Dependence Modeling and Credit Risk

Size: px
Start display at page:

Download "Dependence Modeling and Credit Risk"

Transcription

1 Dependence Modeling and Credit Risk Paola Mosconi Banca IMI Bocconi University, 20/04/2015 Paola Mosconi Lecture 6 1 / 53

2 Disclaimer The opinion expressed here are solely those of the author and do not represent in any way those of her employers Paola Mosconi Lecture 6 2 / 53

3 Main References Vasicek Model Vasicek, O. (2002) The Distribution of Loan Portfolio Value, Risk, December Granularity Adjustment Pykhtin, M. and Dev, A. (2002) Credit risk in asset securitisations: an analytical model, Risk, May Multi-Factor Merton Model Pykhtin, M. (2004), Multi-Factor Adjustment, Risk, March Paola Mosconi Lecture 6 3 / 53

4 Outline 1 Introduction Credit Risk Portfolio Models 2 Vasicek Portfolio Loss Model Introduction Limiting Loss Distribution Properties of the Loss Distribution 3 Granularity Adjustment 4 Selected References Paola Mosconi Lecture 6 4 / 53

5 Introduction Outline 1 Introduction Credit Risk Portfolio Models 2 Vasicek Portfolio Loss Model Introduction Limiting Loss Distribution Properties of the Loss Distribution 3 Granularity Adjustment 4 Selected References Paola Mosconi Lecture 6 5 / 53

6 Introduction Credit Risk Credit Risk Credit risk is the risk due to uncertainty in a counterparty s ability to meet its financial obligations (default or downgrade of the obligor). Measurement of credit risk is based on three fundamental parameters: Probability of Default (PD) What is the likelihood that the counterparty will default on its obligation either over the life of the obligation or over some specified horizon, such as a year? Loss Given Default (LGD = 1 Rec): In the event of a default, what fraction of the exposure may be recovered through bankruptcy proceedings or some other form of settlement? Exposure at Default (EAD) In the event of a default, how large will the outstanding obligation be when the default occurs? Paola Mosconi Lecture 6 6 / 53

7 Introduction Credit Risk Sources of Risk Default risk Migration risk Spread risk Riskofchangesinthecreditspreadsoftheborrower,forexampleduetomarket conditions (should not result in a change in the credit rating) Recovery risk Risk that the actual recovery rate is lower than previously estimated Sovereign risk Risk that the counterparty will not pay due to events of political or legislative nature Paola Mosconi Lecture 6 7 / 53

8 Introduction Credit Risk Expected Loss (EL) The Expected Loss is the average loss in value over a specified time horizon. For a single exposure: EL = PD LGD EAD The Expected Loss of a portfolio, being an additive measure, is given by the sum of individual losses. Figure: Portfolio Expected Loss Paola Mosconi Lecture 6 8 / 53

9 Introduction Credit Risk Unexpected Loss (UL) The Unexpected Loss represents the variability of the loss distribution around its mean value EL. Portfolio diversification: does not impact the EL: EL portfolio = sum of expected losses of the individual positions but typically reduces the UL: UL portfolio < sum of UL of the individual positions. The Unexpected Loss is used to define the Economic Capital. Paola Mosconi Lecture 6 9 / 53

10 Introduction Credit Risk Quantile Function Given a random variable X with continuous and strictly monotonic probability density function f(x), a quantile function Q p assigns to each probability p attained by f the value x for which P(X x) = p. The quantile function Q p = inf {x : P(X x) p} x R returns the minimum value of x from amongst all those values whose cumulative distribution function (cdf) value exceeds p. If the probability distribution is discrete rather than continuous then there may be gaps between values in the domain of its cdf if the cdf is only weakly monotonic there may be flat spots in its range Paola Mosconi Lecture 6 10 / 53

11 Introduction Credit Risk Inverse Distribution Function Given a random variable X with continuous and strictly monotonic probability density function f(x), if the cumulative distribution function F = P(X x) is strictly increasing and continuous then, F 1 (y) with y [0,1] is the unique real number x such that F(x) = y. In such a case, this defines the inverse distribution function or quantile function. However, the distribution does not, in general, have an inverse. One may define, for y [0, 1], the generalized inverse distribution function: F 1 (y) = inf{x R F(x) y} This coincides with the quantile function. Example 1: The median is F 1 (0.5). Example 2: Put τ = F 1 (0.95). τ is the 95% percentile Paola Mosconi Lecture 6 11 / 53

12 Introduction Credit Risk VaR and Expected Shortfall (ES) I Value at Risk The Value at Risk of the portfolio loss L at confidence level q is given by the following quantile function: VaR q = inf {l : P(L > l) 1 q} l R = inf {l : P(L l) q} l R Expected Shortfall The Expected Shortfall of the portfolio loss L at confidence level q is given by: ES q(l) = E[L L VaR q(l)] Typically, for credit risk, the confidence level is q = 99.9% and the time horizon is T = 1y. Paola Mosconi Lecture 6 12 / 53

13 Introduction Credit Risk VaR and Expected Shortfall (ES) II VaR: the best of worst (1 q)% losses ES: the average of worst (1 q)% losses Figure: VaR vs ES Paola Mosconi Lecture 6 13 / 53

14 Introduction Credit Risk Economic Capital (EC) Banks are expected to hold reserves against expected credit losses which are considered a cost of doing business. The Economic Capital is given by the Unexpected Loss, defined as: EC = VaR q EL The EC is not an additive measure: at portfolio level, the joint probability distribution of losses must be considered (correlation is crucial). Figure: Economic Capital Paola Mosconi Lecture 6 14 / 53

15 Introduction Credit Risk Diversification of Credit Risk Risk diversification in a credit portfolio is determined by two factors: granularity of the portfolio: i.e. the number of exposures inside the portfolio and the size of single exposures (idiosyncratic or specific risk) systematic (sector) risk, which is described by the correlation structure of obligors inside the portfolio Figure: Risk diversification vs portfolio concentration Paola Mosconi Lecture 6 15 / 53

16 Introduction Portfolio Models Portfolio Models The risk in a portfolio depends not only on the risk in each element of the portfolio, but also on the dependence between these sources of risk. Mostoftheportfoliomodelsofcreditriskusedinthebankingindustryarebasedon the conditional independence framework. In these models, defaults of individual borrowers depend on a set of common systematic risk factors describing the state of the economy. Merton-type models, such as PortfolioManager and CreditMetrics, have become very popular. However, implementation of these models requires time-consuming Monte Carlo simulations, which significantly limits their attractiveness. Paola Mosconi Lecture 6 16 / 53

17 Introduction Portfolio Models Asymptotic Single Risk Factor (ASRF) Model Among the one-factor Merton-type models, the so called Asymptotic Single Risk Factor (ASRF) model has played a central role, also for its regulatory applications in the Basel Capital Accord Framework. ASRF (Vasicek, 1991) The model allows to derive analytical expressions for VaR and ES, by relying on a limiting portfolio loss distribution, based on the following assumptions: 1 default-mode (Merton-type) model 2 a unique systematic risk factor (single factor model) 3 an infinitely granular portfolio i.e. characterized by a large number of small size loans 4 dependence structure among different obligors described by the gaussian copula Paola Mosconi Lecture 6 17 / 53

