Homework Set 6 Solutions

Size: px
Start display at page:

Download "Homework Set 6 Solutions"

Transcription

1 MATH Introduction to Mathematical Finance Prof. D. A. Edwards Due: Apr. 11, 018 P Homework Set 6 Solutions K z K + z S 1. The payoff diagram shown is for a strangle. Denote its option value by V z. (a) (5 points) Construct a portfolio of puts and/or calls that replicates this payoff. Draw the payoff diagrams of the individual options. Write V z in terms of the values of the various options (you needn t write out the full Black-Scholes formulas). P K z K + z S Decomposition of strangle into put and call options. Solution. See the figure above. The dotted line represents buying a put with strike K z [which we shall denote P (S, t; K z)], and the dashed line represents buying a call Copyright 018 D. A. Edwards All Rights Reserved

2 with strike K + z (which we shall denote C(S, t; K + z)]. Therefore, we have that M667S18Sol6. V z (S, t) = P (S, t; K z) + C(S, t; K + z). (A) (b) (7 points) Show that the sensitivity of V z to changes in z is given by e r(t t) [N( d ) + N(d+ )], d± = log(s/(k ± z)) + (r σ /)(T t) σ. T t Solution. Differentiating (A) with respect to z, we have V z z = P C (S, t; K z) + (S, t; K + z). K K Calculating the derivative with respect to strike, we have C K = [SN(d 1) Ke r(t t) N(d )] K Continuing to simplify, we have = Sn(d 1 ) d 1 K e r(t t) [ N(d ) + Kn(d ) d ]. K C K = d [ ] 1 Sn(d 1 ) Ke r(t t) n(d ) e r(t t) N(d ) = e r(t t) N(d ), K where we have used the fact that d 1 /K = d /K, and notes in class that the bracketed quantity is 0. Then using put-call parity, we have P K = C K + e r(t t) = e r(t T ) [1 N(d )] = e r(t T ) N( d ), where we have used the property that N(x) + N( x) = 1. Continuing to simplify, we have as required. V z z = e r(t t) N( d ) e r(t t) N(d + ) = e r(t t) [N( d ) + N(d+ )], d ± = log(s/(k ± z)) + (r σ /)(T t) σ, T t (c) (3 points) Use your answer to (b) to show that a strangle is always cheaper than a straddle. Solution. Note that a straddle corresponds to a strangle with z = 0. We also note that V z /z < 0, so V z is a strictly decreasing function of z. Hence a strangle s value decreases with increasing z, and is always cheaper than a straddle, which has z = 0. (d) ( points) Explain your answer to (c) financially. Solution. A straddle has a positive payout for any S K, so financially it should be worth more than a strangle which has a zero payout for a finite range of S.

3 M667S18Sol6.3 (e) ( points) Note that the strangle can still be expensive because of the possibility of large payouts if S becomes large. Explain how one could introduce another option into the portfolio to make the portfolio cheaper. Do NOT work through all the details. Solution. To make the portfolio cheaper, we could cap the maximum payout in a similar way to that on a spread. In particular, we could sell a call option with some strike greater than K > K + z. This would then maximize the payout at a fixed value for large S.. Let P (t; K, T ) be the value of a put option at time t with strike K and expiration T. Let C P (t; K 1, T 1 ) be a compound call on the underlying put option (call-on-put) with strike K 1 and expiration T 1 < T, and let P P (t; K 1, T 1 ) be a compound put on the underlying put option (put-on-put), also with strike K 1 and expiration T 1. (a) ( points) What is the payoff function for P P? Solution. The payoff is just the difference between the strike price and the underlying put price, as long as it is positive: P P (T 1 ; K 1, T 1 ) = [K 1 P (T 1 ; K, T )] +. (b) (3 points) Construct a put-call parity relationship for C P and P P. Solution. We construct a portfolio where we buy C P and sell P P. Then the payoff for this portfolio is Π(T 1 ; K 1, T 1 ) = [P (T 1 ; K, T ) K 1 ] + [K 1 P (T 1 ; K, T )] + = P (T 1 ; K, T ) K 1, where we have used notes in class to write down the payoff function for C P. But then the value of this portfolio for any time t < T 1 is given by Π(t; K 1, T 1 ) = P (t; K, T ) K 1 e r(t 1 t), so we have C P (t; K, T ) P P (t; K, T ) = P (t; K, T ) K 1 e r(t 1 t). 3. (5 points) Suppose that in order to minimize fluctuations in the option price near expiry, we limit the average to some fixed time frame before expiry: I = t 0 T0 0 f(s(τ), τ) dτ, t T 0 < T, f(s(τ), τ) dτ, T 0 t T. Note that this is not consistent with the definition given in class, since the integrand depends on t. Derive a single PDE for V (S, I, t) in this case similar to the one we gave in class.

