Statistics for Business and Economics: Random Variables (1)

Size: px
Start display at page:

Download "Statistics for Business and Economics: Random Variables (1)"

Transcription

1 Statistics for Business and Economics: Random Variables (1) STT 315: Section 201 Instructor: Abdhi Sarkar Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides.

2 Random Variable A random variableis a numerical variable, values of which are associated to outcome(s) of some random experiment. This means that the values of random variable depends on chance. We usually denote them by capital letters like X, Y, Z etc. Example: Suppose you toss a fair coin twice. Let X = the number of heads out of these two tosses. Then X is a variable which takes the values 0, 1, 2 but the value depends on the outcome of two tosses, which is a random event. Therefore, X is a random variable. 2

3 Two Types of Random Variables Discrete Random Variable: These random variables can assume countable number of values. (e.g. number of heads out of two tosses of a fair coin this random variable can only take values 0, 1, 2.) Continuous Random Variables: These random variables can assume any value contained in one or more intervals. (e.g. total amount of rainfall (in inches) in East Lansing in 2011.) We first discuss some discrete random variables, and consider some continuous random variables later. 3

4 Probability distributions of discrete random variables 4

5 Example X = number of heads in two tosses of a fair coin. X takes values 0, 1, 2. Outcome of the tosses Value of X Probability TT 0 ¼ TH 1 ¼ HT 1 ¼ HH 2 ¼ So, P(X=0) = ¼, P(X=1) = ¼+¼ = ½, P(X=2) = ¼. We denote p(x) = P(X=x). x p(x) 0 ¼ 1 ½ 2 ¼ 5

6 Probability distribution function Consider a discrete random variable X and define the function: = =. is called the probability distribution function of X. satisfies the following two properties: 1. 0 () 1,for any real number. 2. =1. 6

7 Another Example X = number of tails in three tosses of a fair coin. X takes values 0, 1, 2, 3. Outcome of the tosses Value of X Probability HHH 0 ⅛ HHT 1 ⅛ HTH 1 ⅛ THH 1 ⅛ HTT 2 ⅛ THT 2 ⅛ TTH 2 ⅛ TTT 3 ⅛ 7

8 Another Example Hence P(X=0) = ⅛, P(X=1) = ⅛ +⅛+⅛= ⅜, P(X=2) = ⅛ + ⅛+ ⅛ = ⅜, and P(X=3) = ⅛. x p(x) 0 ⅛ 1 ⅜ 2 ⅜ 3 ⅛ 8

9 Insurance Example Suppose the death rate in a year is 1 out of every 1000 people, and another 2 out of 1000 suffer some kind of disability. Suppose that an insurance company has to pay $10000 for death and $5000 for disability. Define X = amount (in dollars) the insurance company has to pay for one policyholder in a year. X takes values 10000, 5000, 0. Policyholder Outcome Payout (x) Probability p(x) Death /1000 = Disability /1000 = Neither 0 1-( ) =

10 Expected Value For a discrete random variable X, the expected value of X(or expectation of X) is defined as the sum of the terms value times probability. = = sum over (value probability). Suppose Xtakes values x 1, x 2,, x n with probabilities p(x 1 ), p(x 2 ),, p(x n )respectively. Then = Often E(X) is also called mean of random variable X, and is denoted by Greek letter µ. Roughly speaking, E(X) denotes the value you can expect Xto take on the average. 10

11 Insurance Example (revisited) Suppose the death rate in a year is 1 out of every 1000 people, and another 2 out of 1000 suffer some kind of disability. Suppose that an insurance company has to pay $10000 for death and $5000 for disability. Define X = amount (in dollars) the insurance company has to pay for one policyholder in a year. Then E(X) is computed as follows: Policyholder Outcome Payout (x) Probability p(x) xp(x) Death = 10 Disability = 10 Neither = 0 [Summing] E(X) = 20 11

12 Tossing Coin Thrice Example (revisited) X = number of tails in three tosses of a fair coin. Then E(X)is computed as follows: x p(x) xp(x) 0 ⅛ 0 ⅛ = 0 1 ⅜ 1 ⅜ = ⅜ 2 ⅜ = ⅛ 3 ⅛ = E(X) = 1.5 On the average, you can expect 1.5 tails out of 3 tosses of a fair coin. 12

13 Variance and Standard Deviation Varianceof a random variable Xis defined by =()= () Standard deviationof Xis the square-root of the variance of X = = (). If many random variables are involved we may write ()or to identify. Variance has the square unit of the random variable, whereas the standard deviation has the same unit as the random variable.. 13