18 Introduction Portfolio Models ASRF Extensions Violations of the hypothesis underlying the ASRF model give rise to corrections which are explicitly taken into account by the BCBS (2006) under the generic name of concentration risk. They can be classified in the following way: 1 Name concentration: imperfect diversification of idiosyncratic risk, i.e. imperfect granularity in the exposures 2 Sector concentration: imperfect diversification across systematic components of risk 3 Contagion: exposures to independent obligors that exhibit default dependencies, which exceed what one should expect on the basis of their sector affiliations Paola Mosconi Lecture 6 18 / 53

19 Introduction Portfolio Models Summary In the following, we will introduce: 1 the original work by Vasicek on the ASRF model 2 hints to the granularity adjustment, via single factor models 3 multi-factor extension of the ASRF, which naturally takes into account both name concentration and sector concentration Paola Mosconi Lecture 6 19 / 53

20 Outline 1 Introduction Credit Risk Portfolio Models 2 Vasicek Portfolio Loss Model Introduction Limiting Loss Distribution Properties of the Loss Distribution 3 Granularity Adjustment 4 Selected References Paola Mosconi Lecture 6 20 / 53

21 Introduction Loan Portfolio Value Using a conditional independence framework, Vasicek (1987, 1991 and 2002) derives a useful limiting form for the portfolio loss distribution with a single systematic factor. The probability distribution of portfolio losses has a number of important applications: determining the capital needed to support a loan portfolio regulatory reporting measuring portfolio risk calculation of value-at-risk portfolio optimization structuring and pricing debt portfolio derivatives such as collateralized debt obligations (CDOs) Paola Mosconi Lecture 6 21 / 53

22 Introduction Capital Requirement The amount of capital needed to support a portfolio of debt securities depends on the probability distribution of the portfolio loss. Consider a portfolio of loans, each of which is subject to default resulting in a loss to the lender. Suppose the portfolio is financed partly by equity capital and partly by borrowed funds. The credit quality of the lender s notes will depend on the probability that the loss on the portfolio exceeds the equity capital. To achieve a certain credit rating of its notes (say Aa on a rating agency scale), the lender needs to keep the probability of default on the notes at the level corresponding to that rating (about for the Aa quality). It means that the equity capital allocated to the portfolio must be equal to the percentile of the distribution of the portfolio loss that corresponds to the desired probability. Paola Mosconi Lecture 6 22 / 53

23 Limiting Loss Distribution Limiting Loss Distribution 1 Default Specification 2 Homogeneous Portfolio Assumption 3 Single Factor Approach 4 Conditional Probability of Default 5 Vasicek Result (1991) 6 Inhomogeneous Portfolio Paola Mosconi Lecture 6 23 / 53

24 Limiting Loss Distribution Default Specification I Following Merton s approach (1974), Vasicek assumes that a loan defaults if the value of the borrower s assets at the loan maturity T falls below the contractual value B of its obligations payable. Asset value process Let A i be the value of the i-th borrower s assets, described by the process: da i = µ i A i dt +σ i A i dx i The asset value at T can be obtained by integration: loga i (T) = loga i +µ i T 1 2 σ2 i T +σ i T Xi (1) where X i N(0,1) is a standard normal variable. Paola Mosconi Lecture 6 24 / 53

25 Limiting Loss Distribution Default Specification II Probability of default The probability of default of the i-th loan is given by: p i = P[A i (T) < B i ] = P[X i < ζ i ] = N(ζ i ) where N(.) is the cumulative normal distribution function and represents the default threshold. ζ i = logb i loga i µ i T σ2 i T σ i T Paola Mosconi Lecture 6 25 / 53

26 Limiting Loss Distribution Homogeneous Portfolio Assumption I Consider a portfolio consisting of n loans characterized by: equal dollar amount equal probability of default p flat correlation coefficient ρ between the asset values of any two companies the same term T Portfolio Percentage Gross Loss Let L i be the gross loss (before recoveries) on the i-th loan, so that L i = 1 if the i-th borrower defaults and L i = 0 otherwise. Let L be the portfolio percentage gross loss: L = 1 n L i n i=1 Paola Mosconi Lecture 6 26 / 53

27 Limiting Loss Distribution Homogeneous Portfolio Assumption II If the events of default on the loans in the portfolio were independent of each other, the portfolio loss distribution would converge, by the central limit theorem, to a normal distribution as the portfolio size increases. Because the defaults are not independent, the conditions of the central limit theorem are not satisfied and L is not asymptotically normal. Goal However, the distribution of the portfolio loss does converge to a limiting form. In the following, we will derive its expression. Paola Mosconi Lecture 6 27 / 53

28 Limiting Loss Distribution Single Factor Approach The variables {X i} i=1,...,n in eq. (1) are jointly standard normal with equal pair-wise correlations ρ, and can be expressed as: X i = ρy + 1 ρξ i where Y and ξ 1,ξ 2,...,ξ n are mutually independent standard normal variables. The variable Y can be interpreted as a portfolio common (systematic) factor, such as an economic index, over the interval (0,T). Then: the term ρy is the company s exposure to the common factor the term 1 ρξ i represents the company s specific risk Paola Mosconi Lecture 6 28 / 53

29 Limiting Loss Distribution Conditional Probability of Default The probability of the portfolio loss is given by the expectation, over the common factor Y, of the conditional probability given Y. This is equivalent to: assuming various scenarios for the economy determining the probability of a given portfolio loss under each scenario weighting each scenario by its likelihood Conditional Probability of Default When the common factor is fixed, the conditional probability of loss on any one loan is: [ N 1 (p) ] ρy p(y) = P(L i = 1 Y) = P(X i < ζ i Y) = N 1 ρ The quantity p(y) provides the loan default probability under the given scenario. The unconditional default probability p is the average of the conditional probabilities over the scenarios. Paola Mosconi Lecture 6 29 / 53

30 Limiting Loss Distribution Vasicek Result (1991) I Conditional on the value of Y, the variables L i are independent equally distributed variables with a finite variance. Conditional Portfolio Loss The portfolio loss conditional on Y converges, by the law of large numbers, to its expectation p(y) as n : L(Y) p(y) for n Paola Mosconi Lecture 6 30 / 53

31 Limiting Loss Distribution Vasicek Result (1991) II We derive the expression of the limiting portfolio loss distribution following Vasicek s derivation (1991). Since p(y) is a strictly decreasing function of Y i.e. it follows that: p(y) x Y p 1 (x) P(L x) = P(p(Y) x) = P(Y p 1 (x)) = 1 P(Y p 1 (x)) = 1 N(p 1 (x)) = N( p 1 (x)) where N( x) = 1 N(x) = x f(y)dy and on substitution, the the cumulative distribution function of loan losses on a very large portfolio is in the limit: [ ] 1 ρn 1 (x) N 1 (p) P(L x) = N ρ Paola Mosconi Lecture 6 31 / 53

