MS-E2114 Investment Science Exercise 4/2016, Solutions

Size: px
Start display at page:

Download "MS-E2114 Investment Science Exercise 4/2016, Solutions"

Transcription

1 Capital budgeting problems can be solved based on, for example, the benet-cost ratio (that is, present value of benets per present value of the costs) or the net present value (the present value of benets - present value of the costs). According to the benet-cost ratio, a project is benecial if the ratio is greater than one, i.e., the present value of the benets is greater than that of the costs. Similarly, when evaluating projects based on net present value, a project is worth carrying out if NPV>. If there are more projects available than there is capital to fund them, an approximate solution to the capital budgeting problem is obtained by ordering the projects by their benet-cost ratio and selecting them one-by-one until the budget limit is reached. If the benets a j of the projects are independent, the capital budgeting can be written as max m a i x i x i {, 1}, i = 1,..., m x X F, where x = [x 1 x 2... x m ] represents the project portfolio such that x i = 1 if project i will be implemented and x i = if not. X F is the feasible set of the projects, which is dened by, for example, budget limits and project interdependencies. If the project interdependencies aect the benets of the projects, the object function of the optimization problem has to be modied correspondingly. If the only constraint is the budget C and the cost of each project i is c i, the feasible set is dened as X = {x m c ix i C}. If projects i and j are mutually exclusive (that is, only one of them can be implemented), a constraint x i + x j 1 has to be subjected. A rm can be evaluated by, for example, based on the paid dividends. Using a constant-growth dividend model, the value of a rm can be dened as the present value of the dividend stream. Suppose a constant rate g, rst dividend D 1 paid at the end of rst period and a constant interest rate r. The present value of the dividends is V = D r + D 1(1 + g) (1 + r) 2 + D 1(1 + q) 2 (1 + r) 3 + = D 1 where the last equation is the Gordon formula. k=1 (1 + g) k 1 (1 + r) k V = D 1 r g,

2 1. (L5.1) (Capital budgeting) A rm is considering funding several proposed projects that have the nancial properties shown in Table 1. The available budget is 6 e. What set of projects would be recommended by the approximate method based on benet-cost ratios? What is the optimal set of projects (using net present value)? Table 1: Financial properties of the proposed projects. Outlay Present value of benets Project (1 e) (1 e) The projects can be ranked based on their benet-cost ratio φ or their net present value, dened as Present value of benets φ =, NPV=Present value of benets - Investment cost Investment cost The projects ranked by their benet-cost ratios are presented in Table 2 below. Based on the benet-cost Table 2: Projects ranked by the benet-cost ratios φ. Outlay Present value of benets φ Project (1 e) (1 e) ratios, projects 1,2 and 5 are selected, having total investment cost of 55 < 6 e. The total net present value of the projects of this approximate solution is NPV=4 e. Those projects that create the greatest total net present value of the project portfolio comprise the optimal project portfolio. The project selection can be formulated as an optimization problem as follows: max 5 NPV i x i 5 c i x i 6 e, x i {, 1}, i = 1,..., 5, where x = [x 1 x 2... x m ] (x i = 1 if i selected and, otherwise) presents the selections of projects in the project portfolio, NPV i is the net present value and c i the investment cost of project i. This optimization problem can be solved with, for example, Solver of Excel. We nd the solution to this problem to

3 be the projects 1,2 and 5. Thus, the approximate solution using benet-cost ratios provided the optimal solution in this case. 2. (Two-period budget) A company has identied a number of promising projects, as indicated in Table 3. The cash ows for the rst 2 years are shown (they are all negative). Table 3: A list of projects. Cash ow (1 e) Project year 1 year 2 Present value of benets (years 3 ) The cash ows in later years are positive, and the present values of the benets of each project are shown. The company managers have decided that they can allocate up to 25 e in the rst 2 years to fund these projects. If less than 25 e is used the rst year, the balance can be invested at 1% and used to augment the next year's budget. Which projects should be funded? Formulate the problem as an optimization problem. First we calculate the net present values of the projects at 1% interest rate: Table 4: Net present values of the projects at 1% interest rate. Project year 1 year 2 Present value of benets (years 3 ) NPV (1 e) We dene binary variables x i, i = 1,..., 7 so that x i = 1, if project i is selected and x i =, otherwise. The project selection problem can be formulated as and optimization problem. The objective function of the problem is

