Econ 101A Final Exam We May 9, 2012. You have 3 hours to answer the questions in the final exam. We will collect the exams at 2.30 sharp. Show your work, and good luck! Problem 1. Utility Maximization.

More information

Utility and Choice Under Uncertainty

Utility and Choice Under Uncertainty Introduction to Microeconomics Utility and Choice Under Uncertainty The Five Axioms of Choice Under Uncertainty We can use the axioms of preference to show how preferences can be mapped into measurable

More information

April 28, Decision Analysis 2. Utility Theory The Value of Information

April 28, Decision Analysis 2. Utility Theory The Value of Information 15.053 April 28, 2005 Decision Analysis 2 Utility Theory The Value of Information 1 Lotteries and Utility L1 $50,000 $ 0 Lottery 1: a 50% chance at $50,000 and a 50% chance of nothing. L2 $20,000 Lottery

More information

How do we cope with uncertainty?

How do we cope with uncertainty? Topic 3: Choice under uncertainty (K&R Ch. 6) In 1965, a Frenchman named Raffray thought that he had found a great deal: He would pay a 90-year-old woman $500 a month until she died, then move into her

More information

Decision Trees: Booths

Decision Trees: Booths DECISION ANALYSIS Decision Trees: Booths Terri Donovan recorded: January, 2010 Hi. Tony has given you a challenge of setting up a spreadsheet, so you can really understand whether it s wiser to play in

More information

Lecture 3 ( 3): April 20 and 22, 2004 Demand, Supply, and Price Stiglitz: pp

Lecture 3 ( 3): April 20 and 22, 2004 Demand, Supply, and Price Stiglitz: pp Lecture 3 ( 3): April 20 and 22, 2004 Chapter 4 Demand, Supply, and rice Stiglitz: pp. 71-95. Key Terms: demand curve substitutes complements demographic effects supply curve equilibrium price excess supply

More information

Principles of Finance Risk and Return. Instructor: Xiaomeng Lu

Principles of Finance Risk and Return. Instructor: Xiaomeng Lu Principles of Finance Risk and Return Instructor: Xiaomeng Lu 1 Course Outline Course Introduction Time Value of Money DCF Valuation Security Analysis: Bond, Stock Capital Budgeting (Fundamentals) Portfolio

More information

ECON Micro Foundations

ECON Micro Foundations ECON 302 - Micro Foundations Michael Bar September 13, 2016 Contents 1 Consumer s Choice 2 1.1 Preferences.................................... 2 1.2 Budget Constraint................................ 3

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Answers to chapter 3 review questions

Answers to chapter 3 review questions Answers to chapter 3 review questions 3.1 Explain why the indifference curves in a probability triangle diagram are straight lines if preferences satisfy expected utility theory. The expected utility of

More information

23.1 Probability Distributions

23.1 Probability Distributions 3.1 Probability Distributions Essential Question: What is a probability distribution for a discrete random variable, and how can it be displayed? Explore Using Simulation to Obtain an Empirical Probability

More information

Behavioral Finance and Asset Pricing

Behavioral Finance and Asset Pricing Behavioral Finance and Asset Pricing Behavioral Finance and Asset Pricing /49 Introduction We present models of asset pricing where investors preferences are subject to psychological biases or where investors

More information

Portfolio Management

Portfolio Management MCF 17 Advanced Courses Portfolio Management Final Exam Time Allowed: 60 minutes Family Name (Surname) First Name Student Number (Matr.) Please answer all questions by choosing the most appropriate alternative

More information

MULTI-PARTY RISK MANAGEMENT PROCESS (MRMP) FOR A CONSTRUCTION PROJECT FINANCED BY AN INTERNATIONAL LENDER

MULTI-PARTY RISK MANAGEMENT PROCESS (MRMP) FOR A CONSTRUCTION PROJECT FINANCED BY AN INTERNATIONAL LENDER MULTI-PRTY RISK MNGEMENT PROCESS (MRMP) FOR CONSTRUCTION PROJECT FINNCED BY N INTERNTIONL LENDER Jirapong Pipattanapiwong and Tsunemi Watanabe School of Civil Engineering, sian Institute of Technology,

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS 1. a. The expected cash flow is: (0.5 $70,000) + (0.5 00,000) = $135,000 With a risk premium of 8% over the risk-free rate of 6%, the required

More information

Discussion. Benoît Carmichael

Discussion. Benoît Carmichael Discussion Benoît Carmichael The two studies presented in the first session of the conference take quite different approaches to the question of price indexes. On the one hand, Coulombe s study develops

