Maximizing the Spread of Influence through a Social Network

Size: px
Start display at page:

Download "Maximizing the Spread of Influence through a Social Network"

Transcription

1 Maximizing the Spread of Influence through a Social Network Han Wang Department of omputer Science ETH Zürich

2 Problem Example 1: Spread of Rumor 2012 = end! A D E B F

3 Problem Example 2: Viral Marketing ezpad 1 beats ipad 3 A D E B F

4 Problem Definition G: Model: S: σ S : a social network (n nodes) spread process initially active subset (k seeds) #final active nodes (achievement) Task: hoose S Goal: σ S = max σ S NP-Hard Realistic Goal: Approximate the maximum with a guarantee hoose S: σ S r σ S

5 ontents in This Talk G: Model: S: σ S : a social network (n nodes) spread process Two Models initially active subset (k seeds) #final active nodes (achievement) Task: hoose S Prove: Goal: σ S = max σ S NP-Hard Realistic Goal: Prove: Approximate the maximum with a guarantee hoose S: σ S r σ S

6 Model 1: Independent ascade Model

7 Model 1: ascade Model Each active node try to activate his neighbors p,d = 0.2 D p u,v 1 p u,v Only a single chance p,e = 0.8 p,f = 0.6 E F

8 Model 1: ascade Model A 0.2 D E B 0.6 F

9 Model 1: ascade Model S = A,, σ S = 5 A 0.2 D E B 0.6 F

10 Model 2: Linear Threshold Model

11 Model 2: Threshold Model Each inactive node picks a random θ v,0,1- Active condition: b u,v u: active neigbor of v θ v b,d = 0.2 θ D = 0. 3 E D b E,D = 0.7 Iteration 2: 0.2 < 0.3 Iteration 4: E active Iteration 5: > 0.3 D active

12 Model 2: Threshold Model Iteration: A θ = 0. 3 D B θ = F 0.8 θ = 0. 9 E θ = 0. 6

13 Model 2: Threshold Model S = A,, σ S = 4 A 0.2 D E B 0.6 F

14 How to Prove the Guarantee? Given a spread model??? find S, s.t. σ S r σ S find S, s.t. f S (1 1 ) f S e Nemhauser f(s): Non-negative monotone submodular

15 Submodularity U: a finite ground set P U : power set of U f : P U R Submodularity: node v, S T f S v f S f T v f T

16 Example: Submodularity f S : number of vertexes reachable from vertexes in S v v A D A D B B

17 How to Prove the Guarantee? Given a spread model??? find S, s.t. σ S r σ S Prove: σ S is Submodular f(s): Non-negative monotone submodular find S, s.t. f S (1 1 ) f S e Nemhauser

18 We Want to Prove Model Independent ascade Linear Threshold σ S is Submodular NP-hard

19 Prove: Submodularity ascade Model

20 Submodularity (ascade Model) Recall: flip coin A 0.2 D E B 0.6 F

21 Submodularity (ascade Model) Why not flip all the coins in the begining? A D E 0.7 B 0.6 F

22 Submodularity (ascade Model) Live edges live paths blocked edges A 0.2 D E B 0.6 F

23 Simplify ascade Model Node v ends up active A live path: some seed v

24 Achievement(Simplified Model) X: coin flipping outcome R X v e.g. X1, X2 R X1 A = A, B R X1 =, D, E σ X S = R X v v S σ X1 *A, + = A, B,, D, E = 5 A A B B D E F D E F

25 Submodularity (ascade Model) Fix x, σ X S is submodular Linear combination of submodular functions is still submodular σ S = Prob X σ X S X

26 Summary of the proof Active = Has a live path σ X S is submodular σ S is submodular

27 Prove: NP-hard Simplified ascade Model

28 NP-Hard (ascade Model) Set over Problem: k subsets cover all? K=1: No K=2: No K=3: Yes K=4:

29 NP-Hard (ascade Model) Solve Set over Q: 2 subsets cover all? Influence maximization Q: S = 2, σ S 2 + 5? S1 B A S2 E D S3 S1 S2 S3 A B D E

