Algebra and Number Theory Exercise Set

Size: px
Start display at page:

Download "Algebra and Number Theory Exercise Set"

Transcription

1 Algebra and Number Theory Exercise Set Kamil Niedzia lomski 1 Algebra 1.1 Complex Numbers Exercise 1. Find real and imaginary part of complex numbers (1) 1 i 2+i (2) (3 + 7i)( 3 + i) (3) ( 3+i)( 1+i 3) (1+i) 2 (4) (2 + i)(3 i) + (2 + 3i)(3 + 4i) (5) (5+i)(4+i). 1+i Exercise 2. Find real numbers a, b such that (1) a(2 + 3i) + b(4 5i) = 6 2i a (2) + b+1 = 2 2 i 1+i (3) (2 + i)a + (1 + 2i)b = 1 4i (4) (3 + 2i)a + (1 + 3i)b = 4 9i. Exercise 3. Solve quadratic equations (1) z 2 = i (2) z 2 5z i = 0 (3) z 2 (1 + i)z i = 0 (4) z 2 + (2i 7)z + 13 i = 0. Exercise 4. Find the trigonometric form of complex numbers (1) i (2) 1 + i (3) 1 + i 3 (4) 3 i (5) i (6) cos α i sin α (7) sin α + i cos α (8) 1+itgα 1 tgα. Exercise 5. Compute (1) (1 + i)

2 (2) 3 + i) 30 (3) ( 1 i 3 1+i ) 12 (4) (2 2 + i) 12. Exercise 6. Compute (1) 6 i (2) 4 8 3i 8 (3) 8 16 (4) i (5) 3 2 2i. Exercise 7. Describe the following sets on a complex plane (1) A 1 = {z C : z 1 i < 1} (2) A 2 = {z C : 2 < z < 3} (3) A 3 = {z C : 1 < Reiz < 0} (4) A 4 = {z C : Imz = 1} (5) A 5 = {z C : z 1 + z + 1 = 3} (6) A 6 = {z C : z 3 = z + i } (7) A 7 = {z C : re(z 2 ) = 2, (Im(z + i)) 2 = 1} 1.2 Groups, subgroups, Symmetric Group Exercise 8. Which of the following sets are groups (1) n th order complex roots of unity with multiplication. (2) { 1, 1} with multiplication. (3) Set of complex numbers with absolute value 2 with multiplication. (4) G = {7n : n N} with addition. (5) Set of numbers of the form a 2 + b 3, a, b Q, with addition. Exercise 9. Is (Z, ), where a b = a + b + 2, a group? Exercise 10. Consider all isometries of (1) an equilateral triangle, (2) a square, (3) circle. Which of above sets is a group with composition of functions? Exercise 11. Which of the following sets of matrices is a group (1) Set of symmetric matrices 2 2 with addition. (2) Set of nondegenerate matrices with addition. (3) Set of nondegenerate martices with multiplication. (4) Set of diagonal matrices with multiplication. (5) Set of matrices with determinant equal to 1 with multiplication. (6) Set of nonzero matrices of the form [ x y y x ], x, y R, 2

3 with multiplication. Exercise 12. Let G = [0, 2) and a b = a + b 2. Is (G, ) a group? Exercise 13. Prove that if every element a in a group G satisfies a 2 = e, where e is a neutral element, then G ia abelian. Exercise 14. Find all subgroups of the group of rotations of a square. Exercise 15. Find all subgroups of the group of isometries of a square. Exercise 16. In a set E = {(a, b) : a R \ {0}, b R} we define (a, b) (c, d) = (ac, ad + b). Show that (E, ) is a group. Show that F = {(a, b) E : b = 0} is a subgroup of E. Exercise 17. Compute στ, τσ, τ 1 σ 2, στσ, where ( ) ( σ =, τ = Find permutation ξ such that τξσ = ρ, where ( ) ( σ =, τ = ). ) ( , ρ = Exercise 18. Find n such that σ n = e, where e denotes identity and σ = ( 1 5 ) ( ) ( ) 1.3 Homomorphisms of groups Exercise 19. Which of the following maps are homomorphisms of additive group Z? (1) φ(n) = n (2) φ(n) = 2n + 1 (3) φ(n) = n (4) φ(n) = n. Exercise 20. Which of the maps are homomorphisms of the group (R \ {0}, )? (1) φ(x) = 3x (2) φ(x) = x 2 (3) φ(x) = 1 x. Exercise 21. In the set G = (1, ) we define action a b = ab a b 2. Show that (A, ) is a group? Is this group isomorphic to (R +, )? Exercise 22. Are groups (R +, ) and (R, +) isomorphic? Exercise 23. Show that the group of all isometries of a square is isomorphic to symmetric group S 4. Exercise 24. Show that the group F from Exercise 16 is isomorphic to (R \ {0}, ). 3 ).