4 M667S18Sol6.4 Solution. Note that we have not changed I at all for the time t t 0. Hence in that case the result is the same as before: V t = σ S V V x S + f(s, t)v I rv, t T 0. But for t > T 0, I does not vary at all, so di = 0. Hence when we expand V, the V/I term will vanish, and we have V t = σ S Putting these two equations together, we have V t = σ S where H( ) is the Heaviside step function. V V x S rv, t T 0. V V x S + f(s, t)h(t 0 t) V I rv, 4. Consider the case of the lookback floating strike put, and suppose that we assume that V (S, M, t) = MF (y, t), y = S M. (6.1) (a) (6 points) Show that with this assumption, the domain in y is fixed, the final condition for F can be written in terms of y alone, and the boundary condition is given by F (1, t) = F (1, t). y Solution. The domain for the original problem is 0 S M, which then becomes 0 S/M 1, or 0 y 1. So the domain in y is fixed. The final condition becomes V (S, M, T ) = (M S) + MF (y, T ) = M(1 S/M) + F (y, T ) = (1 y) +. To do the boundary condition, we note that M = y M y = S M y = y M y. (B) Using this result, the boundary condition at S = M becomes V M ( (MF ) (M, M, t) = M F ) ( M M + F (y = 1, t) = y F y + F (M, M, t) = 0 ) (1, t) = 0 F (1, t) = F (1, t), y

5 Powered by TCPDF ( M667S18Sol6.5 where we have substituted in y = 1. (b) (5 points) Show that if one assumes (6.1), the governing equation for F is given by the Black-Scholes equation with S replaced by y. Solution. We just have S-derivatives in the equation from class, so we compute S = y S y = 1 M S = 1 M y. y Using this result in the Black-Scholes equation, we have (MF ) t (MF ) t = σ S = σ y F t = σ y 1 (MF ) M y 1 (MF ) r(mf ) M y (MF ) y + ry (MF ) r(mf ) y F F + ry y y rf, which is just the Black-Scholes equation with V replaced by F and S replaced by y.

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Definitions and Terminology Definition An option is the right, but not the obligation, to buy or sell a security such

More information

Solutions of Exercises on Black Scholes model and pricing financial derivatives MQF: ACTU. 468 S you can also use d 2 = d 1 σ T

Solutions of Exercises on Black Scholes model and pricing financial derivatives MQF: ACTU. 468 S you can also use d 2 = d 1 σ T 1 KING SAUD UNIVERSITY Academic year 2016/2017 College of Sciences, Mathematics Department Module: QMF Actu. 468 Bachelor AFM, Riyadh Mhamed Eddahbi Solutions of Exercises on Black Scholes model and pricing

More information

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG. Homework 3 Solution

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG. Homework 3 Solution MAH 476/567 ACUARIAL RISK HEORY FALL 2016 PROFESSOR WANG Homework 3 Solution 1. Consider a call option on an a nondividend paying stock. Suppose that for = 0.4 the option is trading for $33 an option.