30 NP-Hard (ascade Model) Influence Maximization Problem is at least as difficult as Set over Problem

31 Prove: Submodularity Linear Threshold Model

32 Recall: Threshold Model A 0.2 θ = 0. 3 D B θ = F 0.8 θ = 0. 9 E θ = 0. 6

33 Gamble: Roulette

34 Gamble: Roulette N v N N2 N6 None N1 N N5 N2 N4 N3 θ = 0. 4 N4 N3

35 Submodularity (Threshold Model) A 0.2 θ = 0. 3 D None 0.7 E None 0.4 A B θ = None 0.6 F 0.8 θ = 0. 9 None E θ = 0. 6

36 Submodularity (Threshold Model) Live edges live paths A B θ = F θ = 0. 9 θ = 0. 3 D E 0.7 θ = 0. 6

37 orrectness of Simplification For node v: P active in Iteration t + 1 inactive in Iterations t) = P(active in Iteration t + 1) P(inactive in Iterations t)

38 Simplified Model Active before iteration 5 becomes active in iteration 5 N v N N N2 N6 N5 None N1 N2 N4 N3 N4 N3

39 Simplified Model A t : Nodes becoming active in iteration t u At b u,v 1 b u,v u A 1 A 2 A t 1

40 Original Model N2 N6 N4 N3 N1 N5 None N v N N2 N N N3

41 Original Model A t : Nodes becoming active in iteration t u At b u,v 1 b u,v u A 1 A 2 A t 1

42 Simplify Threshold Model Node v ends up active A live path: some seed v

43 Similarly, we have Active = Has a live path σ X S is submodular σ S is submodular

44 Prove: NP-hard Linear Threshold Model

45 NP-Hard (Threshold Model) Vertex over Problem k vertexes (S) each edge is incident to at least one vertex in S

46 NP-Hard (Threshold Model) Vertex Set over Q: 3 vertexes cover all? Influence maximization Q: S = 3, σ S = 6? A D E A D E B F B F

47 Influence Maximization Q: S = 3, σ S = 6? Q: S = 2, σ S = 6? A D E A D E B F B F

48 NP-Hard (Threshold Model) Influence Maximization Problem is at least as difficult as Vertex over Problem

49 End of Proofs Influence Maximization Problem Model Independent ascade Linear Threshold σ S is Submodular NP-hard

50 Initial Problem Given a spread model find S, s.t. σ S (1 1 e find S, s.t. ε) σ S Prove: σ S is Submodular f(s): Non-negative monotone submodular f S (1 1 ) f S e Greedy Hill limbing MAX v f S v f S (Maximize Marginal Gain)

51 Summary Problem Description Two Models Independent ascade Model Linear Threshold Model Submodular Functions Proof of Approximation Guarantee Proof of NP-Hardness

52 Q&A

Maximizing the Spread of Influence through a Social Network Problem/Motivation: Suppose we want to market a product or promote an idea or behavior in

Maximizing the Spread of Influence through a Social Network Problem/Motivation: Suppose we want to market a product or promote an idea or behavior in Maximizing the Spread of Influence through a Social Network Problem/Motivation: Suppose we want to market a product or promote an idea or behavior in a society. In order to do so, we can target individuals,

More information

Diffusion Maximization in Evolving Social Networks

Diffusion Maximization in Evolving Social Networks Diffusion Maximization in Evolving Social Networks Nathalie T. H. Gayraud Department of Computer Science and Engineering University of Ioannina Ioannina, Greece ngairo@cs.uoi.gr Evaggelia Pitoura Department

More information

HEMI: Hyperedge Majority Influence Maximization

HEMI: Hyperedge Majority Influence Maximization HEMI: Hyperedge Majority Influence Maximization Varun Gangal 1, Balaraman Ravindran 1, and Ramasuri Narayanam 2 1 Department Of Computer Science & Engineering, IIT Madras vgtomahawk@gmail.com, ravi@cse.iitm.ac.in

More information

Learning Influence Diffusion Probabilities under the Independent Cascade with Independent Decay over Time. CPSC 534L Project Report

Learning Influence Diffusion Probabilities under the Independent Cascade with Independent Decay over Time. CPSC 534L Project Report University of British Columbia Department of Computer Science Learning Influence Diffusion Probabilities under the Independent Cascade ith Independent Decay over Time CPSC 534L Project Report Group Members:

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Lecture 2: The Simple Story of 2-SAT