4 7 f(x) = NPV i x i = 2.25x x x x x x x 7, where NPV i is the net present value of project i. In general, inequalities can be written as equations by introducing slack variables. For example, we can write x C as C x s + =, where s +. Using this method, the budget constraints for the rst two years can be set using slack variables s + i (i = 1, 2), which dene the amount of budget remaining in each years. Hence, we write the budget constraint for the rst year as 25 9x 1 8x 2 5x 3 2x 4 4x 5 8x 6 8x 7 s + 1 =. The remaining balance s + 1 from the rst year can be invested at 1% interest to be used in the budget of the second year. The budget for the second year is then 1.1s + 1. We can then write the budget constraint for the second year as 1.1s x 1 8x 2 1x 3 64x 4 5x 5 2x 6 1x 7 s + 2 =. We formulate the optimization problem of the project selection as follows: max f(x) x 25 9x 1 8x 2 5x 3 2x 4 4x 5 8x 6 8x 7 s + 1 = 1.1s x 1 8x 2 1x 3 64x 4 5x 5 2x 6 1x 7 s + 2 = x i {, 1} i = 1,..., 7 s + 1, s+ 2. s + 1 is the remaining budget from the total budget 25 e after the expenses of the rst year, and which can be invested at 1% interest. s + 2 is the excess capital that remains unused after two years. We solve this optimization problem using Solver of Excel. The solution is x 4 = x 7 = 1, x 1 = x 2 = x 3 = x 5 = x 6 =, s + 1 = 15, and s+ 2 = 1. Hence we select projects 4 and 7.

5 3. Suppose that we face a known sequence of future monetary obligations. In cash ow matching problem, we design a portfolio that will provide the necessary cash as required for the obligations. We formulate this optimization problem in matrix form as follows. Let the number of bonds be m and the time horizon be n. The cash ow stream of bond j can be denoted as a c j n 1 and the yearly obligations as b n 1. We denote the bond matrix that has columns of the cash ows c j as C n m. Furthermore, the prices of the bonds can be denoted as p m 1 and the numbers of the bonds in the portfolio as x m 1. These notations give the cash ow matching problem as min p T x Cx b x. a) The cash ow structure of a cash ow matching problem is presented in Table 3. Dene C, b, p and x. b) Suppose the bonds are priced according to a conventional spot rate curve. The price vector p can be then written as C T v = p, where v n 1 is a vector of the discount rates. Moreover, if the portfolio x matches the obligations exactly, we have Cx = b. Show that the price p T x of the portfolio is v T b and interpret this. c) The optimization problem presented above seeks a solution that matches the obligations each year exactly. If the cash ows cannot be matched exactly, the present value of the portfolio is greater than the present value of the obligations. How does this model dier from immunization of a portfolio? What factor of portfolio immunization is neglected in this approach? Which approach is better? Table 5: Bonds of exercise 3. Bonds Year equired Actual p x Cost

6 a) The bond matrix C and vectors of obligations b, bond prices p and numbers of bonds in the portfolio x can be directly read from Table 5: C = , b = 8 1, p = , x = b) We have C T v = p and Cx = b, where elements of v are [v] k = 1/(1 + s k ) k Because (AB) T = B T A T, we can write C T v = p p T = v T C. Hence, the price of the portfolio can be written as: p T x = v T Cx = v T b. Interpretation: If the cash ows of the portfolio match the obligations exactly, the present value of the project portfolio (which equals the price of the portfolio) matches the present value of the obligations. c) In immunization the present value and rst order derivative (quasi-modied duration) of the portfolio is matched with those of the obligation stream. The cash ows of an immunized portfolio do not necessarily have to match those of the obligations, and instead the assets in the portfolio are sold when needed to pay the obligations. In cash ow matching, the positive cash ows from the bonds always suce to pay the obligations, regardless of the interest rates. However, the present value of the portfolio is not matched to that of the obligations. From part b) of this exercise can be seen that if Cx > b, then p T x = v T Cx > v T b, and hence the present value (price) of the portfolio exceeds that of the obligation stream when the cash ows received from the bonds exceed the obligations. This problem of cash ow matching can be diminished by, for example, introducing articial bonds that are consistent with the forward rates, or by allowing extra cash to be put "under the matress".