32 Limiting Loss Distribution Vasicek Result (1991) III The portfolio loss distribution is highly skewed and leptokurtic. Figure: Source: Vasicek Risk (2002) Paola Mosconi Lecture 6 32 / 53

33 Limiting Loss Distribution Inhomogeneous Portfolio The convergence of the portfolio loss distribution to the limiting form above actually holds even for portfolios with unequal weights. Let the portfolio weights be w 1,w 2,...,w n with wi = 1. The portfolio loss: n L = w i L i i=1 conditional on Y converges to its expectation p(y) whenever (and this is a necessary and sufficient condition): n wi 2 0 i=1 In other words, if the portfolio contains a sufficiently large number of loans without it being dominated by a few loans much larger than the rest, the limiting distribution provides a good approximation for the portfolio loss. Paola Mosconi Lecture 6 33 / 53

34 Properties of the Loss Distribution Properties of the Loss Distribution 1 Cumulative distribution function 2 Probability density function 3 Limits 4 Moments 5 Inverse distribution function (or quantile function) 6 Comparison with Monte Carlo Simulation 7 Economic Capital 8 Regulatory Capital Paola Mosconi Lecture 6 34 / 53

35 Properties of the Loss Distribution Cumulative Distribution Function The portfolio loss is described by two-parameter distribution with the parameters 0 < p, ρ < 1. The cumulative distribution function is continuous and concentrated on the interval 0 x 1: [ 1 ρn 1 (x) N 1 ] (p) F(x;p,ρ) := N ρ The distribution possesses the following symmetry property: F(x;p,ρ) = 1 F(1 x;1 p,ρ) Paola Mosconi Lecture 6 35 / 53

36 Properties of the Loss Distribution Probability Density Function I The probability density function of the portfolio loss is given by: { 1 ρ f(x;p,ρ) = exp 1 [ ] 2 1 ρn 1 (x) N 1 1 [ (p) + N 1 (x) ] } 2 ρ 2ρ 2 which is: unimodal with the mode at L mode = N [ ] 1 ρ 1 2ρ N 1 (p) when ρ < 1 2 monotone when ρ = 1 2 U-shaped when ρ > 1 2 Paola Mosconi Lecture 6 36 / 53

37 Properties of the Loss Distribution Probability Density Function II Figure: Probability density function for ρ = 0.2 (left), ρ = 0.5 (center) and ρ = 0.8 (right) and p = 0.3. Paola Mosconi Lecture 6 37 / 53

38 Properties of the Loss Distribution Limit ρ 0 When ρ 0, the loss distribution function converges to a one-point distribution concentrated at L = p. Figure: Probability density function (left) and cumulative distribution function (right) for p = 0.3 Paola Mosconi Lecture 6 38 / 53

39 Properties of the Loss Distribution Limit ρ 1 When ρ 1, the loss distribution function converges to a zero-one distribution with probabilities 1 p and p, respectively. Figure: Probability density function (left) and cumulative distribution function (right) for p = 0.3 Paola Mosconi Lecture 6 39 / 53

40 Properties of the Loss Distribution Limit p 0 When p 0 the distribution becomes concentrated at L = 0. Figure: Probability density function (left) and cumulative distribution function (right) for ρ = 0.3 Paola Mosconi Lecture 6 40 / 53

41 Properties of the Loss Distribution Limit p 1 When p 1, the distribution becomes concentrated at L = 1. Figure: Probability density function (left) and cumulative distribution function (right) for ρ = 0.3 Paola Mosconi Lecture 6 41 / 53

42 Properties of the Loss Distribution Moments The mean of the distribution is E(L) = p The variance is: s 2 = var(l) = E { [L E(L)] 2} = E(L 2 ) [E(L)] 2 = N 2 (N 1 (p),n 1 (p),ρ) p 2 where N 2 is the bivariate cumulative normal distribution function. Paola Mosconi Lecture 6 42 / 53

43 Properties of the Loss Distribution Inverse Distribution Function/Percentile Function I The inverse of the distribution, i.e. the α-percentile value of L is given by: L α = F(α;1 p;1 ρ) Figure: Source: Vasicek Risk (2002) The table lists the values of the α-percentile L α expressed as the number of standard deviations from the mean, for several values of the parameters. The α-percentiles of the standard normal distribution are shown for comparison. Paola Mosconi Lecture 6 43 / 53

44 Properties of the Loss Distribution Inverse Distribution Function/Percentile Function II These values manifest the extreme non-normality of the loss distribution. Example Suppose a lender holds a large portfolio of loans to firms whose pairwise asset correlation is ρ = 0.4 and whose probability of default is p = The portfolio expected loss is E(L) = 0.01 and the standard deviation is s = If the lender wishes to hold the probability of default on his notes at 1 α = 0.001, he will need enough capital to cover 11.0 times the portfolio standard deviation. If the loss distribution were normal, 3.1 times the standard deviation would suffice. Paola Mosconi Lecture 6 44 / 53

45 Properties of the Loss Distribution Simulation I Computer simulations show that the Vasicek distribution appears to provide a reasonably good fit to the tail of the loss distribution for more general portfolios. We compare the results of Monte Carlo simulations of an actual bank portfolio. The portfolio consisted of: 479 loans in amounts ranging from % to 8.7%, with δ = n i=1 w2 i = the maturities ranged from six months to six years the default probabilities from to the loss-given default averaged 0.54 the asset returns were generated with 14 common factors. Paola Mosconi Lecture 6 45 / 53

46 Properties of the Loss Distribution Simulation II The plot shows the simulated cumulative distribution function of the loss in one year (dots) and the fitted limiting distribution function (solid line). Figure: Source: Vasicek Risk (2002) Paola Mosconi Lecture 6 46 / 53

47 Properties of the Loss Distribution Economic Capital The asymptotic capital formula is given by: EC = VaR q (L) EL = F(q;1 p;1 ρ) p [ ρn 1 (q) N 1 (1 p) = N ] p 1 ρ [ ρn 1 (q)+n 1 (p) = N ] p 1 ρ where N 1 (1 x) = N 1 (x). The formula has been obtained under the assumption that all the idiosyncratic risk is completely diversified away. Paola Mosconi Lecture 6 47 / 53

48 Properties of the Loss Distribution Regulatory Capital Under the Basel 2 IRB Approach, at portfolio level, the credit capital charge K is given by: n K = 8% RW i EAD i where, the individual risk weight RW i is: [ [ N 1 (p ] ] i) ρ i N 1 (0.1%) RW i = 1.06 LGD i N p i MF(M i,p i) 1 ρi i=1 where: MF is a maturity factor adjustment, depending on the effective maturity M i of loan i p i is individual probabilities of default of loan i q = 99.9% ρ i is a regulatory factor loading which depends on p i and the type of the loan (corporate, SMEs, residential mortgage etc...) Paola Mosconi Lecture 6 48 / 53