Lecture 2: The Simple Story of 2-SAT 0510-7410: Topics in Algorithms - Random Satisfiability March 04, 2014 Lecture 2: The Simple Story of 2-SAT Lecturer: Benny Applebaum Scribe(s): Mor Baruch 1 Lecture Outline In this talk we will show that

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/27/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

Extending MCTS

Extending MCTS Extending MCTS 2-17-16 Reading Quiz (from Monday) What is the relationship between Monte Carlo tree search and upper confidence bound applied to trees? a) MCTS is a type of UCT b) UCT is a type of MCTS

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Opinion formation CS 224W. Cascades, Easley & Kleinberg Ch 19 1

Opinion formation CS 224W. Cascades, Easley & Kleinberg Ch 19 1 Opinion formation CS 224W Cascades, Easley & Kleinberg Ch 19 1 How Do We Model Diffusion? Decision based models (today!): Models of product adoption, decision making A node observes decisions of its neighbors

More information

Submodular Minimisation using Graph Cuts

Submodular Minimisation using Graph Cuts Submodular Minimisation using Graph Cuts Pankaj Pansari 18 April, 2016 1 Overview Graph construction to minimise special class of submodular functions For this special class, submodular minimisation translates

More information

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance Normal Form Games & Dominance Let s play the quarters game again We each have a quarter. Let s put them down on the desk at the same time. If they show the same side (HH or TT), you take my quarter. If

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Firefighting as a Game

Firefighting as a Game Firefighting as a Game Carme Àlvarez, Maria J. Blesa, Hendrik Molter ALBCOM Research Group - Computer Science Department Universitat Politècnica de Catalunya - BarcelonaTech 08034 Barcelona, Spain alvarez@cs.upc.edu,

More information

Markov Decision Processes II

Markov Decision Processes II Markov Decision Processes II Daisuke Oyama Topics in Economic Theory December 17, 2014 Review Finite state space S, finite action space A. The value of a policy σ A S : v σ = β t Q t σr σ, t=0 which satisfies

More information

Sublinear Time Algorithms Oct 19, Lecture 1

Sublinear Time Algorithms Oct 19, Lecture 1 0368.416701 Sublinear Time Algorithms Oct 19, 2009 Lecturer: Ronitt Rubinfeld Lecture 1 Scribe: Daniel Shahaf 1 Sublinear-time algorithms: motivation Twenty years ago, there was practically no investigation

More information

Efficient Estimation of Influence Functions for SIS Model on Social Networks

Efficient Estimation of Influence Functions for SIS Model on Social Networks Efficient Estimation of Influence Functions for SIS Model on Social Networks Masahiro Kimura Department of Electronics and Informatics Ryukoku University kimura@rins.ryukoku.ac.jp Kazumi Saito School of

More information

The Complexity of Simple and Optimal Deterministic Mechanisms for an Additive Buyer. Xi Chen, George Matikas, Dimitris Paparas, Mihalis Yannakakis

The Complexity of Simple and Optimal Deterministic Mechanisms for an Additive Buyer. Xi Chen, George Matikas, Dimitris Paparas, Mihalis Yannakakis The Complexity of Simple and Optimal Deterministic Mechanisms for an Additive Buyer Xi Chen, George Matikas, Dimitris Paparas, Mihalis Yannakakis Seller has n items for sale The Set-up Seller has n items

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

Assortment Optimization Over Time

Assortment Optimization Over Time Assortment Optimization Over Time James M. Davis Huseyin Topaloglu David P. Williamson Abstract In this note, we introduce the problem of assortment optimization over time. In this problem, we have a sequence

More information

CMSC 858F: Algorithmic Game Theory Fall 2010 Introduction to Algorithmic Game Theory

CMSC 858F: Algorithmic Game Theory Fall 2010 Introduction to Algorithmic Game Theory CMSC 858F: Algorithmic Game Theory Fall 2010 Introduction to Algorithmic Game Theory Instructor: Mohammad T. Hajiaghayi Scribe: Hyoungtae Cho October 13, 2010 1 Overview In this lecture, we introduce the

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

SMT and POR beat Counter Abstraction

SMT and POR beat Counter Abstraction SMT and POR beat Counter Abstraction Parameterized Model Checking of Threshold-Based Distributed Algorithms Igor Konnov Helmut Veith Josef Widder Alpine Verification Meeting May 4-6, 2015 Igor Konnov 2/64