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

3 + 30e 0.10(3/12) > <

3 + 30e 0.10(3/12) > < Millersville University Department of Mathematics MATH 472, Financial Mathematics, Homework 06 November 8, 2011 Please answer the following questions. Partial credit will be given as appropriate, do not

More information

MATH4210 Financial Mathematics ( ) Tutorial 6

MATH4210 Financial Mathematics ( ) Tutorial 6 MATH4210 Financial Mathematics (2015-2016) Tutorial 6 Enter the market with different strategies Strategies Involving a Single Option and a Stock Covered call Protective put Π(t) S(t) c(t) S(t) + p(t)

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 and Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 06: March 26, 2015 1 / 47 Remember and Previous chapters: introduction to the theory of options put-call parity fundamentals

More information

Department of Mathematics. Mathematics of Financial Derivatives

Department of Mathematics. Mathematics of Financial Derivatives Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Hedging. MATH 472 Financial Mathematics. J. Robert Buchanan

Hedging. MATH 472 Financial Mathematics. J. Robert Buchanan Hedging MATH 472 Financial Mathematics J. Robert Buchanan 2018 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in market variables. There

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Chapter 17. Options and Corporate Finance. Key Concepts and Skills

Chapter 17. Options and Corporate Finance. Key Concepts and Skills Chapter 17 Options and Corporate Finance Prof. Durham Key Concepts and Skills Understand option terminology Be able to determine option payoffs and profits Understand the major determinants of option prices

More information

Options Markets: Introduction

Options Markets: Introduction 17-2 Options Options Markets: Introduction Derivatives are securities that get their value from the price of other securities. Derivatives are contingent claims because their payoffs depend on the value

More information

Exotic Options. Chapter 19. Types of Exotics. Packages. Non-Standard American Options. Forward Start Options

Exotic Options. Chapter 19. Types of Exotics. Packages. Non-Standard American Options. Forward Start Options Exotic Options Chapter 9 9. Package Nonstandard American options Forward start options Compound options Chooser options Barrier options Types of Exotics 9.2 Binary options Lookback options Shout options

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Option Valuation with Sinusoidal Heteroskedasticity

Option Valuation with Sinusoidal Heteroskedasticity Option Valuation with Sinusoidal Heteroskedasticity Caleb Magruder June 26, 2009 1 Black-Scholes-Merton Option Pricing Ito drift-diffusion process (1) can be used to derive the Black Scholes formula (2).

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 1 The Black-Scholes-Merton Random Walk Assumption l Consider a stock whose price is S l In a short period of time of length t the return

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other

More information

Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. Do not turn over until you are told to do so by the Invigilator.

Attempt QUESTIONS 1 and 2, and THREE other questions. Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 FINANCIAL MATHEMATICS MTHE6026A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions. Notes are

More information

Merton s Jump Diffusion Model. David Bonnemort, Yunhye Chu, Cory Steffen, Carl Tams

Merton s Jump Diffusion Model. David Bonnemort, Yunhye Chu, Cory Steffen, Carl Tams Merton s Jump Diffusion Model David Bonnemort, Yunhye Chu, Cory Steffen, Carl Tams Outline Background The Problem Research Summary & future direction Background Terms Option: (Call/Put) is a derivative

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Name: T/F 2.13 M.C. Σ

Name: T/F 2.13 M.C. Σ Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The maximal

More information

MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. 4 (5) a b c d e 3 (2) TRUE FALSE

MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. 4 (5) a b c d e 3 (2) TRUE FALSE Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Week 5. Options: Basic Concepts

Week 5. Options: Basic Concepts Week 5 Options: Basic Concepts Definitions (1/2) Although, many different types of options, some quite exotic, have been introduced into the market, we shall only deal with the simplest plain-vanilla options

More information

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends.