14 Tossing Coin Thrice Example (revisited) X = number of tails in three tosses of a fair coin. Then var(x) is computed as follows: x p(x) xp(x) [x µ] 2 p(x) 0 ⅛ 0 ⅛ = 0 (0-1.5) 2 ⅛ = ⅜ 1 ⅜ = (1-1.5) 2 ⅜ = ⅜ 2 ⅜ = 0.75 (2-1.5) 2 ⅜ = ⅛ 3 ⅛ = (3-1.5) 2 ⅛ = µ=e(x) = 1.5 σ 2 = 0.75 Standard deviation: σ = 0.75 =

15 TI 83/84 Plus commands We can use TI 83/84 to compute mean and standard deviation of a discrete random variable. Press [STAT]. Under EDITselect 1: Editand press ENTER. Columns with names L1, L2 etc. will appear. Type the values of random variable X under the column L1and the values of p(x) under the column L2. Press [STAT] and choose CALCat the top. Then select 1: 1-Var Statsand press ENTER and 1- Var Statswill appear on the screen. Press [2nd]& 1 (to get L1), then press,(comma) and then press [2nd]& 2 (to get L2). Then press ENTER. We shall be needing mean ( ), standard deviation (σx). 15

16 Properties: Expectation and Variance Expectation is the center of the probability distribution of a random variable. Variance and standard deviations are measures of spread of the probability distribution of a random variable. Larger the variance/standard deviation, larger the spread (or dispersion). For any real numbers aand b a) +# = +#. b) +# =. The Chebyshevand empirical rules are also valid involving mean µ and standard deviation σ. 16

17 An example: A Gambling Game In a casino, you can play the following game: if you pay $10, the game-manager will toss a fair coin 3 times. You will earn $5 for every tail and nothing for the head(s). What is your expected profit/loss from this game? Is it wise to play this game over and over again? Let X = the number of tails out of 3 tosses of a fair coin, and Y = your profit (in dollars) from this game. Then you will pay $10 and make $5X, and therefore, Y = 5X From our previous calculation: =1.5, = Your expected profit: E(Y) = E(5X - 10) = 5E(X) - 10 = (5 1.5) - 10 = It is not wise to play this game because on the average, you are expected to lose $2.5 per game. 17

18 An example: A Gambling Game In a casino, you can play the following game: if you pay $10, the game-manager will toss a fair coin 3 times. You will earn $5 for every tail and nothing for the head(s). What is the variance of your profit from this game? What is the standard deviation of your profit from this game? As we have seen your profit (in dollars) from this game is Your expected profit: Y = 5X E(Y) = E(5X - 10) = 5E(X) - 10 = (5 1.5) - 10 = So standard deviation of your profit: σ(y) = σ(5x - 10) = 5σ(X) = = 4.33, and variance is σ 2 (Y) = (4.33) 2 =

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017 Sec$on 6.1: Discrete and Con.nuous Random Variables Tuesday, November 14 th, 2017 Discrete and Continuous Random Variables Learning Objectives After this section, you should be able to: ü COMPUTE probabilities

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Math 14 Lecture Notes Ch Mean

Math 14 Lecture Notes Ch Mean 4. Mean, Expected Value, and Standard Deviation Mean Recall the formula from section. for find the population mean of a data set of elements µ = x 1 + x + x +!+ x = x i i=1 We can find the mean of the

More information

Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe

Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe Class 8 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 208 by D.B. Rowe Agenda: Recap Chapter 4.3-4.5 Lecture Chapter 5. - 5.3 2 Recap Chapter 4.3-4.5 3 4:

More information

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable 6.1 Discrete and Continuous Random Variables 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable Random variable Takes numerical values that describe the outcomes of some

More information

The Binomial distribution

The Binomial distribution The Binomial distribution Examples and Definition Binomial Model (an experiment ) 1 A series of n independent trials is conducted. 2 Each trial results in a binary outcome (one is labeled success the other

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

Chapter 5 Basic Probability

Chapter 5 Basic Probability Chapter 5 Basic Probability Probability is determining the probability that a particular event will occur. Probability of occurrence = / T where = the number of ways in which a particular event occurs

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

The binomial distribution

The binomial distribution The binomial distribution The coin toss - three coins The coin toss - four coins The binomial probability distribution Rolling dice Using the TI nspire Graph of binomial distribution Mean & standard deviation

More information

Probability mass function; cumulative distribution function

Probability mass function; cumulative distribution function PHP 2510 Random variables; some discrete distributions Random variables - what are they? Probability mass function; cumulative distribution function Some discrete random variable models: Bernoulli Binomial