7 4. When pricing nancial instruments, the dividend discount model can be extended by taking more growth phases into account. Consider Nokia Corp. that paid 1439M e of dividends in year 23. Suppose that the dividends grow at a constant rate G = 1.3 in the rst ve years (that is, during years 24-28), and the dividends grow at rate g = 1.5 from year 29 onwards. a) Formulate the general formula for two-stage dividend discount model for valuing a publicly traded company. The growth rate is constant G for k years and then g from year k + 1 onwards. The dividend of the rst year D is paid immediately. b) What is the market value of Nokia Corp., if it is valued solely based on the shared dividends? Assume a constant interest rate r =.1 and that rst dividend is paid immediately. a) Growth rate is G for the rst k years, the rst dividends are D and the discount factor is 1/ = 1/(1+r). Hence, the present value of the dividends in the rst k years is P V 1 = D + D G + + D ( G ) k = D k i= ( ) G i (1) After k years, the growth rate changes to g. The present value of the paid dividends from year k+1 onwards is then ( ) G k ( ) g G k ( g ) 2 P V 2 = D + D +. (2) Combining equations (1) and (2) yields the present value of the whole stream as P V = D + D G + + D ( G ) k 1 ( ) G k [ + D 1 + g ( g ) ] 2 r + +. (3) The formula for a sum of rst n terms of a geometric series is a + ar + + ar n 1 = a(1 r n )/(1 r) and the formula for the geometric sum when n goes to innity is a + ar + ar 2 + = a/(1 r). The rst formula applies for r 1 and second for r < 1. Using these formulas (assuming G and g < ), the present value of the dividend stream becomes [ ( 1 G ) k ( ) ] G k 1 P V = D 1 G + 1 g (4) b) We substitute the values G = 1.3, g = 1.5, = 1.1, D = 1439, and k = 5 into (4) and get the market value of Nokia Corp. as Me. The price per share (the present value divided by the number of shares) is then e. For comparison, the average price of Nokia stocks was e in 23.

Game Theory Tutorial 3 Answers

Game Theory Tutorial 3 Answers Game Theory Tutorial 3 Answers Exercise 1 (Duality Theory) Find the dual problem of the following L.P. problem: max x 0 = 3x 1 + 2x 2 s.t. 5x 1 + 2x 2 10 4x 1 + 6x 2 24 x 1 + x 2 1 (1) x 1 + 3x 2 = 9 x

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

ECONOMICS QUALIFYING EXAMINATION IN ELEMENTARY MATHEMATICS

ECONOMICS QUALIFYING EXAMINATION IN ELEMENTARY MATHEMATICS ECONOMICS QUALIFYING EXAMINATION IN ELEMENTARY MATHEMATICS Friday 2 October 1998 9 to 12 This exam comprises two sections. Each carries 50% of the total marks for the paper. You should attempt all questions

More information

3: Balance Equations

3: Balance Equations 3.1 Balance Equations Accounts with Constant Interest Rates 15 3: Balance Equations Investments typically consist of giving up something today in the hope of greater benefits in the future, resulting in

More information

56:171 Operations Research Midterm Exam Solutions October 22, 1993

56:171 Operations Research Midterm Exam Solutions October 22, 1993 56:171 O.R. Midterm Exam Solutions page 1 56:171 Operations Research Midterm Exam Solutions October 22, 1993 (A.) /: Indicate by "+" ="true" or "o" ="false" : 1. A "dummy" activity in CPM has duration

More information

Tries to understand the prices or values of claims to uncertain payments.

Tries to understand the prices or values of claims to uncertain payments. Asset pricing Tries to understand the prices or values of claims to uncertain payments. If stocks have an average real return of about 8%, then 2% may be due to interest rates and the remaining 6% is a

More information

UNIVERSITY OF TORONTO Joseph L. Rotman School of Management SOLUTIONS

UNIVERSITY OF TORONTO Joseph L. Rotman School of Management SOLUTIONS UNIVERSITY OF TORONTO Joseph L. Rotman School of Management Oct., 08 Corhay/Kan RSM MID-TERM EXAMINATION Yang/Wang SOLUTIONS. a) The optimal consumption plan is C 0 = Y 0 = 0 and C = Y = 0. Therefore,

More information

Investments. Session 10. Managing Bond Portfolios. EPFL - Master in Financial Engineering Philip Valta. Spring 2010

Investments. Session 10. Managing Bond Portfolios. EPFL - Master in Financial Engineering Philip Valta. Spring 2010 Investments Session 10. Managing Bond Portfolios EPFL - Master in Financial Engineering Philip Valta Spring 2010 Bond Portfolios (Session 10) Investments Spring 2010 1 / 54 Outline of the lecture Duration

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

MS-E2114 Investment Science Exercise 10/2016, Solutions

MS-E2114 Investment Science Exercise 10/2016, Solutions A simple and versatile model of asset dynamics is the binomial lattice. In this model, the asset price is multiplied by either factor u (up) or d (down) in each period, according to probabilities p and

More information

ECON Micro Foundations

ECON Micro Foundations ECON 302 - Micro Foundations Michael Bar September 13, 2016 Contents 1 Consumer s Choice 2 1.1 Preferences.................................... 2 1.2 Budget Constraint................................ 3