49 Granularity Adjustment Outline 1 Introduction Credit Risk Portfolio Models 2 Vasicek Portfolio Loss Model Introduction Limiting Loss Distribution Properties of the Loss Distribution 3 Granularity Adjustment 4 Selected References Paola Mosconi Lecture 6 49 / 53

50 Granularity Adjustment Granularity Adjustment The asymptotic capital formula implied by the Vasicek distribution (1991): [ ρn 1 (q)+n 1 (p) EC = N ] p 1 ρ is strictly valid only for a portfolio such that the weight of its largest exposure is infinitesimally small. All real-world portfolios violate this assumption and, therefore, one might question the relevance of the asymptotic formula. Indeed, since any finite-size portfolio carries some undiversified idiosyncratic risk, the asymptotic formula must underestimate the true capital. The difference between the true capital and the asymptotic capital is known as granularity adjustment. Paola Mosconi Lecture 6 50 / 53

51 Granularity Adjustment Granularity Adjustment in Literature Various extensions for non-homogeneous portfolios have been proposed in literature. The granularity adjustment technique was introduced by Gordy (2003) Wilde (2001) and Martin and Wilde (2002) have derived a general closed-form expression for the granularity adjustment for portfolio VaR More specific expressions for a one-factor default-mode Merton-type model have been derived by Pykhtin and Dev (2002) Emmer and Tasche (2003) have developed an analytical formulation for calculating VaR contributions from individual exposures Gordy (2004) has derived a granularity adjustment for ES Paola Mosconi Lecture 6 51 / 53

52 Selected References Outline 1 Introduction Credit Risk Portfolio Models 2 Vasicek Portfolio Loss Model Introduction Limiting Loss Distribution Properties of the Loss Distribution 3 Granularity Adjustment 4 Selected References Paola Mosconi Lecture 6 52 / 53

53 Selected References Selected References I BSCS (2006). Studies on credit risk concentration, Working Paper No. 15 Emmer, S. and Tasche, D. (2003). Calculating credit risk capital charges with the one-factor model, Working paper Gordy, M. (2003). A risk-factor model foundation for ratings-based bank capital rules, Journal of Financial Intermediation, 12, July, pages Gordy, M. (2004). Granularity In New Risk Measures for Investment and Regulation, edited by G. Szegö, Wiley Martin, R. and Wilde, T. (2002). Unsystematic credit risk, Risk, November Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates. J. of Finance 29, Vasicek, O. (1987). Probability of loss on a loan portfolio. Working Paper, KMV Corporation Vasicek, O. (1991). Limiting loan loss probability distribution, KMV Corporation Wilde, T. (2001) Probing granularity, Risk, August Paola Mosconi Lecture 6 53 / 53

Dependence Modeling and Credit Risk

Dependence Modeling and Credit Risk Dependence Modeling and Credit Risk Paola Mosconi Banca IMI Bocconi University, 20/04/2015 and 27/04/2015 Paola Mosconi Lecture 6 1 / 112 Disclaimer The opinion expressed here are solely those of the author

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrich Alfons Vasicek he amount of capital necessary to support a portfolio of debt securities depends on the probability distribution of the portfolio loss. Consider

More information

Analytical Pricing of CDOs in a Multi-factor Setting. Setting by a Moment Matching Approach

Analytical Pricing of CDOs in a Multi-factor Setting. Setting by a Moment Matching Approach Analytical Pricing of CDOs in a Multi-factor Setting by a Moment Matching Approach Antonio Castagna 1 Fabio Mercurio 2 Paola Mosconi 3 1 Iason Ltd. 2 Bloomberg LP. 3 Banca IMI CONSOB-Università Bocconi,

More information

Credit VaR: Pillar II Adjustments

Credit VaR: Pillar II Adjustments Credit VaR: Adjustments www.iasonltd.com 2009 Indice 1 The Model Underlying Credit VaR, Extensions of Credit VaR, 2 Indice The Model Underlying Credit VaR, Extensions of Credit VaR, 1 The Model Underlying

More information

Economi Capital. Tiziano Bellini. Università di Bologna. November 29, 2013

Economi Capital. Tiziano Bellini. Università di Bologna. November 29, 2013 Economi Capital Tiziano Bellini Università di Bologna November 29, 2013 Tiziano Bellini (Università di Bologna) Economi Capital November 29, 2013 1 / 16 Outline Framework Economic Capital Structural approach

More information

Basel II Second Pillar: an Analytical VaR with Contagion and Sectorial Risks

Basel II Second Pillar: an Analytical VaR with Contagion and Sectorial Risks Basel II Second Pillar: an Analytical VaR with Contagion and Sectorial Risks Michele Bonollo Paola Mosconi Fabio Mercurio January 29, 2009 Abstract This paper deals with the effects of concentration (single

More information

Efficient Concentration Risk Measurement in Credit Portfolios with Haar Wavelets

Efficient Concentration Risk Measurement in Credit Portfolios with Haar Wavelets Efficient Concentration Risk Measurement in Credit Portfolios with Haar Wavelets Josep J. Masdemont 1 and Luis Ortiz-Gracia 2 1 Universitat Politècnica de Catalunya 2 Centre de Recerca Matemàtica & Centrum

More information

2 Modeling Credit Risk

2 Modeling Credit Risk 2 Modeling Credit Risk In this chapter we present some simple approaches to measure credit risk. We start in Section 2.1 with a short overview of the standardized approach of the Basel framework for banking

More information

Credit risk of a loan portfolio (Credit Value at Risk)

Credit risk of a loan portfolio (Credit Value at Risk) Credit risk of a loan portfolio (Credit Value at Risk) Esa Jokivuolle Bank of Finland erivatives and Risk Management 208 Background Credit risk is typically the biggest risk of banks Major banking crises

More information

GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS

GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS Patrick GAGLIARDINI and Christian GOURIÉROUX INTRODUCTION Risk measures such as Value-at-Risk (VaR) Expected

More information

Concentration Risk. Where we are. Miguel A Iglesias Global Association of Risk Professionals. September 2014

Concentration Risk. Where we are. Miguel A Iglesias Global Association of Risk Professionals. September 2014 Concentration Risk Where we are Miguel A Iglesias Global Association of Risk Professionals September 2014 The views expressed in the following material are the author s and do not necessarily represent

More information

Concentration Risk in Credit Portfolios

Concentration Risk in Credit Portfolios Eva Liitkebohmert Concentration Risk in Credit Portfolios With 17 Figures and 19 Tables 4y Springer Contents Part I Introduction to Credit Risk Modeling 1 Risk Measurement 3 1.1 Variables of Risk 4 1.2

More information

P2.T6. Credit Risk Measurement & Management. Malz, Financial Risk Management: Models, History & Institutions

P2.T6. Credit Risk Measurement & Management. Malz, Financial Risk Management: Models, History & Institutions P2.T6. Credit Risk Measurement & Management Malz, Financial Risk Management: Models, History & Institutions Portfolio Credit Risk Bionic Turtle FRM Video Tutorials By David Harper, CFA FRM 1 Portfolio