More information

Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect

Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect x x in x in x in y z y in F F z in t F F z in t F F t 0 y out T y out T z out T Jean Cardinal, Erik Demaine, David

More information

COSC 311: ALGORITHMS HW4: NETWORK FLOW

COSC 311: ALGORITHMS HW4: NETWORK FLOW COSC 311: ALGORITHMS HW4: NETWORK FLOW Solutions 1 Warmup 1) Finding max flows and min cuts. Here is a graph (the numbers in boxes represent the amount of flow along an edge, and the unadorned numbers

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

Outline Introduction Game Representations Reductions Solution Concepts. Game Theory. Enrico Franchi. May 19, 2010

Outline Introduction Game Representations Reductions Solution Concepts. Game Theory. Enrico Franchi. May 19, 2010 May 19, 2010 1 Introduction Scope of Agent preferences Utility Functions 2 Game Representations Example: Game-1 Extended Form Strategic Form Equivalences 3 Reductions Best Response Domination 4 Solution

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: Monday, December 14, 2015. Examination

More information

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 13 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 017 by D.B. Rowe 1 Agenda: Recap Chapter 6.3 6.5 Lecture Chapter 7.1 7. Review Chapter 5 for Eam 3.

More information

Managerial Economics Uncertainty

Managerial Economics Uncertainty Managerial Economics Uncertainty Aalto University School of Science Department of Industrial Engineering and Management January 10 26, 2017 Dr. Arto Kovanen, Ph.D. Visiting Lecturer Uncertainty general

More information

Discussion of Financial Networks and Contagion Elliott, Golub, and Jackson (2013)

Discussion of Financial Networks and Contagion Elliott, Golub, and Jackson (2013) Discussion of Financial Networks and Contagion Elliott, Golub, and Jackson (2013) Alireza Tahbaz-Salehi Columbia Business School Macro Financial Modeling and Macroeconomic Fragility Conference October

More information

Multiagent Systems. Multiagent Systems General setting Division of Resources Task Allocation Resource Allocation. 13.

Multiagent Systems. Multiagent Systems General setting Division of Resources Task Allocation Resource Allocation. 13. Multiagent Systems July 16, 2014 13. Bargaining Multiagent Systems 13. Bargaining B. Nebel, C. Becker-Asano, S. Wölfl Albert-Ludwigs-Universität Freiburg July 16, 2014 13.1 General setting 13.2 13.3 13.4

More information

The Kelly Criterion. How To Manage Your Money When You Have an Edge

The Kelly Criterion. How To Manage Your Money When You Have an Edge The Kelly Criterion How To Manage Your Money When You Have an Edge The First Model You play a sequence of games If you win a game, you win W dollars for each dollar bet If you lose, you lose your bet For

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Universal Portfolios

Universal Portfolios CS28B/Stat24B (Spring 2008) Statistical Learning Theory Lecture: 27 Universal Portfolios Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals Portfolio optimization setting Suppose we have

More information

June 11, Dynamic Programming( Weighted Interval Scheduling)

June 11, Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) June 11, 2014 Problem Statement: 1 We have a resource and many people request to use the resource for periods of time (an interval of time) 2 Each interval

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Firefighting as a Game

Firefighting as a Game Firefighting as a Game Carme Àlvarez, Maria J. Blesa, Hendrik Molter ALBCOM Research Group - Computer Science Department Universitat Politècnica de Catalunya - BarcelonaTech 08034 Barcelona, Spain alvarez@cs.upc.edu,

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

A simulation study of two combinatorial auctions

A simulation study of two combinatorial auctions A simulation study of two combinatorial auctions David Nordström Department of Economics Lund University Supervisor: Tommy Andersson Co-supervisor: Albin Erlanson May 24, 2012 Abstract Combinatorial auctions

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

TDT4171 Artificial Intelligence Methods

TDT4171 Artificial Intelligence Methods TDT47 Artificial Intelligence Methods Lecture 7 Making Complex Decisions Norwegian University of Science and Technology Helge Langseth IT-VEST 0 helgel@idi.ntnu.no TDT47 Artificial Intelligence Methods

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Game theory and applications: Lecture 1

Game theory and applications: Lecture 1 Game theory and applications: Lecture 1 Adam Szeidl September 20, 2018 Outline for today 1 Some applications of game theory 2 Games in strategic form 3 Dominance 4 Nash equilibrium 1 / 8 1. Some applications