More information

TIM 50 Fall 2011 Notes on Cash Flows and Rate of Return

TIM 50 Fall 2011 Notes on Cash Flows and Rate of Return TIM 50 Fall 2011 Notes on Cash Flows and Rate of Return Value of Money A cash flow is a series of payments or receipts spaced out in time. The key concept in analyzing cash flows is that receiving a $1

More information

Economics Homework 5 Fall 2006 Dickert-Conlin / Conlin

Economics Homework 5 Fall 2006 Dickert-Conlin / Conlin Economics 31 - Homework 5 Fall 26 Dickert-Conlin / Conlin Answer Key 1. Suppose Cush Bring-it-Home Cash has a utility function of U = M 2, where M is her income. Suppose Cush s income is $8 and she is

More information

PROBABILITY ODDS LAWS OF CHANCE DEGREES OF BELIEF:

PROBABILITY ODDS LAWS OF CHANCE DEGREES OF BELIEF: CHAPTER 6 PROBABILITY Probability is the number of ways a particular outcome can occur divided by the number of possible outcomes. It is a measure of how often we expect an event to occur in the long run.

More information

Retirement. Optimal Asset Allocation in Retirement: A Downside Risk Perspective. JUne W. Van Harlow, Ph.D., CFA Director of Research ABSTRACT

Retirement. Optimal Asset Allocation in Retirement: A Downside Risk Perspective. JUne W. Van Harlow, Ph.D., CFA Director of Research ABSTRACT Putnam Institute JUne 2011 Optimal Asset Allocation in : A Downside Perspective W. Van Harlow, Ph.D., CFA Director of Research ABSTRACT Once an individual has retired, asset allocation becomes a critical

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

CASE FAIR OSTER PRINCIPLES OF MICROECONOMICS E L E V E N T H E D I T I O N. PEARSON 2012 Pearson Education, Inc. Publishing as Prentice Hall

CASE FAIR OSTER PRINCIPLES OF MICROECONOMICS E L E V E N T H E D I T I O N. PEARSON 2012 Pearson Education, Inc. Publishing as Prentice Hall PART II The Market System: Choices Made by Households and Firms PRINCIPLES OF MICROECONOMICS E L E V E N T H E D I T I O N CASE FAIR OSTER PEARSON 2012 Pearson Education, Inc. Publishing as Prentice Hall

More information

Exercises for Chapter 8

Exercises for Chapter 8 Exercises for Chapter 8 Exercise 8. Consider the following functions: f (x)= e x, (8.) g(x)=ln(x+), (8.2) h(x)= x 2, (8.3) u(x)= x 2, (8.4) v(x)= x, (8.5) w(x)=sin(x). (8.6) In all cases take x>0. (a)

More information

How Risky is the Stock Market

How Risky is the Stock Market How Risky is the Stock Market An Analysis of Short-term versus Long-term investing Elena Agachi and Lammertjan Dam CIBIF-001 18 januari 2018 1871 1877 1883 1889 1895 1901 1907 1913 1919 1925 1937 1943

More information

Development Microeconomics Tutorial SS 2006 Johannes Metzler Credit Ray Ch.14

Development Microeconomics Tutorial SS 2006 Johannes Metzler Credit Ray Ch.14 Development Microeconomics Tutorial SS 2006 Johannes Metzler Credit Ray Ch.4 Problem n9, Chapter 4. Consider a monopolist lender who lends to borrowers on a repeated basis. the loans are informal and are

More information

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS

CHAPTER 6: RISK AVERSION AND CAPITAL ALLOCATION TO RISKY ASSETS CHAPTER 6: RISK AVERSION AND PROBLE SETS 1. (e). (b) A higher borrowing rate is a consequence of the risk of the borrowers default. In perfect markets with no additional cost of default, this increment

More information

Random Variables and Applications OPRE 6301

Random Variables and Applications OPRE 6301 Random Variables and Applications OPRE 6301 Random Variables... As noted earlier, variability is omnipresent in the business world. To model variability probabilistically, we need the concept of a random

More information

ECON DISCUSSION NOTES ON CONTRACT LAW. Contracts. I.1 Bargain Theory. I.2 Damages Part 1. I.3 Reliance

ECON DISCUSSION NOTES ON CONTRACT LAW. Contracts. I.1 Bargain Theory. I.2 Damages Part 1. I.3 Reliance ECON 522 - DISCUSSION NOTES ON CONTRACT LAW I Contracts When we were studying property law we were looking at situations in which the exchange of goods/services takes place at the time of trade, but sometimes