More information

Lecture notes on risk management, public policy, and the financial system. Credit portfolios. Allan M. Malz. Columbia University

Lecture notes on risk management, public policy, and the financial system. Credit portfolios. Allan M. Malz. Columbia University Lecture notes on risk management, public policy, and the financial system Allan M. Malz Columbia University 2018 Allan M. Malz Last updated: June 8, 2018 2 / 23 Outline Overview of credit portfolio risk

More information

such that P[L i where Y and the Z i ~ B(1, p), Negative binomial distribution 0.01 p = 0.3%, ρ = 10%

such that P[L i where Y and the Z i ~ B(1, p), Negative binomial distribution 0.01 p = 0.3%, ρ = 10% Irreconcilable differences As Basel has acknowledged, the leading credit portfolio models are equivalent in the case of a single systematic factor. With multiple factors, considerable differences emerge,

More information

ECONOMIC AND REGULATORY CAPITAL

ECONOMIC AND REGULATORY CAPITAL ECONOMIC AND REGULATORY CAPITAL Bank Indonesia Bali 21 September 2006 Presented by David Lawrence OpRisk Advisory Company Profile Copyright 2004-6, OpRisk Advisory. All rights reserved. 2 DISCLAIMER All

More information

Lecture notes on risk management, public policy, and the financial system Credit risk models

Lecture notes on risk management, public policy, and the financial system Credit risk models Lecture notes on risk management, public policy, and the financial system Allan M. Malz Columbia University 2018 Allan M. Malz Last updated: June 8, 2018 2 / 24 Outline 3/24 Credit risk metrics and models

More information

Firm Heterogeneity and Credit Risk Diversification

Firm Heterogeneity and Credit Risk Diversification Firm Heterogeneity and Credit Risk Diversification Samuel G. Hanson* M. Hashem Pesaran Harvard Business School University of Cambridge and USC Til Schuermann* Federal Reserve Bank of New York and Wharton

More information

A simple model to account for diversification in credit risk. Application to a bank s portfolio model.

A simple model to account for diversification in credit risk. Application to a bank s portfolio model. A simple model to account for diversification in credit ris. Application to a ban s portfolio model. Juan Antonio de Juan Herrero Metodologías de Riesgo Corporativo. BBVA VI Jornada de Riesgos Financieros

More information

Validation Mythology of Maturity Adjustment Formula for Basel II Capital Requirement

Validation Mythology of Maturity Adjustment Formula for Basel II Capital Requirement Validation Mythology of Maturity Adjustment Formula for Basel II Capital Requirement Working paper Version 9..9 JRMV 8 8 6 DP.R Authors: Dmitry Petrov Lomonosov Moscow State University (Moscow, Russia)

More information

Estimating LGD Correlation

Estimating LGD Correlation Estimating LGD Correlation Jiří Witzany University of Economics, Prague Abstract: The paper proposes a new method to estimate correlation of account level Basle II Loss Given Default (LGD). The correlation

More information

Abstract. Key words: Maturity adjustment, Capital Requirement, Basel II, Probability of default, PD time structure.

Abstract. Key words: Maturity adjustment, Capital Requirement, Basel II, Probability of default, PD time structure. Direct Calibration of Maturity Adjustment Formulae from Average Cumulative Issuer-Weighted Corporate Default Rates, Compared with Basel II Recommendations. Authors: Dmitry Petrov Postgraduate Student,

More information

Portfolio Models and ABS

Portfolio Models and ABS Tutorial 4 Portfolio Models and ABS Loïc BRI François CREI Tutorial 4 Portfolio Models and ABS École ationale des Ponts et Chausées Département Ingénieurie Mathématique et Informatique Master II Loïc BRI

More information

Research Paper. Capital for Structured Products. Date:2004 Reference Number:4/2

Research Paper. Capital for Structured Products. Date:2004 Reference Number:4/2 Research Paper Capital for Structured Products Date:2004 Reference Number:4/2 Capital for Structured Products Vladislav Peretyatkin Birkbeck College William Perraudin Bank of England First version: November

More information

Credit Risk Modelling: A Primer. By: A V Vedpuriswar

Credit Risk Modelling: A Primer. By: A V Vedpuriswar Credit Risk Modelling: A Primer By: A V Vedpuriswar September 8, 2017 Market Risk vs Credit Risk Modelling Compared to market risk modeling, credit risk modeling is relatively new. Credit risk is more

More information

Maturity as a factor for credit risk capital

Maturity as a factor for credit risk capital Maturity as a factor for credit risk capital Michael Kalkbrener Λ, Ludger Overbeck y Deutsche Bank AG, Corporate & Investment Bank, Credit Risk Management 1 Introduction 1.1 Quantification of maturity

More information

Advanced Tools for Risk Management and Asset Pricing

Advanced Tools for Risk Management and Asset Pricing MSc. Finance/CLEFIN 2014/2015 Edition Advanced Tools for Risk Management and Asset Pricing June 2015 Exam for Non-Attending Students Solutions Time Allowed: 120 minutes Family Name (Surname) First Name

More information

Using Expected Shortfall for Credit Risk Regulation

Using Expected Shortfall for Credit Risk Regulation Using Expected Shortfall for Credit Risk Regulation Kjartan Kloster Osmundsen * University of Stavanger February 26, 2017 Abstract The Basel Committee s minimum capital requirement function for banks credit

More information

Mr. Timurs Butenko. Portfolio Credit Risk Modelling. A Review of Two Approaches.

Mr. Timurs Butenko. Portfolio Credit Risk Modelling. A Review of Two Approaches. Master Thesis at ETH Zurich, Dept. Mathematics in Collaboration with Dept. Management, Technology & Economics Spring Term 24 Mr. Timurs Butenko Portfolio Credit Risk Modelling. A Review of Two Approaches.

More information

The Statistical Mechanics of Financial Markets

The Statistical Mechanics of Financial Markets The Statistical Mechanics of Financial Markets Johannes Voit 2011 johannes.voit (at) ekit.com Overview 1. Why statistical physicists care about financial markets 2. The standard model - its achievements

More information

Modeling Credit Risk of Loan Portfolios in the Presence of Autocorrelation (Part 2)

Modeling Credit Risk of Loan Portfolios in the Presence of Autocorrelation (Part 2) Practitioner Seminar in Financial and Insurance Mathematics ETH Zürich Modeling Credit Risk of Loan Portfolios in the Presence of Autocorrelation (Part 2) Christoph Frei UBS and University of Alberta March

More information

Specific Issues of Economic Capital Management: Economic vs. Regulatory Capital and Business Risk

Specific Issues of Economic Capital Management: Economic vs. Regulatory Capital and Business Risk Specific Issues of Economic Capital Management: Economic vs. Regulatory Capital and Business Risk Corinne Neale Managing Director, Capital Management Regulatory Capital The Pillar 1 Model Managing IRB

More information

To Measure Concentration Risk - A comparative study

To Measure Concentration Risk - A comparative study To Measure Concentration Risk - A comparative study Alma Broström and Hanna Scheibenpflug Department of Mathematical Statistics Faculty of Engineering at Lund University May 2017 Abstract Credit risk

More information

Effective Computation & Allocation of Enterprise Credit Capital for Large Retail and SME portfolios

Effective Computation & Allocation of Enterprise Credit Capital for Large Retail and SME portfolios Effective Computation & Allocation of Enterprise Credit Capital for Large Retail and SME portfolios RiskLab Madrid, December 1 st 2003 Dan Rosen Vice President, Strategy, Algorithmics Inc. drosen@algorithmics.com

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Risk Measures Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Reference: Chapter 8

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

Alexander Marianski August IFRS 9: Probably Weighted and Biased?

