S160 #9. The Binomial Distribution, Part 1. JC Wang. February 16, 2016

Size: px
Start display at page:

Download "S160 #9. The Binomial Distribution, Part 1. JC Wang. February 16, 2016"

Transcription

1 S160 #9 The Binomial Distribution, Part 1 JC Wang February 16, 2016

2 Outline 1 The Binomial Distribution Binomial Random Variables 2 Using Formula JC Wang (WMU) S160 #9 S160, Lecture 9 2 / 11

3 Binomial Process and Binomial Random Variable A sequence of (fixed) n observations is called a binomial process if each observation results in exactly one of two possible outcomes (conveniently called success and failure) P(success) = p and P(failure) = q = 1 p for all observations observations are independent X = total number of successes among the n observations is a binomial random variable with parameters n and p and is denoted X binomial(n, p) JC Wang (WMU) S160 #9 S160, Lecture 9 3 / 11

4 Binomial Process and Binomial Random Variable A sequence of (fixed) n observations is called a binomial process if each observation results in exactly one of two possible outcomes (conveniently called success and failure) P(success) = p and P(failure) = q = 1 p for all observations observations are independent X = total number of successes among the n observations is a binomial random variable with parameters n and p and is denoted X binomial(n, p) JC Wang (WMU) S160 #9 S160, Lecture 9 3 / 11

5 Binomial Process and Binomial Random Variable A sequence of (fixed) n observations is called a binomial process if each observation results in exactly one of two possible outcomes (conveniently called success and failure) P(success) = p and P(failure) = q = 1 p for all observations observations are independent X = total number of successes among the n observations is a binomial random variable with parameters n and p and is denoted X binomial(n, p) JC Wang (WMU) S160 #9 S160, Lecture 9 3 / 11

6 Examples of Binomial Random Variables 1 A 5-question multiple-choice quiz has 5 choices on each question. X = number of correct answers (success = correct) in the quiz by guessing all. Then X binomial(n = 5, p = 1 5 = 0.2). 2 Past experience: 40% phone respondents agree to be interviewed (success = a respondent agrees to be interviewed) for market research survey. Of 50 reached by Reliable Research, X respondents agree to be interviewed. Then X binomial(n = 50, p = 0.40). 3 Historical data shows that 20% of TV buyers at TV World purchase extended warranty (success = a buyer purchases extended warranty). X extended warranties were sold along with the 300 TV sets sold last quarter. Then X binomial(n = 300, p = 0.20). JC Wang (WMU) S160 #9 S160, Lecture 9 4 / 11

7 Examples of Binomial Random Variables 1 A 5-question multiple-choice quiz has 5 choices on each question. X = number of correct answers (success = correct) in the quiz by guessing all. Then X binomial(n = 5, p = 1 5 = 0.2). 2 Past experience: 40% phone respondents agree to be interviewed (success = a respondent agrees to be interviewed) for market research survey. Of 50 reached by Reliable Research, X respondents agree to be interviewed. Then X binomial(n = 50, p = 0.40). 3 Historical data shows that 20% of TV buyers at TV World purchase extended warranty (success = a buyer purchases extended warranty). X extended warranties were sold along with the 300 TV sets sold last quarter. Then X binomial(n = 300, p = 0.20). JC Wang (WMU) S160 #9 S160, Lecture 9 4 / 11

8 Examples of Binomial Random Variables 1 A 5-question multiple-choice quiz has 5 choices on each question. X = number of correct answers (success = correct) in the quiz by guessing all. Then X binomial(n = 5, p = 1 5 = 0.2). 2 Past experience: 40% phone respondents agree to be interviewed (success = a respondent agrees to be interviewed) for market research survey. Of 50 reached by Reliable Research, X respondents agree to be interviewed. Then X binomial(n = 50, p = 0.40). 3 Historical data shows that 20% of TV buyers at TV World purchase extended warranty (success = a buyer purchases extended warranty). X extended warranties were sold along with the 300 TV sets sold last quarter. Then X binomial(n = 300, p = 0.20). JC Wang (WMU) S160 #9 S160, Lecture 9 4 / 11