More information

Macroeconomics 4 Notes on Diamond-Dygvig Model and Jacklin

Macroeconomics 4 Notes on Diamond-Dygvig Model and Jacklin 4.454 - Macroeconomics 4 Notes on Diamond-Dygvig Model and Jacklin Juan Pablo Xandri Antuna 4/22/20 Setup Continuum of consumers, mass of individuals each endowed with one unit of currency. t = 0; ; 2

More information

The application of linear programming to management accounting

The application of linear programming to management accounting The application of linear programming to management accounting After studying this chapter, you should be able to: formulate the linear programming model and calculate marginal rates of substitution and

More information

Financial Economics Field Exam August 2008

Financial Economics Field Exam August 2008 Financial Economics Field Exam August 2008 There are two questions on the exam, representing Macroeconomic Finance (234A) and Corporate Finance (234C). Please answer both questions to the best of your

More information

Radner Equilibrium: Definition and Equivalence with Arrow-Debreu Equilibrium

Radner Equilibrium: Definition and Equivalence with Arrow-Debreu Equilibrium Radner Equilibrium: Definition and Equivalence with Arrow-Debreu Equilibrium Econ 2100 Fall 2017 Lecture 24, November 28 Outline 1 Sequential Trade and Arrow Securities 2 Radner Equilibrium 3 Equivalence

More information

Fundamental Theorems of Welfare Economics

Fundamental Theorems of Welfare Economics Fundamental Theorems of Welfare Economics Ram Singh October 4, 015 This Write-up is available at photocopy shop. Not for circulation. In this write-up we provide intuition behind the two fundamental theorems

More information

Macro Consumption Problems 33-43

Macro Consumption Problems 33-43 Macro Consumption Problems 33-43 3rd October 6 Problem 33 This is a very simple example of questions involving what is referred to as "non-convex budget sets". In other words, there is some non-standard

More information

MS-E2114 Investment Science Lecture 3: Term structure of interest rates

MS-E2114 Investment Science Lecture 3: Term structure of interest rates MS-E2114 Investment Science Lecture 3: Term structure of interest rates A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

Lecture 2: Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and

Lecture 2: Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Lecture 2: Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization The marginal or derivative function and optimization-basic principles The average function

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

ECON385: A note on the Permanent Income Hypothesis (PIH). In this note, we will try to understand the permanent income hypothesis (PIH).

ECON385: A note on the Permanent Income Hypothesis (PIH). In this note, we will try to understand the permanent income hypothesis (PIH). ECON385: A note on the Permanent Income Hypothesis (PIH). Prepared by Dmytro Hryshko. In this note, we will try to understand the permanent income hypothesis (PIH). Let us consider the following two-period

More information

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 013 Problem Set (Second Group of Students) Students with first letter of surnames I Z Due: February 1, 013 Problem Set Rules: 1. Each student

More information

Sequences, Series, and Limits; the Economics of Finance

Sequences, Series, and Limits; the Economics of Finance CHAPTER 3 Sequences, Series, and Limits; the Economics of Finance If you have done A-level maths you will have studied Sequences and Series in particular Arithmetic and Geometric ones) before; if not you

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2018 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 160

More information

Term Structure of Interest Rates

Term Structure of Interest Rates Term Structure of Interest Rates No Arbitrage Relationships Professor Menelaos Karanasos December 20 (Institute) Expectation Hypotheses December 20 / The Term Structure of Interest Rates: A Discrete Time

More information

Consider the production function f(x 1, x 2 ) = x 1/2. 1 x 3/4

Consider the production function f(x 1, x 2 ) = x 1/2. 1 x 3/4 In this chapter you work with production functions, relating output of a firm to the inputs it uses. This theory will look familiar to you, because it closely parallels the theory of utility functions.

More information

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9

Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Efficient Portfolio and Introduction to Capital Market Line Benninga Chapter 9 Optimal Investment with Risky Assets There are N risky assets, named 1, 2,, N, but no risk-free asset. With fixed total dollar

More information

The Binomial Model. Chapter 3

The Binomial Model. Chapter 3 Chapter 3 The Binomial Model In Chapter 1 the linear derivatives were considered. They were priced with static replication and payo tables. For the non-linear derivatives in Chapter 2 this will not work

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods. Introduction In ECON 50, we discussed the structure of two-period dynamic general equilibrium models, some solution methods, and their

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates 16 2.1 Definitions.................................... 16 2.1.1 Rate of Return..............................