Alexander Marianski August IFRS 9: Probably Weighted and Biased? Alexander Marianski August 2017 IFRS 9: Probably Weighted and Biased? Introductions Alexander Marianski Associate Director amarianski@deloitte.co.uk Alexandra Savelyeva Assistant Manager asavelyeva@deloitte.co.uk

More information

Applications of GCorr Macro within the RiskFrontier Software: Stress Testing, Reverse Stress Testing, and Risk Integration

Applications of GCorr Macro within the RiskFrontier Software: Stress Testing, Reverse Stress Testing, and Risk Integration AUGUST 2014 QUANTITATIVE RESEARCH GROUP MODELING METHODOLOGY Applications of GCorr Macro within the RiskFrontier Software: Stress Testing, Reverse Stress Testing, and Risk Integration Authors Mariano Lanfranconi

More information

Dealing with seller s risk

Dealing with seller s risk brunel.indd 8/9/6 :9:5 pm CUTTING EDGE. STRUCTURED FINANCE Dealing with seller s risk The risk of trade receivables securitisations comes from both the pool of assets and the seller of the assets. Vivien

More information

Pricing & Risk Management of Synthetic CDOs

Pricing & Risk Management of Synthetic CDOs Pricing & Risk Management of Synthetic CDOs Jaffar Hussain* j.hussain@alahli.com September 2006 Abstract The purpose of this paper is to analyze the risks of synthetic CDO structures and their sensitivity

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

CREDIT RATINGS. Rating Agencies: Moody s and S&P Creditworthiness of corporate bonds

CREDIT RATINGS. Rating Agencies: Moody s and S&P Creditworthiness of corporate bonds CREDIT RISK CREDIT RATINGS Rating Agencies: Moody s and S&P Creditworthiness of corporate bonds In the S&P rating system, AAA is the best rating. After that comes AA, A, BBB, BB, B, and CCC The corresponding

More information

The Vasicek Distribution

The Vasicek Distribution The Vasicek Distribution Dirk Tasche Lloyds TSB Bank Corporate Markets Rating Systems dirk.tasche@gmx.net Bristol / London, August 2008 The opinions expressed in this presentation are those of the author

More information

Luis Seco University of Toronto

Luis Seco University of Toronto Luis Seco University of Toronto seco@math.utoronto.ca The case for credit risk: The Goodrich-Rabobank swap of 1983 Markov models A two-state model The S&P, Moody s model Basic concepts Exposure, recovery,

More information

Stress testing of credit portfolios in light- and heavy-tailed models

Stress testing of credit portfolios in light- and heavy-tailed models Stress testing of credit portfolios in light- and heavy-tailed models M. Kalkbrener and N. Packham July 10, 2014 Abstract As, in light of the recent financial crises, stress tests have become an integral

More information

Preprint: Will be published in Perm Winter School Financial Econometrics and Empirical Market Microstructure, Springer

Preprint: Will be published in Perm Winter School Financial Econometrics and Empirical Market Microstructure, Springer STRESS-TESTING MODEL FOR CORPORATE BORROWER PORTFOLIOS. Preprint: Will be published in Perm Winter School Financial Econometrics and Empirical Market Microstructure, Springer Seleznev Vladimir Denis Surzhko,

More information

Value at Risk, Expected Shortfall, and Marginal Risk Contribution, in: Szego, G. (ed.): Risk Measures for the 21st Century, p , Wiley 2004.

Value at Risk, Expected Shortfall, and Marginal Risk Contribution, in: Szego, G. (ed.): Risk Measures for the 21st Century, p , Wiley 2004. Rau-Bredow, Hans: Value at Risk, Expected Shortfall, and Marginal Risk Contribution, in: Szego, G. (ed.): Risk Measures for the 21st Century, p. 61-68, Wiley 2004. Copyright geschützt 5 Value-at-Risk,

More information

2006 Bank Indonesia Seminar on Financial Stability. Bali, September 2006

2006 Bank Indonesia Seminar on Financial Stability. Bali, September 2006 Economic Capital 2006 Bank Indonesia Seminar on Financial Stability Bali, 21-22 September 2006 Charles Freeland Deputy Secretary General IRB approaches - Historical Default Rates High correlation between

More information

The Minimal Confidence Levels of Basel Capital Regulation Alexander Zimper University of Pretoria Working Paper: January 2013

The Minimal Confidence Levels of Basel Capital Regulation Alexander Zimper University of Pretoria Working Paper: January 2013 University of Pretoria Department of Economics Working Paper Series The Minimal Confidence Levels of Basel Capital Regulation Alexander Zimper University of Pretoria Working Paper: 2013-05 January 2013

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Credit Risk Modeling Using Excel and VBA with DVD O. Gunter Loffler Peter N. Posch. WILEY A John Wiley and Sons, Ltd., Publication

Credit Risk Modeling Using Excel and VBA with DVD O. Gunter Loffler Peter N. Posch. WILEY A John Wiley and Sons, Ltd., Publication Credit Risk Modeling Using Excel and VBA with DVD O Gunter Loffler Peter N. Posch WILEY A John Wiley and Sons, Ltd., Publication Preface to the 2nd edition Preface to the 1st edition Some Hints for Troubleshooting

More information

VALUE-ADDING ACTIVE CREDIT PORTFOLIO MANAGEMENT

VALUE-ADDING ACTIVE CREDIT PORTFOLIO MANAGEMENT VALUE-ADDING ACTIVE CREDIT PORTFOLIO MANAGEMENT OPTIMISATION AT ALL LEVELS Dr. Christian Bluhm Head Credit Portfolio Management Credit Suisse, Zurich September 28-29, 2005, Wiesbaden AGENDA INTRODUCTION

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Linking Stress Testing and Portfolio Credit Risk. Nihil Patel, Senior Director

Linking Stress Testing and Portfolio Credit Risk. Nihil Patel, Senior Director Linking Stress Testing and Portfolio Credit Risk Nihil Patel, Senior Director October 2013 Agenda 1. Stress testing and portfolio credit risk are related 2. Estimating portfolio loss distribution under

More information

Credit Portfolio Risk

Credit Portfolio Risk Credit Portfolio Risk Tiziano Bellini Università di Bologna November 29, 2013 Tiziano Bellini (Università di Bologna) Credit Portfolio Risk November 29, 2013 1 / 47 Outline Framework Credit Portfolio Risk