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 224 10 Arbitrage and SDEs last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 10.1 (Calculation of Delta First and Finest

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Steve Dunbar No Due Date: Practice Only. Find the mode (the value of the independent variable with the

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

Math Computational Finance Barrier option pricing using Finite Difference Methods (FDM)

Math Computational Finance Barrier option pricing using Finite Difference Methods (FDM) . Math 623 - Computational Finance Barrier option pricing using Finite Difference Methods (FDM) Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

MATH 425 EXERCISES G. BERKOLAIKO

MATH 425 EXERCISES G. BERKOLAIKO MATH 425 EXERCISES G. BERKOLAIKO 1. Definitions and basic properties of options and other derivatives 1.1. Summary. Definition of European call and put options, American call and put option, forward (futures)

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

Trading Strategies with Options

Trading Strategies with Options Trading Strategies with Options One of the unique aspects of options is the ability to combine positions and design the payoff structure, which best suites your expectations. In a world without options,

More information

Derivative Securities

Derivative Securities Derivative Securities he Black-Scholes formula and its applications. his Section deduces the Black- Scholes formula for a European call or put, as a consequence of risk-neutral valuation in the continuous

More information

Name: 2.2. MULTIPLE CHOICE QUESTIONS. Please, circle the correct answer on the front page of this exam.

Name: 2.2. MULTIPLE CHOICE QUESTIONS. Please, circle the correct answer on the front page of this exam. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Extra problems Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A

FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 FINANCIAL MATHEMATICS WITH ADVANCED TOPICS MTHE7013A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other

More information

= e S u S(0) From the other component of the call s replicating portfolio, we get. = e 0.015

= e S u S(0) From the other component of the call s replicating portfolio, we get. = e 0.015 Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin In-Term Exam II Extra problems Instructor: Milica Čudina Notes: This is a closed book and closed notes exam.

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. Do not turn over until you are told to do so by the Invigilator.

Attempt QUESTIONS 1 and 2, and THREE other questions. Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 FINANCIAL MATHEMATICS MTHE6026A Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions. Notes are

More information

Options (2) Class 20 Financial Management,

Options (2) Class 20 Financial Management, Options (2) Class 20 Financial Management, 15.414 Today Options Option pricing Applications: Currency risk and convertible bonds Reading Brealey and Myers, Chapter 20, 21 2 Options Gives the holder the

More information

Valuing Put Options with Put-Call Parity S + P C = [X/(1+r f ) t ] + [D P /(1+r f ) t ] CFA Examination DERIVATIVES OPTIONS Page 1 of 6

Valuing Put Options with Put-Call Parity S + P C = [X/(1+r f ) t ] + [D P /(1+r f ) t ] CFA Examination DERIVATIVES OPTIONS Page 1 of 6 DERIVATIVES OPTIONS A. INTRODUCTION There are 2 Types of Options Calls: give the holder the RIGHT, at his discretion, to BUY a Specified number of a Specified Asset at a Specified Price on, or until, a

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 19 & 6 th, 1 he Black-Scholes-Merton Model for Options plus Applications Where we are Previously: Modeling the Stochastic Process for Derivative

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 18 & 5 th, 13 he Black-Scholes-Merton Model for Options plus Applications 11.1 Where we are Last Week: Modeling the Stochastic Process for

More information

Using Position in an Option & the Underlying

Using Position in an Option & the Underlying Week 8 : Strategies Introduction Assume that the underlying asset is a stock paying no income Assume that the options are EUROPEAN Ignore time value of money In figures o Dashed line relationship between

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

A Worst-Case Approach to Option Pricing in Crash-Threatened Markets

A Worst-Case Approach to Option Pricing in Crash-Threatened Markets A Worst-Case Approach to Option Pricing in Crash-Threatened Markets Christoph Belak School of Mathematical Sciences Dublin City University Ireland Department of Mathematics University of Kaiserslautern

More information

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility Simple Arbitrage Relations Payoffs to Call and Put Options Black-Scholes Model Put-Call Parity Implied Volatility Option Pricing Options: Definitions A call option gives the buyer the right, but not the

More information

UCLA Anderson School of Management Daniel Andrei, Derivative Markets MGMTMFE 406, Winter MFE Final Exam. March Date:

UCLA Anderson School of Management Daniel Andrei, Derivative Markets MGMTMFE 406, Winter MFE Final Exam. March Date: UCLA Anderson School of Management Daniel Andrei, Derivative Markets MGMTMFE 406, Winter 2018 MFE Final Exam March 2018 Date: Your Name: Your email address: Your Signature: 1 This exam is open book, open

More information

CHAPTER 9. Solutions. Exercise The payoff diagrams will look as in the figure below.

