A1: American Options in the Binomial Model

Size: px
Start display at page:

Download "A1: American Options in the Binomial Model"

Transcription

1 Appendix 1 A1: American Options in the Binomial Model So far we were dealing with options which can be excercised only at a fixed time, at their maturity date T. These are european options. In a complete model, lie the Binomial or the Blac-Scholes model, these options can be replicated exactly. Now we are considering options which can be excercised at an arbitrary time t [0, T. These are called american options. Thus, if a ban is selling an american option, it has to be prepared to pay the payoff to the customer not only at t = T, but at an arbitrary t [0, T. Therefore it would be desirable to replicate the option for all t [0, T, not only at t = T. However, this is not possible. But it is possible to set up a selffinancing strategy whose portfolio value is always greater or equal to the option s payoff and this leads to an arbitrage free fair price for the american option contract. We first consider the situation in discrete time, in the Binomial model. Let Π S = S 0 X j (1.1 be the price process for the Binomial model. That is, the X j are identically independently distributed with { U = 1 + u with probability p X j = (1.2 D = 1 + d with probability q = 1 p The discounted price process s = R S, R = 1 + r, is given by where the x j = X j /R have the distribution Π s = s 0 x j (1.3 db({x j } = N Π db(x j (1.4 db(x = { p δ(x U/R + (1 p δ(x D/R } dx (

2 192 A1 Let C be the payoff of some (exotic or not american option. That is, excercising the option at time {1, 2,..., N} gives a payment of C = C ( S 0,..., S (1.6 For a simple call or put (1.6 reduces to C = C(S. Let c = R C(S 0,..., S (1.7 be the discounted payoff at time. We are looing for some selffinancing strategy (δ whose discounted portfolio value v = R V at time is always bigger than c, v = v 0 + δ j 1 (s j s j 1! c (1.8 At time = N, we should have v N = c N. At time = N 1, v N 1 should be such that we can guarantie v N = c N at = N and it must be at least c N 1. In the first lecture on the Binomial model and in lecture 5 we saw that we can guarantie v N = c N at = N if we define v N 1 = p v N (s 0,..., s N 1, s N 1 U/R + (1 p v N (s 0,..., s N 1, s N 1 D/R = E B[v N s N 1 (1.9 where p = R D U D is the probability of the equivalent martingale measure d B. That is, if we define a sequence of discounted portfolio values (u 0 N inductively by then we must have u N = c N (1.10 u 1 = max { c 1, E B[u s 1 }, = N, N 1,..., 1 (1.11 v u = 0,..., N (1.12 Observe that we cannot write equal in (1.12 since it is not clear that the portfolio values u defined in (1.10,1.11 can be generated by some selffinancing strategy. In fact, in general they cannot. Thus we have to find the smallest selffinancing strategy, which has the lowest price v 0 and satisfies (1.12. It is obtained as follows. Theorem 8.1: Let (u 0 N be the Snell envelope of the discounted american claim (c 0 N defined by (1.10,1.11. For = 1,..., N, let δ 1 (s 0,..., s 1 = u (s 0,..., s 1, s 1 U/R u (s 0,..., s 1, s 1 D/R s 1 U/R s 1 D/R (1.13

3 A1 193 and let v = u 0 + δ j 1 (s j s j 1 (1.14 be the discounted portfolio value of the selffinancing strategy defined by (1.13 with initial price u 0. Then any selffinancing strategy ṽ = ṽ 0 + δ j 1 (s j s j 1 with ṽ c for all satisfies ṽ u for all. In particular, each such strategy has a larger price than (1.14, ṽ 0 u 0. The relation between (u and (v is given by v = u + (max { } u (1.15 where ũ 1 := E B[u s 1. Proof: We first show (1.15. Recall from Theorem 1.1 that if δ 1 is given by (1.13 and if ũ 1 is given by ũ 1 = p u (s 0,..., s 1, s 1 U/R + (1 p u (s 0,..., s 1, s 1 D/R then there is the relation Hence, = E B[u s 1 (1.16 ũ 1 + δ 1 (s s 1 = u (1.17 v = u 0 + (1.17 = u 0 + = u + (1.11 = u + δ j 1 (s j s j 1 ( uj ũ j 1 ( uj 1 ũ j 1 (max { } c j 1, ũ 1 ũ 1 (1.18 which proves (1.15. The inequalities ṽ u for all can be obtained by induction. For = N, ṽ N c N = u N. Suppose ṽ u holds for. Then ṽ 1 = E B[ṽ s 1 E B[u s 1 = ũ 1 (1.19