4 1.4 Rings Exercise 25. Which of the following sets with addition and multiplication is a ring? (1) A 1 = {a + b 2 : a, b Z}. (2) A 2 = {a + b 3 + c 5 : a, b, c Q}. (3) A 3 = {n Z : n = 2k or n = 3k for some k Z}. Exercise 26. Let (A, +, ) be a ring. In the set B = A Z we define (x, n) (y, m) = (x + y, n + m), (x, n) (y, m) = (xy + x + y, nm). Is (B,, ) a ring? Exercise 27. Find all zero divisors in the ring Z 36. Exercise 28. Which of the following sets of matrices (with addition and multiplication of matrices) is a ring? (1) Set of all symmetric matrices. (2) Set of all 3 3 uppertriangular matrices. (3) Set of all matrices of the form [ x y ay x where a Z is a fixed number. Exercise 29. Find zero divisors in the ring of 2 2 matrices. ], 2 Number Theory 2.1 Divisibility, Induction Exercise 30. Show that 120 divides n(n + 1)(n + 2)(n + 3)(n + 4) for any n N. Exercise 31. Prove by induction that for all n N (1) 5 (n 5 n) (2) 7 (n 7 n) (3) 9 (4 n + 15n 1) (4) 64 (3 2n n 27). Exercise 32. Prove that n 2 divides (n + 1) n 1 for every n N. Exercise 33. Show that the sum of 2n + 1 consecutive integers is divisible by 2n + 1. Exercise 34. Prove that 6 digit number of the form abcabc, a, b, c are the digits, is divisible by 7, 11 and 13. Exercise 35. Prove that for all n N, 133 (11 n n+1 ). Exercise 36. Prove that for any n N, n is not divisible by 4. 4

5 2.2 Gratest Common Divisor, division with reminder, Euclid Algorythm Exercise 37. Using Euclid Algorythm compute gratest common divisor of the following numbers (1) 963 and 657 (2) 423 and 198 (3) 2947 and 3997 (4) 2689 and Exercise 38. When n is divided by 9 the reminder is 5. What is the reminder of the division of n(n 2 + 7n 2) by 9? Exercise 39. Prove that for all n N, 15 n divided by 7 gives reminder 1. Exercise 40. Find gratest common divisor of 1819 and 3587 and find x, y Z such that 1819x y = 17. Exercise 41. Prove that there aren t any interers x, y such that x + y = 100 and gcd(x, y) = 3. Exercise 42. Find all pairs of neutral numbers (x, y) satisfying x+y = 100, gcd(x, y) = 5. Exercise 43. Find integer solutions to the following equations (1) 5x + 4y = 21, (2) 17x + 13y = 181, (3) 5x 2y = 1, (4) 6x + 7y = 59, (5) 10x + 7y = 97, (6) 4x + 9y = 91, (7) 19x + 23y = 3, (8) 47x 25y = 279, (9) 963x + 657y = 243. Exercise 44. Find x, y N such that (1) 24x + 15y = 9, (2) 126x 102y = 18, (3) 13x + 25y = Congruences Exercise 45. Find last digit of the number Exercise 46. Show that 61! 63! mod 42 Exercise 47. Show that if n is odd then n mod 8. Exercise 48. Solve x mod 7. 5

6 Exercise 49. Show that if p is a prime number and a 2 b 2 or p divides a b (a, b Z). mod p, then p divides a + b Exercise 50. Show that (1) mod 5, (2) mod 100. Exercise 51. Solve the following congruences (1) 5x 2 15x mod 3, (2) 3x 1 mod 5, (3) 8x 3 mod 14, (4) x 2 + x mod 2, (5) 6x 3 mod 9, (6) 5x 3 mod Prime Numbers Exercise 52. Show that if p is a prime number grater than 5, then p 2 divided by 30 gives the reminder 1 or 19. Exercise 53. Show that for any n N, n > 1, n is not prime. Exercise 54. Find smallest number of the form 3 n + 2 which is not prime. Exercise 55. Find neutral number n such that f(n) is not a prime number, where (1) f(n) = n 2 + n + 17, (2) f(n) = n n + 1, (3) f(n) = 3n 2 + 3n

Algebra homework 8 Homomorphisms, isomorphisms

Algebra homework 8 Homomorphisms, isomorphisms MATH-UA.343.005 T.A. Louis Guigo Algebra homework 8 Homomorphisms, isomorphisms For every n 1 we denote by S n the n-th symmetric group. Exercise 1. Consider the following permutations: ( ) ( 1 2 3 4 5

More information

Notes on the symmetric group

Notes on the symmetric group Notes on the symmetric group 1 Computations in the symmetric group Recall that, given a set X, the set S X of all bijections from X to itself (or, more briefly, permutations of X) is group under function