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

FINANCE THEORY: Intertemporal. and Optimal Firm Investment Decisions. Eric Zivot Econ 422 Summer R.W.Parks/E. Zivot ECON 422:Fisher 1.

FINANCE THEORY: Intertemporal. and Optimal Firm Investment Decisions. Eric Zivot Econ 422 Summer R.W.Parks/E. Zivot ECON 422:Fisher 1. FINANCE THEORY: Intertemporal Consumption-Saving and Optimal Firm Investment Decisions Eric Zivot Econ 422 Summer 21 ECON 422:Fisher 1 Reading PCBR, Chapter 1 (general overview of financial decision making)

More information

Lecture 3: Factor models in modern portfolio choice

Lecture 3: Factor models in modern portfolio choice Lecture 3: Factor models in modern portfolio choice Prof. Massimo Guidolin Portfolio Management Spring 2016 Overview The inputs of portfolio problems Using the single index model Multi-index models Portfolio

More information

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712 Prof. Peck Fall 016 Department of Economics The Ohio State University Final Exam Questions and Answers Econ 871 1. (35 points) The following economy has one consumer, two firms, and four goods. Goods 1

More information

Lockbox Separation. William F. Sharpe June, 2007

Lockbox Separation. William F. Sharpe June, 2007 Lockbox Separation William F. Sharpe June, 2007 Introduction This note develops the concept of lockbox separation for retirement financial strategies in a complete market. I show that in such a setting

More information

3: Balance Equations 3.1 Accounts with Constant Interest Rates. Terms. Example. Simple Interest

3: Balance Equations 3.1 Accounts with Constant Interest Rates. Terms. Example. Simple Interest 3: Balance Equations 3.1 Accounts with Constant Interest Rates Example Two different accounts 1% per year: earn 1% each year on dollars at beginning of year 1% per month: earn 1% each month on dollars

More information

Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization

Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization Kai Hao Yang 09/26/2017 1 Production Function Just as consumer theory uses utility function a function that assign

More information

14.02 Principles of Macroeconomics Solutions to Problem Set # 2

14.02 Principles of Macroeconomics Solutions to Problem Set # 2 4.02 Principles of Macroeconomics Solutions to Problem Set # 2 September 25, 2009 True/False/Uncertain [20 points] Please state whether each of the following claims are True, False or Uncertain, and provide

More information

Department of Economics The Ohio State University Final Exam Answers Econ 8712

Department of Economics The Ohio State University Final Exam Answers Econ 8712 Department of Economics The Ohio State University Final Exam Answers Econ 8712 Prof. Peck Fall 2015 1. (5 points) The following economy has two consumers, two firms, and two goods. Good 2 is leisure/labor.

More information

Equilibrium Asset Returns

Equilibrium Asset Returns Equilibrium Asset Returns Equilibrium Asset Returns 1/ 38 Introduction We analyze the Intertemporal Capital Asset Pricing Model (ICAPM) of Robert Merton (1973). The standard single-period CAPM holds when

More information

The Role of Physical Capital

The Role of Physical Capital San Francisco State University ECO 560 The Role of Physical Capital Michael Bar As we mentioned in the introduction, the most important macroeconomic observation in the world is the huge di erences in

More information

Foundations of Finance

Foundations of Finance Lecture 9 Lecture 9: Theories of the Yield Curve. I. Reading. II. Expectations Hypothesis III. Liquidity Preference Theory. IV. Preferred Habitat Theory. Lecture 9: Bond Portfolio Management. V. Reading.

More information

Assignment #3 Y = 6000 (2) C = C(r, Y T ) = 0.8(Y T ) 10000r (3) I = I(r) = r (4) Y = C + I + G + NX (5)

Assignment #3 Y = 6000 (2) C = C(r, Y T ) = 0.8(Y T ) 10000r (3) I = I(r) = r (4) Y = C + I + G + NX (5) Assignment #3 Econ 302: Intermediate Macroeconomics October 30, 2009 1 Small Open Economy Coconut Island, a small economy, is closed to capital ows and international trade. The nation is holding a democratic

More information

Some Problems. 3. Consider the Cournot model with inverse demand p(y) = 9 y and marginal cost equal to 0.