9 Examples of Binomial Random Variables 1 A 5-question multiple-choice quiz has 5 choices on each question. X = number of correct answers (success = correct) in the quiz by guessing all. Then X binomial(n = 5, p = 1 5 = 0.2). 2 Past experience: 40% phone respondents agree to be interviewed (success = a respondent agrees to be interviewed) for market research survey. Of 50 reached by Reliable Research, X respondents agree to be interviewed. Then X binomial(n = 50, p = 0.40). 3 Historical data shows that 20% of TV buyers at TV World purchase extended warranty (success = a buyer purchases extended warranty). X extended warranties were sold along with the 300 TV sets sold last quarter. Then X binomial(n = 300, p = 0.20). JC Wang (WMU) S160 #9 S160, Lecture 9 4 / 11

10 iclicker Question 9.1 The probability that a defective item is observed at a production line is A quality engineer, working at the production line, inspect an item. What is the chance that the item is found to be non-defective? A B. 1 C D E. none of the previous JC Wang (WMU) S160 #9 S160, Lecture 9 5 / 11

11 Outline 1 The Binomial Distribution Binomial Random Variables 2 Using Formula JC Wang (WMU) S160 #9 S160, Lecture 9 6 / 11

12 Using Formula to Compute Binomial Probability X binomial(n, p) P(X = j) = n! j!(n j)! pj q n j, j = 0, 1, 2,..., n. where n! = n (n 1) 2 1 and 0! = 1. Multiple-choice quiz: X binomial(5, 0.2), for example P(X = 2) = = 5! 2!(5 2)! = 5! 2! 3! (2 1) (3 2 1) = =.2048 JC Wang (WMU) S160 #9 S160, Lecture 9 7 / 11

13 TV+More Example, continued Recall that historical data shows that 20% (i.e., p = 0.2) of TV buyers at TV World purchase extended warranty. If (n =) 10 TV sets were sold in one day, what is the probability that (j =) 3 extended warranties were sold? Now, X, the number of extended waranties sold along with 10 TV sets has X binomial(10,.2) distribution and hence P(X = 3) = 10! 3!(10 3)! (0.2)3 (1 0.2) 10 3 = ! ! (0.2)3 (0.8) 7 = JC Wang (WMU) S160 #9 S160, Lecture 9 8 / 11

14 Using Formula olympics swimmer example A swimmer competes in three events in the Summer Olympics. The swimmer s winning/losing one event is independent of her result in any other event. If the probability of winning any one event is 0.45, what is the chance that she wins two or three events? X binomial(3, 0.45) 3! 2!1! ! }{{} 3!0! = = }{{} P(X = 2) P(X = 3) JC Wang (WMU) S160 #9 S160, Lecture 9 9 / 11

15 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

16 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

17 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

18 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

19 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

20 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

21 The Language of Probability Note first that X, the number of successes, can only assume values 0, 1,..., n. only 2 or exactly 2 : P(X = 2) at most 3 or no more than 3 or 3 or less : P(X 3) = P(X = 0, 1, 2, or 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). at least 5 or no less than 5 or 5 or more if n = 10: P(X 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) at least 8 or no less than 8 or 8 or more if n = 10: P(X 8) = P(X = 8) + P(X = 9) + P(X = 10) etc. JC Wang (WMU) S160 #9 S160, Lecture 9 10 / 11

22 iclicker Question 9.2 The probability that a defective item is observed at a production line is A quality engineer, working at the production line, inspect the next 4 items. What is the set of possible number of defectives? A. {1,2,3,4} B. {0,1,2,3,4} C. {1,2} D. {3,4} E. none of the previous JC Wang (WMU) S160 #9 S160, Lecture 9 11 / 11

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

***SECTION 8.1*** The Binomial Distributions

***SECTION 8.1*** The Binomial Distributions ***SECTION 8.1*** The Binomial Distributions CHAPTER 8 ~ The Binomial and Geometric Distributions In practice, we frequently encounter random phenomenon where there are two outcomes of interest. For example,

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

Discrete Probability Distributions

Discrete Probability Distributions Page 1 of 6 Discrete Probability Distributions In order to study inferential statistics, we need to combine the concepts from descriptive statistics and probability. This combination makes up the basics

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

4.2 Bernoulli Trials and Binomial Distributions

4.2 Bernoulli Trials and Binomial Distributions Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 4.2 Bernoulli Trials and Binomial Distributions A Bernoulli trial 1 is an experiment with exactly two outcomes: Success and

More information

Binomial Distributions

Binomial Distributions Binomial Distributions (aka Bernouli s Trials) Chapter 8 Binomial Distribution an important class of probability distributions, which occur under the following Binomial Setting (1) There is a number n

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

12 Math Chapter Review April 16 th, Multiple Choice Identify the choice that best completes the statement or answers the question.