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions Chapter 4: Probability s 4. Probability s 4. Binomial s Section 4. Objectives Distinguish between discrete random variables and continuous random variables Construct a discrete probability distribution

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Answers 1. Suppose a statistician working for CSULA Federal Credit Union collected data on ATM withdrawals for the population of the credit union s customers. The statistician

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

ECO220Y Introduction to Probability Readings: Chapter 6 (skip section 6.9) and Chapter 9 (section )

ECO220Y Introduction to Probability Readings: Chapter 6 (skip section 6.9) and Chapter 9 (section ) ECO220Y Introduction to Probability Readings: Chapter 6 (skip section 6.9) and Chapter 9 (section 9.1-9.3) Fall 2011 Lecture 6 Part 2 (Fall 2011) Introduction to Probability Lecture 6 Part 2 1 / 44 From

More information

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons Statistics for Business and Economics Discrete Probability Distribu0ons Learning Objec0ves In this lecture, you learn: The proper0es of a probability distribu0on To compute the expected value and variance

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Physical Principles in Biology Biology 3550 Fall 2018 Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Monday, 10 September 2018 c David P. Goldenberg University

More information

CHAPTER 10: Introducing Probability

CHAPTER 10: Introducing Probability CHAPTER 10: Introducing Probability The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 10 Concepts 2 The Idea of Probability Probability Models Probability

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

+ Chapter 7. Random Variables. Chapter 7: Random Variables 2/26/2015. Transforming and Combining Random Variables

+ Chapter 7. Random Variables. Chapter 7: Random Variables 2/26/2015. Transforming and Combining Random Variables + Chapter 7: Random Variables Section 7.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE + Chapter 7 Random Variables 7.1 7.2 7.2 Discrete

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Chapter 8 Solutions Page 1 of 15 CHAPTER 8 EXERCISE SOLUTIONS

Chapter 8 Solutions Page 1 of 15 CHAPTER 8 EXERCISE SOLUTIONS Chapter 8 Solutions Page of 5 8. a. Continuous. b. Discrete. c. Continuous. d. Discrete. e. Discrete. 8. a. Discrete. b. Continuous. c. Discrete. d. Discrete. CHAPTER 8 EXERCISE SOLUTIONS 8.3 a. 3/6 =

More information

Statistical Methods for NLP LT 2202

Statistical Methods for NLP LT 2202 LT 2202 Lecture 3 Random variables January 26, 2012 Recap of lecture 2 Basic laws of probability: 0 P(A) 1 for every event A. P(Ω) = 1 P(A B) = P(A) + P(B) if A and B disjoint Conditional probability:

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

STT315 Chapter 4 Random Variables & Probability Distributions AM KM

STT315 Chapter 4 Random Variables & Probability Distributions AM KM Before starting new chapter: brief Review from Algebra Combinations In how many ways can we select x objects out of n objects? In how many ways you can select 5 numbers out of 45 numbers ballot to win

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Mean of a Discrete Random variable. Suppose that X is a discrete random variable whose distribution is : :

Mean of a Discrete Random variable. Suppose that X is a discrete random variable whose distribution is : : Dr. Kim s Note (December 17 th ) The values taken on by the random variable X are random, but the values follow the pattern given in the random variable table. What is a typical value of a random variable

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

Probability Distributions

Probability Distributions Chapter 6 Discrete Probability Distributions Section 6-2 Probability Distributions Definitions Let S be the sample space of a probability experiment. A random variable X is a function from the set S into

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes Alice & Bob are gambling (again). X = Alice s gain per flip: risk E[X] = 0... Time passes... Alice (yawning) says let s raise the stakes E[Y] = 0, as before. Are you (Bob) equally happy to play the new

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

1/3/12 AP STATS. WARM UP: How was your New Year? EQ: HW: Pg 381 #1, 2, 3, 6, 9, 10, 17, 18, 24, 25, 31. Chapter

1/3/12 AP STATS. WARM UP: How was your New Year? EQ: HW: Pg 381 #1, 2, 3, 6, 9, 10, 17, 18, 24, 25, 31. Chapter 1/3/12 AP STATS WARM UP: How was your New Year? EQ: Name one way you can tell between discrete variables and continuous variables? HW: Pg 381 #1, 2, 3, 6, 9, 10, 17, 18, 24, 25, 31 1 Jan. 3, 2012 HW: Pg

More information

Chapter 16. Random Variables. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 16. Random Variables. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 16 Random Variables Copyright 2010, 2007, 2004 Pearson Education, Inc. Expected Value: Center A random variable is a numeric value based on the outcome of a random event. We use a capital letter,

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Ruomeng Lan Texas A&M University October 15, 2014 Ruomeng Lan (TAMU) Math 166 October 15, 2014 1 / 12 Mean, Median and Mode Definition: 1. The average or

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I?