More information

A Simple Multi-Factor Factor Adjustment for the Treatment of Diversification in Credit Capital Rules

A Simple Multi-Factor Factor Adjustment for the Treatment of Diversification in Credit Capital Rules A Simple Multi-Factor Factor Adustment for the Treatment of Diversification in Credit Capital Rules Juan Carlos Garcia Cespedes, Juan Antonio de Juan Herrero 1, Alex Kreinin 2 and Dan Rosen 3 First version:

More information

Credit Risk in Banking

Credit Risk in Banking Credit Risk in Banking CREDIT RISK MODELS Sebastiano Vitali, 2017/2018 Merton model It consider the financial structure of a company, therefore it belongs to the structural approach models Notation: E

More information

IMPROVED MODELING OF DOUBLE DEFAULT EFFECTS IN BASEL II - AN ENDOGENOUS ASSET DROP MODEL WITHOUT ADDITIONAL CORRELATION

IMPROVED MODELING OF DOUBLE DEFAULT EFFECTS IN BASEL II - AN ENDOGENOUS ASSET DROP MODEL WITHOUT ADDITIONAL CORRELATION IMPROVED MODELING OF DOUBLE DEFAULT EFFECTS IN BASEL II - AN ENDOGENOUS ASSET DROP MODEL WITHOUT ADDITIONAL CORRELATION SEBASTIAN EBERT AND EVA LÜTKEBOHMERT Abstract. In 2005 the Internal Ratings Based

More information

Calculating Value-at-Risk Using the Granularity Adjustment Method in the Portfolio Credit Risk Model with Random Loss Given Default

Calculating Value-at-Risk Using the Granularity Adjustment Method in the Portfolio Credit Risk Model with Random Loss Given Default Journal of Econoics and Manageent, 016, Vol. 1, No., 157-176 Calculating Value-at-Risk Using the Granularity Adjustent Method in the Portfolio Credit Risk Model with Rando Loss Given Default Yi-Ping Chang

More information

A Simple Multi-Factor Factor Adjustment for the Treatment of Credit Capital Diversification

A Simple Multi-Factor Factor Adjustment for the Treatment of Credit Capital Diversification A Simple Multi-Factor Factor Adustment for the Treatment of Credit Capital Diversification Juan Carlos Garcia Cespedes, Juan Antonio de Juan Herrero 1, Alex Kreinin 2 and Dan Rosen 3 First version: March

More information

Unexpected Recovery Risk and LGD Discount Rate Determination #

Unexpected Recovery Risk and LGD Discount Rate Determination # Unexpected Recovery Risk and Discount Rate Determination # Jiří WITZANY * 1 Introduction The main goal of this paper is to propose a consistent methodology for determination of the interest rate used for

More information

Bonn Econ Discussion Papers

Bonn Econ Discussion Papers Bonn Econ Discussion Papers Discussion Paper 10/2009 Treatment of Double Default Effects within the Granularity Adjustment for Basel II by Sebastian Ebert and Eva Lütkebohmert July 2009 Bonn Graduate School

More information

Recent developments in. Portfolio Modelling

Recent developments in. Portfolio Modelling Recent developments in Portfolio Modelling Presentation RiskLab Madrid Agenda What is Portfolio Risk Tracker? Original Features Transparency Data Technical Specification 2 What is Portfolio Risk Tracker?

More information

Credit VaR and Risk-Bucket Capital Rules: A Reconciliation

Credit VaR and Risk-Bucket Capital Rules: A Reconciliation Published in Proceedings of the 36th Annual Conference on Bank Structure and Competition, Federal Reserve Bank of Chicago, May 2000. Credit VaR and Risk-Bucket Capital Rules: A Reconciliation Michael B.

More information

Risk management. VaR and Expected Shortfall. Christian Groll. VaR and Expected Shortfall Risk management Christian Groll 1 / 56

Risk management. VaR and Expected Shortfall. Christian Groll. VaR and Expected Shortfall Risk management Christian Groll 1 / 56 Risk management VaR and Expected Shortfall Christian Groll VaR and Expected Shortfall Risk management Christian Groll 1 / 56 Introduction Introduction VaR and Expected Shortfall Risk management Christian

More information

Risk measures: Yet another search of a holy grail

Risk measures: Yet another search of a holy grail Risk measures: Yet another search of a holy grail Dirk Tasche Financial Services Authority 1 dirk.tasche@gmx.net Mathematics of Financial Risk Management Isaac Newton Institute for Mathematical Sciences

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Structural Models in Credit Valuation: The KMV experience. Oldrich Alfons Vasicek NYU Stern, November 2012

Structural Models in Credit Valuation: The KMV experience. Oldrich Alfons Vasicek NYU Stern, November 2012 Structural Models in Credit Valuation: The KMV experience Oldrich Alfons Vasicek NYU Stern, November 2012 KMV Corporation A financial technology firm pioneering the use of structural models for credit

More information

Modeling Credit Exposure for Collateralized Counterparties

Modeling Credit Exposure for Collateralized Counterparties Modeling Credit Exposure for Collateralized Counterparties Michael Pykhtin Credit Analytics & Methodology Bank of America Fields Institute Quantitative Finance Seminar Toronto; February 25, 2009 Disclaimer

More information

Modeling credit risk in an in-house Monte Carlo simulation

Modeling credit risk in an in-house Monte Carlo simulation Modeling credit risk in an in-house Monte Carlo simulation Wolfgang Gehlen Head of Risk Methodology BIS Risk Control Beatenberg, 4 September 2003 Presentation overview I. Why model credit losses in a simulation?

More information

Asset Allocation Model with Tail Risk Parity

Asset Allocation Model with Tail Risk Parity Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference 2017 Asset Allocation Model with Tail Risk Parity Hirotaka Kato Graduate School of Science and Technology Keio University,

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Operational Risk Quantification and Insurance

Operational Risk Quantification and Insurance Operational Risk Quantification and Insurance Capital Allocation for Operational Risk 14 th -16 th November 2001 Bahram Mirzai, Swiss Re Swiss Re FSBG Outline Capital Calculation along the Loss Curve Hierarchy

More information

Calibrating Low-Default Portfolios, using the Cumulative Accuracy Profile

Calibrating Low-Default Portfolios, using the Cumulative Accuracy Profile Calibrating Low-Default Portfolios, using the Cumulative Accuracy Profile Marco van der Burgt 1 ABN AMRO/ Group Risk Management/Tools & Modelling Amsterdam March 2007 Abstract In the new Basel II Accord,

More information

A risk-factor model foundation for ratings-based bank capital rules

A risk-factor model foundation for ratings-based bank capital rules Journal of Financial Intermediation 12 2003) 199 232 www.elsevier.com/locate/jfi A risk-factor model foundation for ratings-based bank capital rules Michael B. Gordy Board of Governors of the Division