12 Math Chapter Review April 16 th, Multiple Choice Identify the choice that best completes the statement or answers the question. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which situation does not describe a discrete random variable? A The number of cell phones per household.

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

If X = the different scores you could get on the quiz, what values could X be?

If X = the different scores you could get on the quiz, what values could X be? Example 1: Quiz? Take it. o, there are no questions m giving you. You just are giving me answers and m telling you if you got the answer correct. Good luck: hope you studied! Circle the correct answers

More information

A random variable is a (typically represented by ) that has a. value, determined by, A probability distribution is a that gives the

A random variable is a (typically represented by ) that has a. value, determined by, A probability distribution is a that gives the 5.2 RANDOM VARIABLES A random variable is a (typically represented by ) that has a value, determined by, for each of a. A probability distribution is a that gives the for each value of the. It is often

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

b) Consider the sample space S = {1, 2, 3}. Suppose that P({1, 2}) = 0.5 and P({2, 3}) = 0.7. Is P a valid probability measure? Justify your answer.

b) Consider the sample space S = {1, 2, 3}. Suppose that P({1, 2}) = 0.5 and P({2, 3}) = 0.7. Is P a valid probability measure? Justify your answer. JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY BACHELOR OF SCIENCE -ACTUARIAL SCIENCE YEAR ONE SEMESTER ONE SAS 103: INTRODUCTION TO PROBABILITY THEORY Instructions: Answer question 1 and

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43 chapter 13: Binomial Distribution ch13-links binom-tossing-4-coins binom-coin-example ch13 image Exercises (binomial)13.6, 13.12, 13.22, 13.43 CHAPTER 13: Binomial Distributions The Basic Practice of Statistics

More information

Chapter 5: Probability models

Chapter 5: Probability models Chapter 5: Probability models 1. Random variables: a) Idea. b) Discrete and continuous variables. c) The probability function (density) and the distribution function. d) Mean and variance of a random variable.

More information

STAT 111 Recitation 3

STAT 111 Recitation 3 STAT 111 Recitation 3 Linjun Zhang stat.wharton.upenn.edu/~linjunz/ September 23, 2017 Misc. The unpicked-up homeworks will be put in the STAT 111 box in the Stats Department lobby (It s on the 4th floor

More information

Math 361. Day 8 Binomial Random Variables pages 27 and 28 Inv Do you have ESP? Inv. 1.3 Tim or Bob?

Math 361. Day 8 Binomial Random Variables pages 27 and 28 Inv Do you have ESP? Inv. 1.3 Tim or Bob? Math 361 Day 8 Binomial Random Variables pages 27 and 28 Inv. 1.2 - Do you have ESP? Inv. 1.3 Tim or Bob? Inv. 1.1: Friend or Foe Review Is a particular study result consistent with the null model? Learning

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

guessing Bluman, Chapter 5 2

guessing Bluman, Chapter 5 2 Bluman, Chapter 5 1 guessing Suppose there is multiple choice quiz on a subject you don t know anything about. 15 th Century Russian Literature; Nuclear physics etc. You have to guess on every question.

More information

Multinomial Coefficient : A Generalization of the Binomial Coefficient

Multinomial Coefficient : A Generalization of the Binomial Coefficient Multinomial Coefficient : A Generalization of the Binomial Coefficient Example: A team plays 16 games in a season. At the end of the season, the team has 8 wins, 3 ties and 5 losses. How many different

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Binomial distribution

Binomial distribution Binomial distribution Jon Michael Gran Department of Biostatistics, UiO MF9130 Introductory course in statistics Tuesday 24.05.2010 1 / 28 Overview Binomial distribution (Aalen chapter 4, Kirkwood and

More information

What do you think "Binomial" involves?

What do you think Binomial involves? Learning Goals: * Define a binomial experiment (Bernoulli Trials). * Applying the binomial formula to solve problems. * Determine the expected value of a Binomial Distribution What do you think "Binomial"

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Conditions for a Binomial Distribution: [Memorize this!] There are n trials or repetitions There are 2 outcomes for each trial, S or F The P(Success), P, for each trial is constant.

More information

Binomial Distributions

Binomial Distributions Binomial Distributions A binomial experiment is a probability experiment that satisfies these conditions. 1. The experiment has a fixed number of trials, where each trial is independent of the other trials.