Some Problems. 3. Consider the Cournot model with inverse demand p(y) = 9 y and marginal cost equal to 0. Econ 301 Peter Norman Some Problems 1. Suppose that Bruce leaves Sheila behind for a while and goes to a bar where Claude is having a beer for breakfast. Each must now choose between ghting the other,

More information

For Online Publication Only. ONLINE APPENDIX for. Corporate Strategy, Conformism, and the Stock Market

For Online Publication Only. ONLINE APPENDIX for. Corporate Strategy, Conformism, and the Stock Market For Online Publication Only ONLINE APPENDIX for Corporate Strategy, Conformism, and the Stock Market By: Thierry Foucault (HEC, Paris) and Laurent Frésard (University of Maryland) January 2016 This appendix

More information

4: Single Cash Flows and Equivalence

4: Single Cash Flows and Equivalence 4.1 Single Cash Flows and Equivalence Basic Concepts 28 4: Single Cash Flows and Equivalence This chapter explains basic concepts of project economics by examining single cash flows. This means that each

More information

Uncertainty in Equilibrium

Uncertainty in Equilibrium Uncertainty in Equilibrium Larry Blume May 1, 2007 1 Introduction The state-preference approach to uncertainty of Kenneth J. Arrow (1953) and Gérard Debreu (1959) lends itself rather easily to Walrasian

More information

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g))

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g)) Problem Set 2: Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g)) Exercise 2.1: An infinite horizon problem with perfect foresight In this exercise we will study at a discrete-time version of Ramsey

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2013

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2013 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Spring, 2013 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements,

More information

Econ 172A, W2002: Final Examination, Solutions

Econ 172A, W2002: Final Examination, Solutions Econ 172A, W2002: Final Examination, Solutions Comments. Naturally, the answers to the first question were perfect. I was impressed. On the second question, people did well on the first part, but had trouble

More information

MS-E2114 Investment Science Lecture 4: Applied interest rate analysis

MS-E2114 Investment Science Lecture 4: Applied interest rate analysis MS-E2114 Investment Science Lecture 4: Applied interest rate analysis A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar TIME VALUE OF MONEY Lecture Notes Week 4 Dr Wan Ahmad Wan Omar Lecture Notes Week 4 4. The Time Value of Money The notion on time value of money is based on the idea that money available at the present

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

Term Structure of Interest Rates. For 9.220, Term 1, 2002/03 02_Lecture7.ppt

Term Structure of Interest Rates. For 9.220, Term 1, 2002/03 02_Lecture7.ppt Term Structure of Interest Rates For 9.220, Term 1, 2002/03 02_Lecture7.ppt Outline 1. Introduction 2. Term Structure Definitions 3. Pure Expectations Theory 4. Liquidity Premium Theory 5. Interpreting

More information

17 MAKING COMPLEX DECISIONS

17 MAKING COMPLEX DECISIONS 267 17 MAKING COMPLEX DECISIONS The agent s utility now depends on a sequence of decisions In the following 4 3grid environment the agent makes a decision to move (U, R, D, L) at each time step When the

More information

Bond Analysis & Valuation Solutions

Bond Analysis & Valuation Solutions Bond Analysis & Valuation s Category of Problems 1. Bond Price...2 2. YTM Calculation 14 3. Duration & Convexity of Bond 30 4. Immunization 58 5. Forward Rates & Spot Rates Calculation... 66 6. Clean Price

More information

Engineering Economy Chapter 4 More Interest Formulas

Engineering Economy Chapter 4 More Interest Formulas Engineering Economy Chapter 4 More Interest Formulas 1. Uniform Series Factors Used to Move Money Find F, Given A (i.e., F/A) Find A, Given F (i.e., A/F) Find P, Given A (i.e., P/A) Find A, Given P (i.e.,

More information

Random Walk Expectations and the Forward Discount Puzzle 1

Random Walk Expectations and the Forward Discount Puzzle 1 Random Walk Expectations and the Forward Discount Puzzle 1 Philippe Bacchetta Study Center Gerzensee University of Lausanne Swiss Finance Institute & CEPR Eric van Wincoop University of Virginia NBER January

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Mean-variance analysis 1/ 51 Introduction How does one optimally choose among multiple risky assets? Due to diversi cation, which depends on assets return covariances, the attractiveness

More information

Measuring Interest Rates

Measuring Interest Rates Measuring Interest Rates Economics 301: Money and Banking 1 1.1 Goals Goals and Learning Outcomes Goals: Learn to compute present values, rates of return, rates of return. Learning Outcomes: LO3: Predict

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Solutions to Problem Set Theory of Banking - Academic Year 06-7 Maria Bachelet maria.jua.bachelet@gmail.com February 4, 07 Exercise. An individual consumer has an income stream (Y 0, Y ) and can borrow

More information

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION Abstract. This is the rst part in my tutorial series- Follow me to Optimization Problems. In this tutorial, I will touch on the basic concepts of portfolio