Bayes s Rule Example. defective. An MP3 player is selected at random and found to be defective. What is the probability it came from Factory I? Bayes s Rule Example A company manufactures MP3 players at two factories. Factory I produces 60% of the MP3 players and Factory II produces 40%. Two percent of the MP3 players produced at Factory I are

More information

Chapter 16. Random Variables. Copyright 2010 Pearson Education, Inc.

Chapter 16. Random Variables. Copyright 2010 Pearson Education, Inc. Chapter 16 Random Variables Copyright 2010 Pearson Education, Inc. Expected Value: Center A random variable assumes a value based on the outcome of a random event. We use a capital letter, like X, to denote

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Discrete Random Variables In this section, we introduce the concept of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can be thought

More information

Stat 211 Week Five. The Binomial Distribution

Stat 211 Week Five. The Binomial Distribution Stat 211 Week Five The Binomial Distribution Last Week E x E x = x p(x) = n p σ x = x μ x 2 p(x) We will see this again soon!! Binomial Experiment We have an experiment with the following qualities : 1.

More information

Elementary Statistics Blue Book. The Normal Curve

Elementary Statistics Blue Book. The Normal Curve Elementary Statistics Blue Book How to work smarter not harder The Normal Curve 68.2% 95.4% 99.7 % -4-3 -2-1 0 1 2 3 4 Z Scores John G. Blom May 2011 01 02 TI 30XA Key Strokes 03 07 TI 83/84 Key Strokes

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

SECTION 4.4: Expected Value

SECTION 4.4: Expected Value 15 SECTION 4.4: Expected Value This section tells you why most all gambling is a bad idea. And also why carnival or amusement park games are a bad idea. Random Variables Definition: Random Variable A random

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Conditional Probability. Expected Value.

Conditional Probability. Expected Value. Conditional Probability. Expected Value. CSE21 Winter 2017, Day 22 (B00), Day 14-15 (A00) March 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Random Variables A random variable assigns a real number

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Test 7A AP Statistics Name: Directions: Work on these sheets.

Test 7A AP Statistics Name: Directions: Work on these sheets. Test 7A AP Statistics Name: Directions: Work on these sheets. Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. Suppose X is a random variable with mean µ. Suppose we observe

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Binomial population distribution X ~ B(

Binomial population distribution X ~ B( Chapter 9 Binomial population distribution 9.1 Definition of a Binomial distributio If the random variable has a Binomial population distributio i.e., then its probability function is given by p n n (

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

STA Module 3B Discrete Random Variables

STA Module 3B Discrete Random Variables STA 2023 Module 3B Discrete Random Variables Learning Objectives Upon completing this module, you should be able to 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information

Law of Large Numbers, Central Limit Theorem

Law of Large Numbers, Central Limit Theorem November 14, 2017 November 15 18 Ribet in Providence on AMS business. No SLC office hour tomorrow. Thursday s class conducted by Teddy Zhu. November 21 Class on hypothesis testing and p-values December

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal Distribution Distribute in anyway but normal VI. DISTRIBUTION A probability distribution is a mathematical function that provides the probabilities of occurrence of all distinct outcomes in the sample

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

II. Random Variables

II. Random Variables II. Random Variables Random variables operate in much the same way as the outcomes or events in some arbitrary sample space the distinction is that random variables are simply outcomes that are represented

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models

STA 6166 Fall 2007 Web-based Course. Notes 10: Probability Models STA 6166 Fall 2007 Web-based Course 1 Notes 10: Probability Models We first saw the normal model as a useful model for the distribution of some quantitative variables. We ve also seen that if we make a

More information

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables STA 2023 Module 5 Discrete Random Variables Learning Objectives Upon completing this module, you should be able to: 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Discrete Probability Distributions

Discrete Probability Distributions Page 1 of 6 Discrete Probability Distributions In order to study inferential statistics, we need to combine the concepts from descriptive statistics and probability. This combination makes up the basics

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Statistics for IT Managers

Statistics for IT Managers Statistics for IT Managers 95-796, Fall 212 Course Overview Instructor: Daniel B. Neill (neill@cs.cmu.edu) TAs: Eli (Han) Liu, Kats Sasanuma, Sriram Somanchi, Skyler Speakman, Quan Wang, Yiye Zhang (see

More information

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY 9 January 2004 revised 18 January 2004 INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY Project in Geometry and Physics, Department of Mathematics University of California/San

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information