More information

The Sensitive Side of Cost Effectiveness

The Sensitive Side of Cost Effectiveness The Sensitive Side of Cost Effectiveness Christine Hungeling, Itron, San Diego, CA Jean Shelton PhD, Itron, San Diego, CA ABSTRACT The cost effectiveness of energy efficiency (EE) measures, programs, and

More information

RISK POLICY AS A UTILITY FUNCTION by John Schuyler

RISK POLICY AS A UTILITY FUNCTION by John Schuyler Utility_20161221.docx RISK POLICY AS A UTILITY FUNCTION by John Schuyler Contents OVERVIEW... 2 Decision Policy... 2 Expected Value... 3 Decision Analysis... 5 The Most Important Reason... 5 Example Showing

More information

Comparison of Payoff Distributions in Terms of Return and Risk

Comparison of Payoff Distributions in Terms of Return and Risk Comparison of Payoff Distributions in Terms of Return and Risk Preliminaries We treat, for convenience, money as a continuous variable when dealing with monetary outcomes. Strictly speaking, the derivation

More information

Lecture 06 Single Attribute Utility Theory

Lecture 06 Single Attribute Utility Theory Lecture 06 Single Attribute Utility Theory Jitesh H. Panchal ME 597: Decision Making for Engineering Systems Design Design Engineering Lab @ Purdue (DELP) School of Mechanical Engineering Purdue University,

More information

FIN 6160 Investment Theory. Lecture 7-10

FIN 6160 Investment Theory. Lecture 7-10 FIN 6160 Investment Theory Lecture 7-10 Optimal Asset Allocation Minimum Variance Portfolio is the portfolio with lowest possible variance. To find the optimal asset allocation for the efficient frontier

More information

GAME THEORY. Game theory. The odds and evens game. Two person, zero sum game. Prototype example

GAME THEORY. Game theory. The odds and evens game. Two person, zero sum game. Prototype example Game theory GAME THEORY (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Mathematical theory that deals, in an formal, abstract way, with the general features of competitive situations

More information

Review of Expected Operations

Review of Expected Operations Economic Risk and Decision Analysis for Oil and Gas Industry CE81.98 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

Corporate Control. Itay Goldstein. Wharton School, University of Pennsylvania

Corporate Control. Itay Goldstein. Wharton School, University of Pennsylvania Corporate Control Itay Goldstein Wharton School, University of Pennsylvania 1 Managerial Discipline and Takeovers Managers often don t maximize the value of the firm; either because they are not capable

More information

Decision Theory Using Probabilities, MV, EMV, EVPI and Other Techniques

Decision Theory Using Probabilities, MV, EMV, EVPI and Other Techniques 1 Decision Theory Using Probabilities, MV, EMV, EVPI and Other Techniques Thompson Lumber is looking at marketing a new product storage sheds. Mr. Thompson has identified three decision options (alternatives)

More information

Marginal Utility, Utils Total Utility, Utils

Marginal Utility, Utils Total Utility, Utils Mr Sydney Armstrong ECN 1100 Introduction to Microeconomics Lecture Note (5) Consumer Behaviour Evidence indicated that consumers can fulfill specific wants with succeeding units of a commodity but that

More information

Decision Making Under Risk Probability Historical Data (relative frequency) (e.g Insurance) Cause and Effect Models (e.g.

Decision Making Under Risk Probability Historical Data (relative frequency) (e.g Insurance) Cause and Effect Models (e.g. Decision Making Under Risk Probability Historical Data (relative frequency) (e.g Insurance) Cause and Effect Models (e.g. casinos, weather forecasting) Subjective Probability Often, the decision maker

More information

The following content is provided under a Creative Commons license. Your support

The following content is provided under a Creative Commons license. Your support MITOCW Recitation 6 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make

More information

The Demand and Supply of Safe Assets (Premilinary)

The Demand and Supply of Safe Assets (Premilinary) The Demand and Supply of Safe Assets (Premilinary) Yunfan Gu August 28, 2017 Abstract It is documented that over the past 60 years, the safe assets as a percentage share of total assets in the U.S. has

More information

Choice Under Uncertainty (Chapter 12)

Choice Under Uncertainty (Chapter 12) Choice Under Uncertainty (Chapter 12) January 6, 2011 Teaching Assistants Updated: Name Email OH Greg Leo gleo[at]umail TR 2-3, PHELP 1420 Dan Saunders saunders[at]econ R 9-11, HSSB 1237 Rish Singhania

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information