More information

Palindromic Permutations and Generalized Smarandache Palindromic Permutations

Palindromic Permutations and Generalized Smarandache Palindromic Permutations arxiv:math/0607742v2 [mathgm] 8 Sep 2007 Palindromic Permutations and Generalized Smarandache Palindromic Permutations Tèmítópé Gbóláhàn Jaíyéọlá Department of Mathematics, Obafemi Awolowo University,

More information

MATH 116: Material Covered in Class and Quiz/Exam Information

MATH 116: Material Covered in Class and Quiz/Exam Information MATH 116: Material Covered in Class and Quiz/Exam Information August 23 rd. Syllabus. Divisibility and linear combinations. Example 1: Proof of Theorem 2.4 parts (a), (c), and (g). Example 2: Exercise

More information

Mathematics Notes for Class 12 chapter 1. Relations and Functions

Mathematics Notes for Class 12 chapter 1. Relations and Functions 1 P a g e Mathematics Notes for Class 12 chapter 1. Relations and Functions Relation If A and B are two non-empty sets, then a relation R from A to B is a subset of A x B. If R A x B and (a, b) R, then

More information

Abstract Algebra Solution of Assignment-1

Abstract Algebra Solution of Assignment-1 Abstract Algebra Solution of Assignment-1 P. Kalika & Kri. Munesh [ M.Sc. Tech Mathematics ] 1. Illustrate Cayley s Theorem by calculating the left regular representation for the group V 4 = {e, a, b,

More information

Section 13.1 The Greatest Common Factor and Factoring by Grouping. to continue. Also, circle your answer to each numbered exercise.

Section 13.1 The Greatest Common Factor and Factoring by Grouping. to continue. Also, circle your answer to each numbered exercise. Algebra Foundations First Edition, Elayn Martin-Gay Sec. 13.1 Section 13.1 The Greatest Common Factor and Factoring by Grouping Complete the outline as you view Video Lecture 13.1. Pause the video as needed

More information

Lie Algebras and Representation Theory Homework 7

Lie Algebras and Representation Theory Homework 7 Lie Algebras and Representation Theory Homework 7 Debbie Matthews 2015-05-19 Problem 10.5 If σ W can be written as a product of t simple reflections, prove that t has the same parity as l(σ). Let = {α

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

A Property Equivalent to n-permutability for Infinite Groups

A Property Equivalent to n-permutability for Infinite Groups Journal of Algebra 221, 570 578 (1999) Article ID jabr.1999.7996, available online at http://www.idealibrary.com on A Property Equivalent to n-permutability for Infinite Groups Alireza Abdollahi* and Aliakbar

More information

a*(variable) 2 + b*(variable) + c

a*(variable) 2 + b*(variable) + c CH. 8. Factoring polynomials of the form: a*(variable) + b*(variable) + c Factor: 6x + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP : How many terms are there? Is it of degree? YES * Is it in the

More information

The finite lattice representation problem and intervals in subgroup lattices of finite groups

The finite lattice representation problem and intervals in subgroup lattices of finite groups The finite lattice representation problem and intervals in subgroup lattices of finite groups William DeMeo Math 613: Group Theory 15 December 2009 Abstract A well-known result of universal algebra states:

More information

Topic #1: Evaluating and Simplifying Algebraic Expressions

Topic #1: Evaluating and Simplifying Algebraic Expressions John Jay College of Criminal Justice The City University of New York Department of Mathematics and Computer Science MAT 105 - College Algebra Departmental Final Examination Review Topic #1: Evaluating

More information

Transcendental lattices of complex algebraic surfaces

Transcendental lattices of complex algebraic surfaces Transcendental lattices of complex algebraic surfaces Ichiro Shimada Hiroshima University November 25, 2009, Tohoku 1 / 27 Introduction Let Aut(C) be the automorphism group of the complex number field

More information

MATH 181-Quadratic Equations (7 )

MATH 181-Quadratic Equations (7 ) MATH 181-Quadratic Equations (7 ) 7.1 Solving a Quadratic Equation by Factoring I. Factoring Terms with Common Factors (Find the greatest common factor) a. 16 1x 4x = 4( 4 3x x ) 3 b. 14x y 35x y = 3 c.