4 194 A1 Since also by assumption ṽ 1 c 1 we have ṽ 1 max { } c 1, ũ 1 = u 1 which completes the induction. Theorem 8.1 solves the hedging problem for american options in the Binomial model and, by approximation with small t, also for the Blac-Scholes model. One has to compute the Snell envelope (u which can be easily done on an excel-sheet using the definition (1.10,1.11 and then the delta s for a selffinancing strategy are given by (1.13. Another characterization of the sequence (u, which is probably of more theoretical interest, can be given in terms of stopping times. It reads as follows. Theorem 8.2: Let T = { τ : {s j } 0 j N τ({s j } {, + 1,..., N}, τ stopping time } be the set of all stopping times bigger or equal than. Let c = R C(S 0,..., S be the discounted payoff of some american option and let (u be the Snell envelope defined by (1.10,1.11. Then where τ u=c is the stopping time defined by u = sup E B[ c τ s (1.20 τ T = E B[ cτ s u=c (1.21 τ u=c = min{j u j = c j } (1.22 Proof: From (1.15 we have and for m u = v (max { } (1.23 In particular, u m = u + (u m u = u + v m v u τ u=c = u + v τ u=c v = u + v τ u=c v m (max { } τ u=c τ u=c (max { c j 1, ũ j 1 } ũj 1 (ũ j 1 ũ j 1 (1.24 = u + v τ u=c v (1.25

5 A1 195 Thus, E B[ cτ s u=c = E B[ uτ s u=c = u + E B[ vτ s u=c v Lemma 8.3 = u (1.26 which proves (1.21. Furthermore, for every stopping time τ T, c τ u τ τ = u + v τ v (max { } (1.27 and therefore, using Lemma 8.3 below again, E B[ c τ s u + E B[ v τ v s }{{} =0 u E B [ (max { cj 1, ũ j 1 } ũj 1 χ(j τ s } {{ } 0 (1.28 This implies also sup τ T E B[ c τ s u and, because of (1.26, the equal sign follows. Lemma 8.3 (Stopping Theorem: Let v = v 0 + δ j 1(s j s j 1 be a selffinancing strategy and let τ be a stopping time. Let Ẽ denote the expectation with respect to the martingale measure. Then Ẽ[v τ = v 0, and, for τ, Ẽ[v τ s = v (1.29 Proof: For τ we have Ẽ[v τ s = v + = v + = v Ẽ [ δ j 1 (s j s j 1 χ(j τ s Ẽ [ δ j 1 (s j s j 1 s N Ẽ [ δ j 1 (s j s j 1 χ(j > τ s Ẽ [ δ j 1 (s j s j 1 χ(j > τ s (1.30 Since τ is a stopping time, we have τ = τ({s m } 0 m τ. Thus, for τ < j, τ is a function of at most s 0, s 1,..., s j 1. But then we can move the integrals over s n,..., s j directly to the

6 196 A1 s j in the last line of (1.30 to obtain Ẽ[v τ s = v Ẽ [ (Ẽ[sj δ j 1 s j 1 s j 1 χ(j > τ s }{{} =0 = v (1.31 since (s j is a martingale with respect to Ẽ. The next lemma states that if the option value of some european option is always bigger than the option s payoff, V (S C(S, then the Snell envelope coincides with the discounted V. Lemma 8.4: Let V be the portfolio value of a replicating strategy for some european option with payoff C(S 0,..., S N, that is, V is the option value at time. Then, if V (S 0,..., S C(S 0,..., S = N, N 1,..., m (1.32 the undiscounted Snell envelope U = R u satisfies In particular, if for c = R C(S then v c and u = v for all. U = V = N, N 1,..., m. (1.33 E B[c s 1 c 1 (1.34 Proof: We prove (1.33 by induction on. For = N, u N = c N = v N. Suppose (1.33 holds for. Observe that since v = v 1 + δ 1 (s s 1 we have v 1 = E B[v s 1. Then u 1 = max { c 1, E B[u s 1 } = max { c 1, E B[v s 1 } = max { c 1, v 1 } = v 1 (1.35 if v 1 c 1. This proves (1.33. (1.34 follows similar. By induction, starting at = N with v N = c N, v 1 = E B[v s 1 E B[c s 1 c 1 (1.36