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 13: Binomial Formula Tessa L. Childers-Day UC Berkeley 14 July 2014 By the end of this lecture... You will be able to: Calculate the ways an event can

More information

Answer Key: Quiz2-Chapter5: Discrete Probability Distribution

Answer Key: Quiz2-Chapter5: Discrete Probability Distribution Economics 70: Applied Business Statistics For Economics & Business (Summer 01) Answer Key: Quiz-Chapter5: Discrete Probability Distribution The number of electrical outages in a city varies from day to

More information

Uncertainty, Data, and Judgment

Uncertainty, Data, and Judgment Uncertainty, Data, and Judgment Session 04 Structure of the Course Topic Session Probability 2-5 Estimation 6-8 Hypothesis Testing 9-10 Regression 11-16 1 Key Questions in UDJ 1. How to look at Data? (1-3)

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why?

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? Probability Introduction Shifting our focus We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? What is Probability? Probability is used

More information

Math 243 Section 4.3 The Binomial Distribution

Math 243 Section 4.3 The Binomial Distribution Math 243 Section 4.3 The Binomial Distribution Overview Notation for the mean, standard deviation and variance The Binomial Model Bernoulli Trials Notation for the mean, standard deviation and variance

More information

STAT 111 Recitation 2

STAT 111 Recitation 2 STAT 111 Recitation 2 Linjun Zhang October 10, 2017 Misc. Please collect homework 1 (graded). 1 Misc. Please collect homework 1 (graded). Office hours: 4:30-5:30pm every Monday, JMHH F86. 1 Misc. Please

More information

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions 5/31/11 Lecture 14 1 Statistic & Its Sampling Distribution

More information

CHAPTER 5 SOME DISCRETE PROBABILITY DISTRIBUTIONS. 5.2 Binomial Distributions. 5.1 Uniform Discrete Distribution

CHAPTER 5 SOME DISCRETE PROBABILITY DISTRIBUTIONS. 5.2 Binomial Distributions. 5.1 Uniform Discrete Distribution CHAPTER 5 SOME DISCRETE PROBABILITY DISTRIBUTIONS As we had discussed, there are two main types of random variables, namely, discrete random variables and continuous random variables. In this chapter,

More information

Unit 6 Bernoulli and Binomial Distributions Homework SOLUTIONS

Unit 6 Bernoulli and Binomial Distributions Homework SOLUTIONS BIOSTATS 540 Fall 2018 Introductory Biostatistics Page 1 of 6 Unit 6 Bernoulli and Binomial Distributions Homework SOLUTIONS 1. Suppose that my BIOSTATS 540 2018 class that meets in class in Worcester,

More information

2. The sum of all the probabilities in the sample space must add up to 1

2. The sum of all the probabilities in the sample space must add up to 1 Continuous Random Variables and Continuous Probability Distributions Continuous Random Variable: A variable X that can take values on an interval; key feature remember is that the values of the variable

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions Bernoulli and Binomial Distributions Bernoulli Distribution a flipped coin turns up either heads or tails an item on an assembly line is either defective or not defective a piece of fruit is either damaged

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Chapter 8. Binomial and Geometric Distributions

Chapter 8. Binomial and Geometric Distributions Chapter 8 Binomial and Geometric Distributions Lesson 8-1, Part 1 Binomial Distribution What is a Binomial Distribution? Specific type of discrete probability distribution The outcomes belong to two categories

More information

Explanation on how to use to develop a sample plan or Answer question: How many samples should I take to ensure confidence in my data?

Explanation on how to use to develop a sample plan or Answer question: How many samples should I take to ensure confidence in my data? THE OPERATING CHARACTERISTIC CURVE (OC CURVE) The Operating characteristic curve is a picture of a sampling plan. Each sampling plan has a unique OC curve. The sample size and acceptance number define

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

Problem Set 07 Discrete Random Variables

Problem Set 07 Discrete Random Variables Name Problem Set 07 Discrete Random Variables MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean of the random variable. 1) The random

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

Probability Notes: Binomial Probabilities

Probability Notes: Binomial Probabilities Probability Notes: Binomial Probabilities A Binomial Probability is a type of discrete probability with only two outcomes (tea or coffee, win or lose, have disease or don t have disease). The category

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 7 (MWF) Analyzing the sums of binary outcomes Suhasini Subba Rao Introduction Lecture 7 (MWF)

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

Binomial Probability

Binomial Probability Binomial Probability Features of a Binomial Experiment 1. There are a fixed number of trials. We denote this number by the letter n. Features of a Binomial Experiment 2. The n trials are independent and

More information

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,...