More information

Portfolio Credit Risk Models

Portfolio Credit Risk Models Portfolio Credit Risk Models Paul Embrechts London School of Economics Department of Accounting and Finance AC 402 FINANCIAL RISK ANALYSIS Lent Term, 2003 c Paul Embrechts and Philipp Schönbucher, 2003

More information

From Financial Engineering to Risk Management. Radu Tunaru University of Kent, UK

From Financial Engineering to Risk Management. Radu Tunaru University of Kent, UK Model Risk in Financial Markets From Financial Engineering to Risk Management Radu Tunaru University of Kent, UK \Yp World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI CHENNAI

More information

Financial Risk: Credit Risk, Lecture 2

Financial Risk: Credit Risk, Lecture 2 Financial Risk: Credit Risk, Lecture 2 Alexander Herbertsson Centre For Finance/Department of Economics School of Business, Economics and Law, University of Gothenburg E-mail: Alexander.Herbertsson@economics.gu.se

More information

Credit Risk. Lecture 5 Risk Modeling and Bank Steering. Loïc BRIN

Credit Risk. Lecture 5 Risk Modeling and Bank Steering. Loïc BRIN Credit Risk Lecture 5 Risk Modeling and Bank Steering École Nationale des Ponts et Chaussées Département Ingénieurie Mathématique et Informatique (IMI) Master II Credit Risk - Lecture 5 1/20 1 Credit risk

More information

Introduction to Algorithmic Trading Strategies Lecture 8

Introduction to Algorithmic Trading Strategies Lecture 8 Introduction to Algorithmic Trading Strategies Lecture 8 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

Probability Weighted Moments. Andrew Smith

Probability Weighted Moments. Andrew Smith Probability Weighted Moments Andrew Smith andrewdsmith8@deloitte.co.uk 28 November 2014 Introduction If I asked you to summarise a data set, or fit a distribution You d probably calculate the mean and

More information

Online appendices from The xva Challenge by Jon Gregory. APPENDIX 8A: LHP approximation and IRB formula

Online appendices from The xva Challenge by Jon Gregory. APPENDIX 8A: LHP approximation and IRB formula APPENDIX 8A: LHP approximation and IRB formula i) The LHP approximation The large homogeneous pool (LHP) approximation of Vasicek (1997) is based on the assumption of a very large (technically infinitely

More information

Slides for Risk Management

Slides for Risk Management Slides for Risk Management Introduction to the modeling of assets Groll Seminar für Finanzökonometrie Prof. Mittnik, PhD Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik,

More information

IV SPECIAL FEATURES ASSESSING PORTFOLIO CREDIT RISK IN A SAMPLE OF EU LARGE AND COMPLEX BANKING GROUPS

IV SPECIAL FEATURES ASSESSING PORTFOLIO CREDIT RISK IN A SAMPLE OF EU LARGE AND COMPLEX BANKING GROUPS C ASSESSING PORTFOLIO CREDIT RISK IN A SAMPLE OF EU LARGE AND COMPLEX BANKING GROUPS In terms of economic capital, credit risk is the most significant risk faced by banks. This Special Feature implements

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

ASSET CORRELATION, REALIZED DEFAULT CORRELATION, AND PORTFOLIO CREDIT RISK

ASSET CORRELATION, REALIZED DEFAULT CORRELATION, AND PORTFOLIO CREDIT RISK MARCH 3, 28 ASSET CORRELATION, REALIZED DEFAULT CORRELATION, AND PORTFOLIO CREDIT RISK MODELINGMETHODOLOGY AUTHORS Jing Zhang Fanlin Zhu Joseph Lee ABSTRACT Asset correlation is a critical driver in modeling

More information

Econophysics V: Credit Risk

Econophysics V: Credit Risk Fakultät für Physik Econophysics V: Credit Risk Thomas Guhr XXVIII Heidelberg Physics Graduate Days, Heidelberg 2012 Outline Introduction What is credit risk? Structural model and loss distribution Numerical

More information

CREDIT PORTFOLIO SECTOR CONCENTRATION AND ITS IMPLICATIONS FOR CAPITAL REQUIREMENTS

CREDIT PORTFOLIO SECTOR CONCENTRATION AND ITS IMPLICATIONS FOR CAPITAL REQUIREMENTS 131 Libor Holub, Michal Nyklíček, Pavel Sedlář This article assesses whether the sector concentration of the portfolio of loans to resident and non-resident legal entities according to information from

More information

Bayesian estimation of probabilities of default for low default portfolios

Bayesian estimation of probabilities of default for low default portfolios Bayesian estimation of probabilities of default for low default portfolios Dirk Tasche arxiv:1112.555v3 [q-fin.rm] 5 Apr 212 First version: December 23, 211 This version: April 5, 212 The estimation of

More information

Slides for Risk Management Credit Risk

Slides for Risk Management Credit Risk Slides for Risk Management Credit Risk Groll Seminar für Finanzökonometrie Prof. Mittnik, PhD Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 1 / 97 1 Introduction to

More information

Investigating implied asset correlation and capital requirements: empirical evidence from the Italian banking system

Investigating implied asset correlation and capital requirements: empirical evidence from the Italian banking system Investigating implied asset correlation and capital requirements: empirical evidence from the Italian banking system AUTHORS ARTICLE INFO JOURNAL FOUNDER Domenico Curcio Igor Gianfrancesco Antonella Malinconico

More information

Section 3 describes the data for portfolio construction and alternative PD and correlation inputs.

Section 3 describes the data for portfolio construction and alternative PD and correlation inputs. Evaluating economic capital models for credit risk is important for both financial institutions and regulators. However, a major impediment to model validation remains limited data in the time series due

More information

Default-implied Asset Correlation: Empirical Study for Moroccan Companies

Default-implied Asset Correlation: Empirical Study for Moroccan Companies International Journal of Economics and Financial Issues ISSN: 2146-4138 available at http: wwweconjournalscom International Journal of Economics and Financial Issues, 2017, 7(2), 415-425 Default-implied

More information

A note on the adequacy of the EU scheme for bank recovery, resolution and deposit insurance in Spain

A note on the adequacy of the EU scheme for bank recovery, resolution and deposit insurance in Spain A note on the adequacy of the EU scheme for bank recovery, resolution and deposit insurance in Spain Pilar Gómez-Fernández-Aguado is a Senior Lecturer at the Department of Financial Economics and Accounting,

More information

Centrality-based Capital Allocations *

Centrality-based Capital Allocations * Centrality-based Capital Allocations * Peter Raupach (Bundesbank), joint work with Adrian Alter (IMF), Ben Craig (Fed Cleveland) CIRANO, Montréal, Sep 2017 * Alter, A., B. Craig and P. Raupach (2015),

More information

MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULA-AR-GARCH MODEL

MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULA-AR-GARCH MODEL MEASURING PORTFOLIO RISKS USING CONDITIONAL COPULA-AR-GARCH MODEL Isariya Suttakulpiboon MSc in Risk Management and Insurance Georgia State University, 30303 Atlanta, Georgia Email: suttakul.i@gmail.com,

More information