7 A1 197 and the lemma is proven Condition (1.34 holds for a call option, but not for a put. Namely, for a call c = R (S K + = (s K/R + = (s 1 x K/R + (1.37 Since f(x = (s 1 x K/R + is a convex function, we can apply Jensen s inequality, f(x dp (x f ( x dp (x for any probability measure dp and convex function f, to obtain E B[c s 1 = (s 1x K/R d b(x + ( s 1 x d b(x K/R + = (s 1 K/R + R 1 (s 1 K/R 1 + = c 1 (1.38 If one tries the same computation for a put, one ends up with (K/R E B[c s 1 = s 1x d b(x + ( K/R s 1 x d b(x + = (K/R s 1 + (1.39 but this cannot be estimated against (K/R 1 s 1 + for R 1. Thus we can summarize Corollary 8.5: Let the discounting factor R 1. Then the values of american and european calls coincide but the values of american and european puts differ. The value of an american put at time is given by the undiscounted Snell envelope U = R u defined by (1.10,1.11.

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1 Chapter 9 The isk Neutral Pricing Measure for the Black-Scholes Model The discounted portfolio value of a selffinancing strategy in discrete time was given by v tk = v 0 + k δ tj (s tj s tj ) (9.) where

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

δ j 1 (S j S j 1 ) (2.3) j=1

δ j 1 (S j S j 1 ) (2.3) j=1 Chapter The Binomial Model Let S be some tradable asset with prices and let S k = St k ), k = 0, 1,,....1) H = HS 0, S 1,..., S N 1, S N ).) be some option payoff with start date t 0 and end date or maturity

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures Lecture 3 Fundamental Theorems of Asset Pricing 3.1 Arbitrage and risk neutral probability measures Several important concepts were illustrated in the example in Lecture 2: arbitrage; risk neutral probability

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

Model-independent bounds for Asian options

Model-independent bounds for Asian options Model-independent bounds for Asian options A dynamic programming approach Alexander M. G. Cox 1 Sigrid Källblad 2 1 University of Bath 2 CMAP, École Polytechnique 7th General AMaMeF and Swissquote Conference

More information

MORE REALISTIC FOR STOCKS, FOR EXAMPLE

MORE REALISTIC FOR STOCKS, FOR EXAMPLE MARTINGALES BASED ON IID: ADDITIVE MG Y 1,..., Y t,... : IID EY = 0 X t = Y 1 +... + Y t is MG MULTIPLICATIVE MG Y 1,..., Y t,... : IID EY = 1 X t = Y 1... Y t : X t+1 = X t Y t+1 E(X t+1 F t ) = E(X t

More information

Model-independent bounds for Asian options

Model-independent bounds for Asian options Model-independent bounds for Asian options A dynamic programming approach Alexander M. G. Cox 1 Sigrid Källblad 2 1 University of Bath 2 CMAP, École Polytechnique University of Michigan, 2nd December,

More information

Lecture l(x) 1. (1) x X

Lecture l(x) 1. (1) x X Lecture 14 Agenda for the lecture Kraft s inequality Shannon codes The relation H(X) L u (X) = L p (X) H(X) + 1 14.1 Kraft s inequality While the definition of prefix-free codes is intuitively clear, we

More information

Lecture 1 Definitions from finance

Lecture 1 Definitions from finance Lecture 1 s from finance Financial market instruments can be divided into two types. There are the underlying stocks shares, bonds, commodities, foreign currencies; and their derivatives, claims that promise

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

- Introduction to Mathematical Finance -

- Introduction to Mathematical Finance - - Introduction to Mathematical Finance - Lecture Notes by Ulrich Horst The objective of this course is to give an introduction to the probabilistic techniques required to understand the most widely used