More information

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based Search Reinforcement Learning and Simulation-Based Search David Silver Outline 1 Reinforcement Learning 2 3 Planning Under Uncertainty Reinforcement Learning Markov Decision Process Definition A Markov Decision

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe

Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe Class 8 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 208 by D.B. Rowe Agenda: Recap Chapter 4.3-4.5 Lecture Chapter 5. - 5.3 2 Recap Chapter 4.3-4.5 3 4:

More information

Finding Equilibria in Games of No Chance

Finding Equilibria in Games of No Chance Finding Equilibria in Games of No Chance Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen Department of Computer Science, University of Aarhus, Denmark {arnsfelt,bromille,trold}@daimi.au.dk

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information

Notes on the EM Algorithm Michael Collins, September 24th 2005

Notes on the EM Algorithm Michael Collins, September 24th 2005 Notes on the EM Algorithm Michael Collins, September 24th 2005 1 Hidden Markov Models A hidden Markov model (N, Σ, Θ) consists of the following elements: N is a positive integer specifying the number of

More information

An Empirical Study of Optimization for Maximizing Diffusion in Networks

An Empirical Study of Optimization for Maximizing Diffusion in Networks An Empirical Study of Optimization for Maximizing Diffusion in Networks Kiyan Ahmadizadeh Bistra Dilkina, Carla P. Gomes, Ashish Sabharwal Cornell University Institute for Computational Sustainability

More information

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N Markov Decision Processes: Making Decision in the Presence of Uncertainty (some of) R&N 16.1-16.6 R&N 17.1-17.4 Different Aspects of Machine Learning Supervised learning Classification - concept learning

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

THE LYING ORACLE GAME WITH A BIASED COIN

THE LYING ORACLE GAME WITH A BIASED COIN Applied Probability Trust (13 July 2009 THE LYING ORACLE GAME WITH A BIASED COIN ROBB KOETHER, Hampden-Sydney College MARCUS PENDERGRASS, Hampden-Sydney College JOHN OSOINACH, Millsaps College Abstract

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

monotone circuit value

monotone circuit value monotone circuit value A monotone boolean circuit s output cannot change from true to false when one input changes from false to true. Monotone boolean circuits are hence less expressive than general circuits.

More information

The Stackelberg Minimum Spanning Tree Game

The Stackelberg Minimum Spanning Tree Game The Stackelberg Minimum Spanning Tree Game J. Cardinal, E. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, O. Weimann, The Stackelberg Minimum Spanning Tree Game, WADS 07 Stackelberg Game 2 players:

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Section Sampling Distributions for Counts and Proportions

Section Sampling Distributions for Counts and Proportions Section 5.1 - Sampling Distributions for Counts and Proportions Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Distributions When dealing with inference procedures, there are two different

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

MDPs and Value Iteration 2/20/17

MDPs and Value Iteration 2/20/17 MDPs and Value Iteration 2/20/17 Recall: State Space Search Problems A set of discrete states A distinguished start state A set of actions available to the agent in each state An action function that,

More information

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 6: Prior-Free Single-Parameter Mechanism Design (Continued)

CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 6: Prior-Free Single-Parameter Mechanism Design (Continued) CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 6: Prior-Free Single-Parameter Mechanism Design (Continued) Instructor: Shaddin Dughmi Administrivia Homework 1 due today. Homework 2 out

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Chapter 10: Mixed strategies Nash equilibria, reaction curves and the equality of payoffs theorem

Chapter 10: Mixed strategies Nash equilibria, reaction curves and the equality of payoffs theorem Chapter 10: Mixed strategies Nash equilibria reaction curves and the equality of payoffs theorem Nash equilibrium: The concept of Nash equilibrium can be extended in a natural manner to the mixed strategies

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS November 17, 2016. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question.

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

SOLVENCY AND CAPITAL ALLOCATION

SOLVENCY AND CAPITAL ALLOCATION SOLVENCY AND CAPITAL ALLOCATION HARRY PANJER University of Waterloo JIA JING Tianjin University of Economics and Finance Abstract This paper discusses a new criterion for allocation of required capital.