More information

Gödel algebras free over finite distributive lattices

Gödel algebras free over finite distributive lattices TANCL, Oxford, August 4-9, 2007 1 Gödel algebras free over finite distributive lattices Stefano Aguzzoli Brunella Gerla Vincenzo Marra D.S.I. D.I.COM. D.I.C.O. University of Milano University of Insubria

More information

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1)

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1) NOTE: In addition to the problems below, please study the handout Exercise Set 10.1 posted at http://www.austin.cc.tx.us/jbickham/handouts. 1. Simplify: 5 7 5. Simplify: ( 6ab 5 c )( a c 5 ). Simplify:

More information

V. Fields and Galois Theory

V. Fields and Galois Theory Math 201C - Alebra Erin Pearse V.2. The Fundamental Theorem. V. Fields and Galois Theory 4. What is the Galois roup of F = Q( 2, 3, 5) over Q? Since F is enerated over Q by {1, 2, 3, 5}, we need to determine

More information

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1)

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1) NOTE: In addition to the problems below, please study the handout Exercise Set 10.1 posted at http://www.austincc.edu/jbickham/handouts. 1. Simplify: 5 7 5. Simplify: ( ab 5 c )( a c 5 ). Simplify: 4x

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

3.1 Factors and Multiples of Whole Numbers

3.1 Factors and Multiples of Whole Numbers 3.1 Factors and Multiples of Whole Numbers LESSON FOCUS: Determine prime factors, greatest common factors, and least common multiples of whole numbers. The prime factorization of a natural number is the

More information

Math 101, Basic Algebra Author: Debra Griffin

Math 101, Basic Algebra Author: Debra Griffin Math 101, Basic Algebra Author: Debra Griffin Name Chapter 5 Factoring 5.1 Greatest Common Factor 2 GCF, factoring GCF, factoring common binomial factor 5.2 Factor by Grouping 5 5.3 Factoring Trinomials

More information

ORDERED SEMIGROUPS HAVING THE P -PROPERTY. Niovi Kehayopulu, Michael Tsingelis

ORDERED SEMIGROUPS HAVING THE P -PROPERTY. Niovi Kehayopulu, Michael Tsingelis ORDERED SEMIGROUPS HAVING THE P -PROPERTY Niovi Kehayopulu, Michael Tsingelis ABSTRACT. The main results of the paper are the following: The ordered semigroups which have the P -property are decomposable

More information

Laurence Boxer and Ismet KARACA

Laurence Boxer and Ismet KARACA THE CLASSIFICATION OF DIGITAL COVERING SPACES Laurence Boxer and Ismet KARACA Abstract. In this paper we classify digital covering spaces using the conjugacy class corresponding to a digital covering space.

More information

On equation. Boris Bartolomé. January 25 th, Göttingen Universität & Institut de Mathémathiques de Bordeaux

On equation. Boris Bartolomé. January 25 th, Göttingen Universität & Institut de Mathémathiques de Bordeaux Göttingen Universität & Institut de Mathémathiques de Bordeaux Boris.Bartolome@mathematik.uni-goettingen.de Boris.Bartolome@math.u-bordeaux1.fr January 25 th, 2016 January 25 th, 2016 1 / 19 Overview 1

More information

Slide 1 / 128. Polynomials

Slide 1 / 128. Polynomials Slide 1 / 128 Polynomials Slide 2 / 128 Table of Contents Factors and GCF Factoring out GCF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

The Binomial Theorem and Consequences

The Binomial Theorem and Consequences The Binomial Theorem and Consequences Juris Steprāns York University November 17, 2011 Fermat s Theorem Pierre de Fermat claimed the following theorem in 1640, but the first published proof (by Leonhard

More information

A relation on 132-avoiding permutation patterns

A relation on 132-avoiding permutation patterns Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL, 205, 285 302 A relation on 32-avoiding permutation patterns Natalie Aisbett School of Mathematics and Statistics, University of Sydney,

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping

Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping Copyright 01 Pearson Education, Inc. Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping 1. Find the greatest common factor of a list of integers.. Find the greatest common factor of

More information

Introduction to Priestley duality 1 / 24

Introduction to Priestley duality 1 / 24 Introduction to Priestley duality 1 / 24 2 / 24 Outline What is a distributive lattice? Priestley duality for finite distributive lattices Using the duality: an example Priestley duality for infinite distributive

More information

Factors of 10 = = 2 5 Possible pairs of factors:

Factors of 10 = = 2 5 Possible pairs of factors: Factoring Trinomials Worksheet #1 1. b 2 + 8b + 7 Signs inside the two binomials are identical and positive. Factors of b 2 = b b Factors of 7 = 1 7 b 2 + 8b + 7 = (b + 1)(b + 7) 2. n 2 11n + 10 Signs

More information

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants Due Wednesday March 12, 2014. CS 20 students should bring a hard copy to class. CSCI

More information

Vocabulary & Concept Review

Vocabulary & Concept Review Vocabulary & Concept Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The are 0, 1, 2, 3,... A) factor B) digits C) whole numbers D) place

More information

Unit 8 Notes: Solving Quadratics by Factoring Alg 1

Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Name Period Day Date Assignment (Due the next class meeting) Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday

More information

Name Class Date. Adding and Subtracting Polynomials

Name Class Date. Adding and Subtracting Polynomials 8-1 Reteaching Adding and Subtracting Polynomials You can add and subtract polynomials by lining up like terms and then adding or subtracting each part separately. What is the simplified form of (3x 4x