More information

The rm can buy as many units of capital and labour as it wants at constant factor prices r and w. p = q. p = q

The rm can buy as many units of capital and labour as it wants at constant factor prices r and w. p = q. p = q 10 Homework Assignment 10 [1] Suppose a perfectly competitive, prot maximizing rm has only two inputs, capital and labour. The rm can buy as many units of capital and labour as it wants at constant factor

More information

Section 9.1 Solving Linear Inequalities

Section 9.1 Solving Linear Inequalities Section 9.1 Solving Linear Inequalities We know that a linear equation in x can be expressed as ax + b = 0. A linear inequality in x can be written in one of the following forms: ax + b < 0, ax + b 0,

More information

Consumer Theory. The consumer s problem: budget set, interior and corner solutions.

Consumer Theory. The consumer s problem: budget set, interior and corner solutions. Consumer Theory The consumer s problem: budget set, interior and corner solutions. 1 The consumer s problem The consumer chooses the consumption bundle that maximizes his welfare (that is, his utility)

More information

Tutorial 4 - Pigouvian Taxes and Pollution Permits II. Corrections

Tutorial 4 - Pigouvian Taxes and Pollution Permits II. Corrections Johannes Emmerling Natural resources and environmental economics, TSE Tutorial 4 - Pigouvian Taxes and Pollution Permits II Corrections Q 1: Write the environmental agency problem as a constrained minimization

More information

Market Neutral Portfolio Selection: A Pedagogic Illustration

Market Neutral Portfolio Selection: A Pedagogic Illustration Spreadsheets in Education (ejsie) Volume 6 Issue 2 Article 2 April 2013 Market Neutral Portfolio Selection: A Pedagogic Illustration Clarence C. Y. Kwan McMaster University, kwanc@mcmaster.ca Follow this

More information

36106 Managerial Decision Modeling Sensitivity Analysis

36106 Managerial Decision Modeling Sensitivity Analysis 1 36106 Managerial Decision Modeling Sensitivity Analysis Kipp Martin University of Chicago Booth School of Business September 26, 2017 Reading and Excel Files 2 Reading (Powell and Baker): Section 9.5

More information

2. Find the equilibrium price and quantity in this market.

2. Find the equilibrium price and quantity in this market. 1 Supply and Demand Consider the following supply and demand functions for Ramen noodles. The variables are de ned in the table below. Constant values are given for the last 2 variables. Variable Meaning

More information

Feb. 20th, Recursive, Stochastic Growth Model

Feb. 20th, Recursive, Stochastic Growth Model Feb 20th, 2007 1 Recursive, Stochastic Growth Model In previous sections, we discussed random shocks, stochastic processes and histories Now we will introduce those concepts into the growth model and analyze

More information

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits.

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits. Homework : Econ500 Fall, 0 The homework is due on Wednesday, September 7. Each questions is worth 0. points. No partial credits. For the graphic arguments, use the graphing paper that is attached. Clearly

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates and Present Value Analysis 16 2.1 Definitions.................................... 16 2.1.1 Rate of

More information

Interest Rate Risk. Introduction. Asset-Liability Management. Frédéric Délèze

Interest Rate Risk. Introduction. Asset-Liability Management. Frédéric Délèze Interest Rate Risk Frédéric Délèze 2018.08.26 Introduction ˆ The interest rate risk is the risk that an investment's value will change due to a change in the absolute level of interest rates, in the spread

More information

ELEMENTS OF MATRIX MATHEMATICS

ELEMENTS OF MATRIX MATHEMATICS QRMC07 9/7/0 4:45 PM Page 5 CHAPTER SEVEN ELEMENTS OF MATRIX MATHEMATICS 7. AN INTRODUCTION TO MATRICES Investors frequently encounter situations involving numerous potential outcomes, many discrete periods

More information

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves University of Illinois Spring 01 ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves Due: Reading: Thursday, April 11 at beginning of class

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

PROBLEM SET 7 ANSWERS: Answers to Exercises in Jean Tirole s Theory of Industrial Organization

PROBLEM SET 7 ANSWERS: Answers to Exercises in Jean Tirole s Theory of Industrial Organization PROBLEM SET 7 ANSWERS: Answers to Exercises in Jean Tirole s Theory of Industrial Organization 12 December 2006. 0.1 (p. 26), 0.2 (p. 41), 1.2 (p. 67) and 1.3 (p.68) 0.1** (p. 26) In the text, it is assumed

More information

x x x1

x x x1 Mathematics for Management Science Notes 08 prepared by Professor Jenny Baglivo Graphical representations As an introduction to the calculus of two-variable functions (f(x ;x 2 )), consider two graphical

More information

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals.