More information

Algorithms for random k-sat and k-colourings of a random graph

Algorithms for random k-sat and k-colourings of a random graph Algorithms for random k-sat and k-colourings of a random graph Dept of Computer Science University of Toronto Hard and Easy Distributions of SAT Problems. Mitchell, Selman, Levesque 1992 3-SAT: (x 1 x

More information

Another Variant of 3sat. 3sat. 3sat Is NP-Complete. The Proof (concluded)

Another Variant of 3sat. 3sat. 3sat Is NP-Complete. The Proof (concluded) 3sat k-sat, where k Z +, is the special case of sat. The formula is in CNF and all clauses have exactly k literals (repetition of literals is allowed). For example, (x 1 x 2 x 3 ) (x 1 x 1 x 2 ) (x 1 x

More information

Economics 703: Microeconomics II Modelling Strategic Behavior

Economics 703: Microeconomics II Modelling Strategic Behavior Economics 703: Microeconomics II Modelling Strategic Behavior Solutions George J. Mailath Department of Economics University of Pennsylvania June 9, 07 These solutions have been written over the years

More information

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +...

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +... No-Arbitrage Pricing Theory Single-Period odel There are N securities denoted ( S,S,...,S N ), they can be stocks, bonds, or any securities, we assume they are all traded, and have prices available. Ω

More information

3 Arbitrage pricing theory in discrete time.

3 Arbitrage pricing theory in discrete time. 3 Arbitrage pricing theory in discrete time. Orientation. In the examples studied in Chapter 1, we worked with a single period model and Gaussian returns; in this Chapter, we shall drop these assumptions

More information

Asset-Liability Management

Asset-Liability Management Asset-Liability Management John Birge University of Chicago Booth School of Business JRBirge INFORMS San Francisco, Nov. 2014 1 Overview Portfolio optimization involves: Modeling Optimization Estimation

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

Chapter 9. Idea of Probability. Randomness and Probability. Basic Practice of Statistics - 3rd Edition. Chapter 9 1. Introducing Probability

Chapter 9. Idea of Probability. Randomness and Probability. Basic Practice of Statistics - 3rd Edition. Chapter 9 1. Introducing Probability Chapter 9 Introducing Probability BPS - 3rd Ed. Chapter 9 1 Idea of Probability Probability is the science of chance behavior Chance behavior is unpredictable in the short run but has a regular and predictable

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes

variance risk Alice & Bob are gambling (again). X = Alice s gain per flip: E[X] = Time passes... Alice (yawning) says let s raise the stakes Alice & Bob are gambling (again). X = Alice s gain per flip: risk E[X] = 0... Time passes... Alice (yawning) says let s raise the stakes E[Y] = 0, as before. Are you (Bob) equally happy to play the new

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

56:171 Operations Research Midterm Exam Solutions Fall 1994

56:171 Operations Research Midterm Exam Solutions Fall 1994 56:171 Operations Research Midterm Exam Solutions Fall 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3. Simplex

More information

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class Homework #4 CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for

FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION. We consider two aspects of gambling with the Kelly criterion. First, we show that for FURTHER ASPECTS OF GAMBLING WITH THE KELLY CRITERION RAVI PHATARFOD *, Monash University Abstract We consider two aspects of gambling with the Kelly criterion. First, we show that for a wide range of final

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Coordination Games on Graphs

Coordination Games on Graphs CWI and University of Amsterdam Based on joint work with Mona Rahn, Guido Schäfer and Sunil Simon : Definition Assume a finite graph. Each node has a set of colours available to it. Suppose that each node

More information

Recall: Data Flow Analysis. Data Flow Analysis Recall: Data Flow Equations. Forward Data Flow, Again

Recall: Data Flow Analysis. Data Flow Analysis Recall: Data Flow Equations. Forward Data Flow, Again Data Flow Analysis 15-745 3/24/09 Recall: Data Flow Analysis A framework for proving facts about program Reasons about lots of little facts Little or no interaction between facts Works best on properties

More information

(Practice Version) Midterm Exam 1

(Practice Version) Midterm Exam 1 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 19, 2014 (Practice Version) Midterm Exam 1 Last name First name SID Rules. DO NOT open

More information

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is Geometric distribution The geometric distribution function is x f ( x) p(1 p) 1 x {1,2,3,...}, 0 p 1 It is the pdf of the random variable X, which equals the smallest positive integer x such that in a

More information