More information

Modeling multiple runoff tables

Modeling multiple runoff tables Modeling multiple runoff tables Vincent Lous www.posthuma-partners.nl Motivation Why creating a "model" for all lines of business is important Motivation Why creating a "model" for all lines of business

More information

Homework #5 7 th week Math 240 Thursday October 24, 2013

Homework #5 7 th week Math 240 Thursday October 24, 2013 . Let a, b > be integers and g : = gcd(a, b) its greatest common divisor. Show that if a = g q a and b = g q b then q a and q b are relatively rime. Since gcd(κ a, κ b) = κ gcd(a, b) in articular, for

More information

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx 1 Cumulants 1.1 Definition The rth moment of a real-valued random variable X with density f(x) is µ r = E(X r ) = x r f(x) dx for integer r = 0, 1,.... The value is assumed to be finite. Provided that

More information

1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH Genyuan Wang and Xiang-Gen Xia, Senior Member, IEEE

1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH Genyuan Wang and Xiang-Gen Xia, Senior Member, IEEE 1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 51, NO 3, MARCH 2005 On Optimal Multilayer Cyclotomic Space Time Code Designs Genyuan Wang Xiang-Gen Xia, Senior Member, IEEE Abstract High rate large

More information

5 Find the perimeter of a square whose side has a length of 6. (Jound 2,761 to the nearest hundred. 12 Subtract 2.18 from 13.

5 Find the perimeter of a square whose side has a length of 6. (Jound 2,761 to the nearest hundred. 12 Subtract 2.18 from 13. Part A Answer all 20 questions in this part. Write your answers on the lines provided in PART A on the separate answer sheet. Use only a No.2 pencil on the answer sheet. 1 Add: 34 + 623 + 89 7 What is

More information

Discrete Mathematics for CS Spring 2008 David Wagner Final Exam

Discrete Mathematics for CS Spring 2008 David Wagner Final Exam CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Final Exam PRINT your name:, (last) SIGN your name: (first) PRINT your Unix account login: Your section time (e.g., Tue 3pm): Name of the person

More information

Chapter 5 Self-Assessment

Chapter 5 Self-Assessment Chapter 5 Self-Assessment. BLM 5 1 Concept BEFORE DURING (What I can do) AFTER (Proof that I can do this) 5.1 I can multiply binomials. I can multiply trinomials. I can explain how multiplication of binomials

More information

Existentially closed models of the theory of differential fields with a cyclic automorphism

Existentially closed models of the theory of differential fields with a cyclic automorphism Existentially closed models of the theory of differential fields with a cyclic automorphism University of Tsukuba September 15, 2014 Motivation Let C be any field and choose an arbitrary element q C \

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

Chapter 5 Polynomials

Chapter 5 Polynomials Department of Mathematics Grossmont College October 7, 2012 Multiplying Polynomials Multiplying Binomials using the Distributive Property We can multiply two binomials using the Distributive Property,

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MS(QE) Syllabus for ME I (Mathematics), 2012

SYLLABUS AND SAMPLE QUESTIONS FOR MS(QE) Syllabus for ME I (Mathematics), 2012 SYLLABUS AND SAMPLE QUESTIONS FOR MS(QE) 2012 Syllabus for ME I (Mathematics), 2012 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations and Combinations, Theory

More information

ABSTRACT GENERALIZING THE FUTURAMA THEOREM. The 2010 episode of Futurama titled The Prisoner of Benda centers

ABSTRACT GENERALIZING THE FUTURAMA THEOREM. The 2010 episode of Futurama titled The Prisoner of Benda centers ABSTRACT GENERALIZING THE FUTURAMA THEOREM The 2010 episode of Futurama titled The Prisoner of Benda centers around a machine that swaps the brains of any two people who use it. The problem is, once two

More information

Hints on Some of the Exercises

Hints on Some of the Exercises Hints on Some of the Exercises of the book R. Seydel: Tools for Computational Finance. Springer, 00/004/006/009/01. Preparatory Remarks: Some of the hints suggest ideas that may simplify solving the exercises

More information

Ore localizations of nearrings

Ore localizations of nearrings Ore localizations of nearrings Ma lgorzata E. Hryniewicka Institute of Mathematics, University of Bia lystok Cio lkowskiego 1M, 15-245 Bia lystok, Poland e-mail: margitt@math.uwb.edu.pl 1 Example. Let

More information

Factoring completely is factoring a product down to a product of prime factors. 24 (2)(12) (2)(2)(6) (2)(2)(2)(3)

Factoring completely is factoring a product down to a product of prime factors. 24 (2)(12) (2)(2)(6) (2)(2)(2)(3) Factoring Contents Introduction... 2 Factoring Polynomials... 4 Greatest Common Factor... 4 Factoring by Grouping... 5 Factoring a Trinomial with a Table... 5 Factoring a Trinomial with a Leading Coefficient