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals. Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals. We will deal with a particular set of assumptions, but we can modify

More information

1 The Solow Growth Model

1 The Solow Growth Model 1 The Solow Growth Model The Solow growth model is constructed around 3 building blocks: 1. The aggregate production function: = ( ()) which it is assumed to satisfy a series of technical conditions: (a)

More information

56:171 Operations Research Midterm Exam Solutions Fall 1994

56:171 Operations Research Midterm Exam Solutions Fall 1994 56:171 Operations Research Midterm Exam Solutions Fall 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3. Simplex

More information

SAMPLE SOLUTIONS FOR DERIVATIVES MARKETS

SAMPLE SOLUTIONS FOR DERIVATIVES MARKETS SAMPLE SOLUTIONS FOR DERIVATIVES MARKETS Question #1 If the call is at-the-money, the put option with the same cost will have a higher strike price. A purchased collar requires that the put have a lower

More information

Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur

Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Lecture - 07 Mean-Variance Portfolio Optimization (Part-II)

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business Basic Financial Assets and Related Issues A Peek at Optimization Theory: Linear Programming Instructor: Thomas Shores Department of Mathematics Lecture 8, February 1, 2007 110 Kaufmann Center Instructor:

More information

Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo

Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo Jenny A. Baglivo 2002. All rights reserved. Calculus and nonlinear programming (NLP): In nonlinear programming (NLP), either

More information

EconS Micro Theory I Recitation #8b - Uncertainty II

EconS Micro Theory I Recitation #8b - Uncertainty II EconS 50 - Micro Theory I Recitation #8b - Uncertainty II. Exercise 6.E.: The purpose of this exercise is to show that preferences may not be transitive in the presence of regret. Let there be S states

More information

Answer for Homework 2: Modern Macroeconomics I

Answer for Homework 2: Modern Macroeconomics I Answer for Homework 2: Modern Macroeconomics I 1. Consider a constant returns to scale production function Y = F (K; ). (a) What is the de nition of the constant returns to scale? Answer Production function

More information

Mathematics for Economists

Mathematics for Economists Department of Economics Mathematics for Economists Chapter 4 Mathematics of Finance Econ 506 Dr. Mohammad Zainal 4 Mathematics of Finance Compound Interest Annuities Amortization and Sinking Funds Arithmetic

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 The Consumer Problem Consider an agent choosing her consumption of goods 1 and 2 for a given budget. This is the workhorse of microeconomic theory. (Notice

More information

Chapter 7 Pricing with Market Power SOLUTIONS TO EXERCISES

Chapter 7 Pricing with Market Power SOLUTIONS TO EXERCISES Firms, Prices & Markets Timothy Van Zandt August 2012 Chapter 7 Pricing with Market Power SOLUTIONS TO EXERCISES Exercise 7.1. Suppose you produce minivans at a constant marginal cost of $15K and your

More information

DUKE UNIVERSITY The Fuqua School of Business. Financial Management Spring 1989 TERM STRUCTURE OF INTEREST RATES*

DUKE UNIVERSITY The Fuqua School of Business. Financial Management Spring 1989 TERM STRUCTURE OF INTEREST RATES* DUKE UNIVERSITY The Fuqua School of Business Business 350 Smith/Whaley Financial Management Spring 989 TERM STRUCTURE OF INTEREST RATES* The yield curve refers to the relation between bonds expected yield

More information

In terms of covariance the Markowitz portfolio optimisation problem is:

In terms of covariance the Markowitz portfolio optimisation problem is: Markowitz portfolio optimisation Solver To use Solver to solve the quadratic program associated with tracing out the efficient frontier (unconstrained efficient frontier UEF) in Markowitz portfolio optimisation

More information

Trade on Markets. Both consumers' initial endowments are represented bythesamepointintheedgeworthbox,since

Trade on Markets. Both consumers' initial endowments are represented bythesamepointintheedgeworthbox,since Trade on Markets A market economy entails ownership of resources. The initial endowment of consumer 1 is denoted by (x 1 ;y 1 ), and the initial endowment of consumer 2 is denoted by (x 2 ;y 2 ). Both

More information

Final Study Guide MATH 111

Final Study Guide MATH 111 Final Study Guide MATH 111 The final will be cumulative. There will probably be a very slight emphasis on the material from the second half of the class. In terms of the material in the first half, please

More information

INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations

INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations Hun Myoung Park (4/18/2018) LP Interpretation: 1 INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations DCC5350 (2 Credits) Public Policy

More information