CHAPTER 9. Solutions. Exercise The payoff diagrams will look as in the figure below. CHAPTER 9 Solutions Exercise 1 1. The payoff diagrams will look as in the figure below. 2. Gross payoff at expiry will be: P(T) = min[(1.23 S T ), 0] + min[(1.10 S T ), 0] where S T is the EUR/USD exchange

More information

Forwards, Futures, Options and Swaps

Forwards, Futures, Options and Swaps Forwards, Futures, Options and Swaps A derivative asset is any asset whose payoff, price or value depends on the payoff, price or value of another asset. The underlying or primitive asset may be almost

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Aspects of Financial Mathematics:

Aspects of Financial Mathematics: Aspects of Financial Mathematics: Options, Derivatives, Arbitrage, and the Black-Scholes Pricing Formula J. Robert Buchanan Millersville University of Pennsylvania email: Bob.Buchanan@millersville.edu

More information

Asset-or-nothing digitals

Asset-or-nothing digitals School of Education, Culture and Communication Division of Applied Mathematics MMA707 Analytical Finance I Asset-or-nothing digitals 202-0-9 Mahamadi Ouoba Amina El Gaabiiy David Johansson Examinator:

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Pricing Interest Rate Options with the Black Futures Option Model

Pricing Interest Rate Options with the Black Futures Option Model Bond Evaluation, Selection, and Management, Second Edition by R. Stafford Johnson Copyright 2010 R. Stafford Johnson APPENDIX I Pricing Interest Rate Options with the Black Futures Option Model I.1 BLACK

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

TRUE/FALSE 1 (2) TRUE FALSE 2 (2) TRUE FALSE. MULTIPLE CHOICE 1 (5) a b c d e 3 (2) TRUE FALSE 4 (2) TRUE FALSE. 2 (5) a b c d e 5 (2) TRUE FALSE

TRUE/FALSE 1 (2) TRUE FALSE 2 (2) TRUE FALSE. MULTIPLE CHOICE 1 (5) a b c d e 3 (2) TRUE FALSE 4 (2) TRUE FALSE. 2 (5) a b c d e 5 (2) TRUE FALSE Tuesday, February 26th M339W/389W Financial Mathematics for Actuarial Applications Spring 2013, University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed

More information

Lecture 16. Options and option pricing. Lecture 16 1 / 22

Lecture 16. Options and option pricing. Lecture 16 1 / 22 Lecture 16 Options and option pricing Lecture 16 1 / 22 Introduction One of the most, perhaps the most, important family of derivatives are the options. Lecture 16 2 / 22 Introduction One of the most,

More information

Options Trading Strategies

Options Trading Strategies Options Trading Strategies Liuren Wu Options Markets Liuren Wu ( ) Options Trading Strategies Options Markets 1 / 19 Objectives A strategy is a set of options positions to achieve a particular risk/return

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Initial Value Problem for the European Call The main objective of this lesson is solving

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT)

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Pricing Black-Scholes Formula Lecture 19 Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Valuation: Two-Horse Race Example One horse has 20% chance to win another has 80% chance $10000

More information

Math 623 (IOE 623), Winter 2008: Final exam

Math 623 (IOE 623), Winter 2008: Final exam Math 623 (IOE 623), Winter 2008: Final exam Name: Student ID: This is a closed book exam. You may bring up to ten one sided A4 pages of notes to the exam. You may also use a calculator but not its memory

More information

SOA Exam MFE Solutions: May 2007

SOA Exam MFE Solutions: May 2007 Exam MFE May 007 SOA Exam MFE Solutions: May 007 Solution 1 B Chapter 1, Put-Call Parity Let each dividend amount be D. The first dividend occurs at the end of months, and the second dividend occurs at