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

Double Ore Extensions versus Iterated Ore Extensions

Double Ore Extensions versus Iterated Ore Extensions Double Ore Extensions versus Iterated Ore Extensions Paula A. A. B. Carvalho, Samuel A. Lopes and Jerzy Matczuk Departamento de Matemática Pura Faculdade de Ciências da Universidade do Porto R.Campo Alegre

More information

Research Article On the Classification of Lattices Over Q( 3) Which Are Even Unimodular Z-Lattices of Rank 32

Research Article On the Classification of Lattices Over Q( 3) Which Are Even Unimodular Z-Lattices of Rank 32 International Mathematics and Mathematical Sciences Volume 013, Article ID 837080, 4 pages http://dx.doi.org/10.1155/013/837080 Research Article On the Classification of Lattices Over Q( 3) Which Are Even

More information

General evaluation of suborbital graphs

General evaluation of suborbital graphs CMMA 3, No. 1, 42-50 (2018) 42 Communication in Mathematical Modeling and Applications http://ntmsci.com/cmma General evaluation of suborbital graphs Murat Beşenk Pamukkale University, Department of Mathematics,

More information

Skew lattices of matrices in rings

Skew lattices of matrices in rings Algebra univers. 53 (2005) 471 479 0002-5240/05/040471 09 DOI 10.1007/s00012-005-1913-5 c Birkhäuser Verlag, Basel, 2005 Algebra Universalis Skew lattices of matrices in rings Karin Cvetko-Vah Abstract.

More information

Developmental Math An Open Program Unit 12 Factoring First Edition

Developmental Math An Open Program Unit 12 Factoring First Edition Developmental Math An Open Program Unit 12 Factoring First Edition Lesson 1 Introduction to Factoring TOPICS 12.1.1 Greatest Common Factor 1 Find the greatest common factor (GCF) of monomials. 2 Factor

More information

Laurence Boxer and Ismet KARACA

Laurence Boxer and Ismet KARACA SOME PROPERTIES OF DIGITAL COVERING SPACES Laurence Boxer and Ismet KARACA Abstract. In this paper we study digital versions of some properties of covering spaces from algebraic topology. We correct and

More information

ANALYSIS OF N-CARD LE HER

ANALYSIS OF N-CARD LE HER ANALYSIS OF N-CARD LE HER ARTHUR T. BENJAMIN AND A.J. GOLDMAN Abstract. We present a complete solution to a card game with historical origins. Our analysis exploits convexity properties in the payoff matrix,

More information

1 SE = Student Edition - TG = Teacher s Guide

1 SE = Student Edition - TG = Teacher s Guide Mathematics State Goal 6: Number Sense Standard 6A Representations and Ordering Read, Write, and Represent Numbers 6.8.01 Read, write, and recognize equivalent representations of integer powers of 10.

More information

How can we factor polynomials?

How can we factor polynomials? How can we factor polynomials? Factoring refers to writing something as a product. Factoring completely means that all of the factors are relatively prime (they have a GCF of 1). Methods of factoring:

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION 1. George cantor is the School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION General (Common) Course of BCom/BBA/BMMC (2014 Admn. onwards) III SEMESTER- CUCBCSS QUESTION BANK

More information

Math 546 Homework Problems. Due Wednesday, January 25. This homework has two types of problems.

Math 546 Homework Problems. Due Wednesday, January 25. This homework has two types of problems. Math 546 Homework 1 Due Wednesday, January 25. This homework has two types of problems. 546 Problems. All students (students enrolled in 546 and 701I) are required to turn these in. 701I Problems. Only

More information

Two-lit trees for lit-only sigma-game

Two-lit trees for lit-only sigma-game Two-lit trees for lit-only sigma-game Hau-wen Huang July 24, 2018 arxiv:1010.5846v3 [math.co] 14 Aug 2012 Abstract A configuration of the lit-only σ-game on a finite graph Γ is an assignment of one of

More information

ROM Simulation with Exact Means, Covariances, and Multivariate Skewness

ROM Simulation with Exact Means, Covariances, and Multivariate Skewness ROM Simulation with Exact Means, Covariances, and Multivariate Skewness Michael Hanke 1 Spiridon Penev 2 Wolfgang Schief 2 Alex Weissensteiner 3 1 Institute for Finance, University of Liechtenstein 2 School

More information

Final Exam Review. 1. Simplify each of the following. Express each answer with positive exponents.

Final Exam Review. 1. Simplify each of the following. Express each answer with positive exponents. 1 1. Simplify each of the following. Express each answer with positive exponents. a a) 4 b 1x xy b) 1 x y 1. Evaluate without the use of a calculator. Express answers as integers or rational numbers. a)

More information

3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼ 3 cups cups cup Fractions are a form of division. When I ask what is 3/ I am asking How big will each part be if I break 3 into equal parts? The answer is. This a fraction. A fraction is part of a whole.