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,... Assignment 3 - Statistics Name: Permutation: Combination: n n! P r = (n r)! n n! C r = (n r)!r! n = 1,2,3,... n = 1,2,3,... The Fundamental Counting Principle: If two indepndent events A and B can happen

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Binomial Experiment The experiment is repeated for a fixed number of trials, where each trial is independent of the other trials There are only two possible outcomes of interest

More information

3.3 Probability Distribution(p102)

3.3 Probability Distribution(p102) 3.3 Probability Distribution(p102) Mammals: Warm blooded Milk to feed young Take care of young Body hair 3 middle ear bones 3.3 Probability Distribution(p102) 3.3 Probability Distribution(p102) Probability

More information

The Binomial distribution

The Binomial distribution The Binomial distribution Examples and Definition Binomial Model (an experiment ) 1 A series of n independent trials is conducted. 2 Each trial results in a binary outcome (one is labeled success the other

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

1 / * / * / * / * / * The mean winnings are $1.80

1 / * / * / * / * / * The mean winnings are $1.80 DISCRETE vs. CONTINUOUS BASIC DEFINITION Continuous = things you measure Discrete = things you count OFFICIAL DEFINITION Continuous data can take on any value including fractions and decimals You can zoom

More information

Chapter 8: Binomial and Geometric Distributions

Chapter 8: Binomial and Geometric Distributions Chapter 8: Binomial and Geometric Distributions Section 8.1 Binomial Distributions The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Section 8.1 Binomial Distribution Learning Objectives

More information

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables Chapter 5 Probability Distributions Section 5-2 Random Variables 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation for the Binomial Distribution Random

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution Probability Distributions Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution Definitions Random Variable: a variable that has a single numerical value

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Distributions in Excel

Distributions in Excel Distributions in Excel Functions Normal Inverse normal function Log normal Random Number Percentile functions Other distributions Probability Distributions A random variable is a numerical measure of the

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 12: Continuous Distributions Uniform Distribution Normal Distribution (motivation) Discrete vs Continuous

More information

P (X = x) = x=25

P (X = x) = x=25 Chapter 2 Random variables Exercise 2. (Uniform distribution) Let X be uniformly distributed on 0,,..., 99. Calculate P(X 25). Solution of Exercise 2. : We have P(X 25) P(X 24) F (24) 25 00 3 4. Alternative

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 7 Random Variables and Discrete Probability Distributions 7.1 Random Variables A random variable is a function or rule that assigns a number to each outcome of an experiment. Alternatively, the

More information

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Random Variables 6.1 6.2 6.3 Discrete and Continuous Random Variables Transforming and Combining

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Examples CH 4 X P(X).2.3?.2

Examples CH 4 X P(X).2.3?.2 Examples CH 4 1. Consider the discrete probability distribution when answering the following question. X 2 4 5 10 P(X).2.3?.2 a. Find the probability that X is large than 2. b. Calculate the mean and variance

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

MATH 227 CP 6 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 227 CP 6 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 227 CP 6 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Identify the given random variable as being discrete or continuous. 1) The number of phone

More information

Part 10: The Binomial Distribution

Part 10: The Binomial Distribution Part 10: The Binomial Distribution The binomial distribution is an important example of a probability distribution for a discrete random variable. It has wide ranging applications. One readily available

More information

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution!

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

More information

Nonparametric Statistics Notes

Nonparametric Statistics Notes Nonparametric Statistics Notes Chapter 3: Some Tests Based on the Binomial Distribution Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Ch 3: Tests Based

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

DESCRIBING DATA: MESURES OF LOCATION

DESCRIBING DATA: MESURES OF LOCATION DESCRIBING DATA: MESURES OF LOCATION A. Measures of Central Tendency Measures of Central Tendency are used to pinpoint the center or average of a data set which can then be used to represent the typical

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Ch 8 The Binomial and Geometric Distributions Ch 8.1 The Binomial Distributions The Binomial Setting A situation where these four conditions are satisfied is called a binomial setting. 1. Each observation falls into one of just two categories, which

More information