More information

University of Colorado at Boulder Leeds School of Business MBAX-6270 MBAX Introduction to Derivatives Part II Options Valuation

University of Colorado at Boulder Leeds School of Business MBAX-6270 MBAX Introduction to Derivatives Part II Options Valuation MBAX-6270 Introduction to Derivatives Part II Options Valuation Notation c p S 0 K T European call option price European put option price Stock price (today) Strike price Maturity of option Volatility

More information

Options. Investment Management. Fall 2005

Options. Investment Management. Fall 2005 Investment Management Fall 2005 A call option gives its holder the right to buy a security at a pre-specified price, called the strike price, before a pre-specified date, called the expiry date. A put

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Singular Stochastic Control Models for Optimal Dynamic Withdrawal Policies in Variable Annuities

Singular Stochastic Control Models for Optimal Dynamic Withdrawal Policies in Variable Annuities 1/ 46 Singular Stochastic Control Models for Optimal Dynamic Withdrawal Policies in Variable Annuities Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology * Joint work

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Implied Volatility Surface

Implied Volatility Surface Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 1 Implied volatility Recall the

More information

CHAPTER 1 Introduction to Derivative Instruments

CHAPTER 1 Introduction to Derivative Instruments CHAPTER 1 Introduction to Derivative Instruments In the past decades, we have witnessed the revolution in the trading of financial derivative securities in financial markets around the world. A derivative

More information

Derivative Instruments

Derivative Instruments Derivative Instruments Paris Dauphine University - Master I.E.F. (272) Autumn 2016 Jérôme MATHIS jerome.mathis@dauphine.fr (object: IEF272) http://jerome.mathis.free.fr/ief272 Slides on book: John C. Hull,

More information

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information

Fractional Black - Scholes Equation

Fractional Black - Scholes Equation Chapter 6 Fractional Black - Scholes Equation 6.1 Introduction The pricing of options is a central problem in quantitative finance. It is both a theoretical and practical problem since the use of options

More information

Lecture 1 Definitions from finance

Lecture 1 Definitions from finance Lecture 1 s from finance Financial market instruments can be divided into two types. There are the underlying stocks shares, bonds, commodities, foreign currencies; and their derivatives, claims that promise

More information

P-7. Table of Contents. Module 1: Introductory Derivatives

P-7. Table of Contents. Module 1: Introductory Derivatives Preface P-7 Table of Contents Module 1: Introductory Derivatives Lesson 1: Stock as an Underlying Asset 1.1.1 Financial Markets M1-1 1.1. Stocks and Stock Indexes M1-3 1.1.3 Derivative Securities M1-9

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x).

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x). 2 EXERCISES 27 2 Exercises Use integration by parts to compute lnx) dx 2 Compute x lnx) dx Hint: Use the substitution u = lnx) 3 Show that tan x) =/cos x) 2 and conclude that dx = arctanx) + C +x2 Note:

More information

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure:

UNIVERSITY OF AGDER EXAM. Faculty of Economicsand Social Sciences. Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure: UNIVERSITY OF AGDER Faculty of Economicsand Social Sciences Exam code: Exam name: Date: Time: Number of pages: Number of problems: Enclosure: Exam aids: Comments: EXAM BE-411, ORDINARY EXAM Derivatives

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG MATH 476/567 ACTUARIAL RISK THEORY FALL 206 PROFESSOR WANG Homework 5 (max. points = 00) Due at the beginning of class on Tuesday, November 8, 206 You are encouraged to work on these problems in groups

More information

Derivatives Analysis & Valuation (Futures)

Derivatives Analysis & Valuation (Futures) 6.1 Derivatives Analysis & Valuation (Futures) LOS 1 : Introduction Study Session 6 Define Forward Contract, Future Contract. Forward Contract, In Forward Contract one party agrees to buy, and the counterparty

More information

Valuation of Options: Theory

Valuation of Options: Theory Valuation of Options: Theory Valuation of Options:Theory Slide 1 of 49 Outline Payoffs from options Influences on value of options Value and volatility of asset ; time available Basic issues in valuation:

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information