More information

MTH 110-College Algebra

MTH 110-College Algebra MTH 110-College Algebra Chapter R-Basic Concepts of Algebra R.1 I. Real Number System Please indicate if each of these numbers is a W (Whole number), R (Real number), Z (Integer), I (Irrational number),

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

Projective Lattices. with applications to isotope maps and databases. Ralph Freese CLA La Rochelle

Projective Lattices. with applications to isotope maps and databases. Ralph Freese CLA La Rochelle Projective Lattices with applications to isotope maps and databases Ralph Freese CLA 2013. La Rochelle Ralph Freese () Projective Lattices Oct 2013 1 / 17 Projective Lattices A lattice L is projective

More information

Chapter 6: Quadratic Functions & Their Algebra

Chapter 6: Quadratic Functions & Their Algebra Chapter 6: Quadratic Functions & Their Algebra Topics: 1. Quadratic Function Review. Factoring: With Greatest Common Factor & Difference of Two Squares 3. Factoring: Trinomials 4. Complete Factoring 5.

More information

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6)

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6) Adding Polynomials Adding & Subtracting Polynomials (Combining Like Terms) Subtracting Polynomials (if your nd polynomial is inside a set of parentheses). (x 8x + ) + (-x -x 7) FIRST, Identify the like

More information

WEIGHTED SUM OF THE EXTENSIONS OF THE REPRESENTATIONS OF QUADRATIC FORMS

WEIGHTED SUM OF THE EXTENSIONS OF THE REPRESENTATIONS OF QUADRATIC FORMS WEIGHTED SUM OF THE EXTENSIONS OF THE REPRESENTATIONS OF QUADRATIC FORMS BYEONG-KWEON OH Abstract Let L, N and M be positive definite integral Z-lattices In this paper, we show some relation between the

More information

Remarks. Remarks. In this section we will learn how to compute the coefficients when we expand a binomial raised to a power.

Remarks. Remarks. In this section we will learn how to compute the coefficients when we expand a binomial raised to a power. The Binomial i Theorem In this section we will learn how to compute the coefficients when we expand a binomial raised to a power. ( a+ b) n We will learn how to do this using the Binomial Theorem which

More information

Congruence lattices of finite intransitive group acts

Congruence lattices of finite intransitive group acts Congruence lattices of finite intransitive group acts Steve Seif June 18, 2010 Finite group acts A finite group act is a unary algebra X = X, G, where G is closed under composition, and G consists of permutations

More information

Chapter 13 Exercise 13.1

Chapter 13 Exercise 13.1 Chapter 1 Exercise 1.1 Q. 1. Q.. Q.. Q. 4. Q.. x + 1 + x 1 (x + 1) + 4x + (x 1) + 9x 4x + + 9x 1x 1 p p + (p ) p 1 (p + ) + p 4 p 1 p 4 p 19 y 4 4 y (y 4) 4(y ) 1 y 1 8y + 1 y + 8 1 y 1 + y 1 + 1 1 1y

More information

On the Degeneracy of N and the Mutability of Primes

On the Degeneracy of N and the Mutability of Primes On the Degeneracy of N and the Mutability of Primes Jonathan Trousdale October 9, 018 Abstract This paper sets forth a representation of the hyperbolic substratum that defines order on N. Degeneracy of

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Generating all modular lattices of a given size

Generating all modular lattices of a given size Generating all modular lattices of a given size ADAM 2013 Nathan Lawless Chapman University June 6-8, 2013 Outline Introduction to Lattice Theory: Modular Lattices The Objective: Generating and Counting

More information

Determining a Number Through its Sum of Divisors

Determining a Number Through its Sum of Divisors Determining a Number Through its Sum of Divisors Carter Smith with Alessandro Rezende De Macedo University of Texas at Austin arter Smith with Alessandro Rezende De Macedo Determining (University a Number

More information

Rises in forests of binary shrubs

Rises in forests of binary shrubs Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9:, 07, #5 Rises in forests of binary shrubs Jeffrey Remmel Sainan Zheng arxiv:6.0908v4 [math.co] 8 Jul 07 Department of Mathematics, University

More information

Introduction Ideal lattices Ring-SIS Ring-LWE Other algebraic lattices Conclusion. Ideal Lattices. Damien Stehlé. ENS de Lyon. Berkeley, 07/07/2015

Introduction Ideal lattices Ring-SIS Ring-LWE Other algebraic lattices Conclusion. Ideal Lattices. Damien Stehlé. ENS de Lyon. Berkeley, 07/07/2015 Ideal Lattices Damien Stehlé ENS de Lyon Berkeley, 07/07/2015 Damien Stehlé Ideal Lattices 07/07/2015 1/32 Lattice-based cryptography: elegant but impractical Lattice-based cryptography is fascinating:

More information

FACTORING HANDOUT. A General Factoring Strategy

FACTORING HANDOUT. A General Factoring Strategy This Factoring Packet was made possible by a GRCC Faculty Excellence grant by Neesha Patel and Adrienne Palmer. FACTORING HANDOUT A General Factoring Strategy It is important to be able to recognize the

More information

Study of Monotonicity of Trinomial Arcs M(p, k, r, n) when 1 <α<+

Study of Monotonicity of Trinomial Arcs M(p, k, r, n) when 1 <α<+ International Journal of Algebra, Vol. 1, 2007, no. 10, 477-485 Study of Monotonicity of Trinomial Arcs M(p, k, r, n) when 1

More information

Fractional Graphs. Figure 1

Fractional Graphs. Figure 1 Fractional Graphs Richard H. Hammack Department of Mathematics and Applied Mathematics Virginia Commonwealth University Richmond, VA 23284-2014, USA rhammack@vcu.edu Abstract. Edge-colorings are used to

More information

Polynomials. Factors and Greatest Common Factors. Slide 1 / 128. Slide 2 / 128. Slide 3 / 128. Table of Contents

Polynomials. Factors and Greatest Common Factors. Slide 1 / 128. Slide 2 / 128. Slide 3 / 128. Table of Contents Slide 1 / 128 Polynomials Table of ontents Slide 2 / 128 Factors and GF Factoring out GF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

TERMINOLOGY 4.1. READING ASSIGNMENT 4.2 Sections 5.4, 6.1 through 6.5. Binomial. Factor (verb) GCF. Monomial. Polynomial.

TERMINOLOGY 4.1. READING ASSIGNMENT 4.2 Sections 5.4, 6.1 through 6.5. Binomial. Factor (verb) GCF. Monomial. Polynomial. Section 4. Factoring Polynomials TERMINOLOGY 4.1 Prerequisite Terms: Binomial Factor (verb) GCF Monomial Polynomial Trinomial READING ASSIGNMENT 4. Sections 5.4, 6.1 through 6.5 160 READING AND SELF-DISCOVERY

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

B) 2x3-5x D) 2x3 + 5x

B) 2x3-5x D) 2x3 + 5x Pre Calculus Final Review 2010 (April) Name Divide f(x) by d(x), and write a summary statement in the form indicated. 1) f x = x - 4; d x = x + 7 (Write answer in polynomial form) 1) A) f x = x + 7 x2-7x

More information

COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS

COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS DAN HATHAWAY AND SCOTT SCHNEIDER Abstract. We discuss combinatorial conditions for the existence of various types of reductions between equivalence

More information

A note on the number of (k, l)-sum-free sets

A note on the number of (k, l)-sum-free sets A note on the number of (k, l)-sum-free sets Tomasz Schoen Mathematisches Seminar Universität zu Kiel Ludewig-Meyn-Str. 4, 4098 Kiel, Germany tos@numerik.uni-kiel.de and Department of Discrete Mathematics

More information

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition.

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition. The Real Numbers Here we show one way to explicitly construct the real numbers R. First we need a definition. Definitions/Notation: A sequence of rational numbers is a funtion f : N Q. Rather than write

More information

30. 2 x5 + 3 x; quintic binomial 31. a. V = 10pr 2. b. V = 3pr 3

30. 2 x5 + 3 x; quintic binomial 31. a. V = 10pr 2. b. V = 3pr 3 Answers for Lesson 6- Answers for Lesson 6-. 0x + 5; linear binomial. -x + 5; linear binomial. m + 7m - ; quadratic trinomial 4. x 4 - x + x; quartic trinomial 5. p - p; quadratic binomial 6. a + 5a +

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a Trinomial Tree Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a The three stock prices at time t are S, Su, and Sd, where ud = 1. Impose the matching of mean and

More information

Final Project. College Algebra. Upon successful completion of this course, the student will be able to:

Final Project. College Algebra. Upon successful completion of this course, the student will be able to: COURSE OBJECTIVES Upon successful completion of this course, the student will be able to: 1. Perform operations on algebraic expressions 2. Perform operations on functions expressed in standard function

More information

Lesson 7.1: Factoring a GCF

Lesson 7.1: Factoring a GCF Name Lesson 7.1: Factoring a GCF Date Algebra I Factoring expressions is one of the gateway skills that is necessary for much of what we do in algebra for the rest of the course. The word factor has two

More information

The mod 2 Adams Spectral Sequence for tmf

The mod 2 Adams Spectral Sequence for tmf The mod 2 Adams Spectral Sequence for tmf Robert Bruner Wayne State University, and Universitetet i Oslo Isaac Newton Institute 11 September 2018 Robert Bruner (WSU and UiO) tmf at p = 2 INI 1 / 65 Outline

More information