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 Option Pricing Models c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 If the world of sense does not fit mathematics, so much the worse for the world of sense. Bertrand Russell (1872 1970)

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

6: MULTI-PERIOD MARKET MODELS

6: MULTI-PERIOD MARKET MODELS 6: MULTI-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) 6: Multi-Period Market Models 1 / 55 Outline We will examine

More information

MATH 425 EXERCISES G. BERKOLAIKO

MATH 425 EXERCISES G. BERKOLAIKO MATH 425 EXERCISES G. BERKOLAIKO 1. Definitions and basic properties of options and other derivatives 1.1. Summary. Definition of European call and put options, American call and put option, forward (futures)

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Arbitrage-Free Pricing of XVA for Options in Discrete Time

Arbitrage-Free Pricing of XVA for Options in Discrete Time Arbitrage-Free Pricing of XVA for Options in Discrete Time A Major Qualifying Project Submitted to the Faculty Of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

EC487 Advanced Microeconomics, Part I: Lecture 9

EC487 Advanced Microeconomics, Part I: Lecture 9 EC487 Advanced Microeconomics, Part I: Lecture 9 Leonardo Felli 32L.LG.04 24 November 2017 Bargaining Games: Recall Two players, i {A, B} are trying to share a surplus. The size of the surplus is normalized

More information

Game Theory: Normal Form Games

Game Theory: Normal Form Games Game Theory: Normal Form Games Michael Levet June 23, 2016 1 Introduction Game Theory is a mathematical field that studies how rational agents make decisions in both competitive and cooperative situations.

More information

Aspects of Financial Mathematics:

Aspects of Financial Mathematics: Aspects of Financial Mathematics: Options, Derivatives, Arbitrage, and the Black-Scholes Pricing Formula J. Robert Buchanan Millersville University of Pennsylvania email: Bob.Buchanan@millersville.edu

More information

CHAPTER 14: REPEATED PRISONER S DILEMMA

CHAPTER 14: REPEATED PRISONER S DILEMMA CHAPTER 4: REPEATED PRISONER S DILEMMA In this chapter, we consider infinitely repeated play of the Prisoner s Dilemma game. We denote the possible actions for P i by C i for cooperating with the other

More information

Lecture 16: Delta Hedging

Lecture 16: Delta Hedging Lecture 16: Delta Hedging We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way. These techniques were first proposed in: J.C.

More information

Lecture 16. Options and option pricing. Lecture 16 1 / 22

Lecture 16. Options and option pricing. Lecture 16 1 / 22 Lecture 16 Options and option pricing Lecture 16 1 / 22 Introduction One of the most, perhaps the most, important family of derivatives are the options. Lecture 16 2 / 22 Introduction One of the most,

More information

How do Variance Swaps Shape the Smile?

How do Variance Swaps Shape the Smile? How do Variance Swaps Shape the Smile? A Summary of Arbitrage Restrictions and Smile Asymptotics Vimal Raval Imperial College London & UBS Investment Bank www2.imperial.ac.uk/ vr402 Joint Work with Mark

More information

Term Structure Lattice Models

Term Structure Lattice Models IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh Term Structure Lattice Models These lecture notes introduce fixed income derivative securities and the modeling philosophy used to

More information

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration Lecture 14: Examples of Martingales and Azuma s Inequality A Short Summary of Bounds I Chernoff (First Bound). Let X be a random variable over {0, 1} such that P [X = 1] = p and P [X = 0] = 1 p. n P X

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

10.1 Elimination of strictly dominated strategies

10.1 Elimination of strictly dominated strategies Chapter 10 Elimination by Mixed Strategies The notions of dominance apply in particular to mixed extensions of finite strategic games. But we can also consider dominance of a pure strategy by a mixed strategy.

More information

Optimal Stopping Rules of Discrete-Time Callable Financial Commodities with Two Stopping Boundaries

Optimal Stopping Rules of Discrete-Time Callable Financial Commodities with Two Stopping Boundaries The Ninth International Symposium on Operations Research Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 215 224 Optimal Stopping Rules of Discrete-Time

More information

INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES

INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES Marek Rutkowski Faculty of Mathematics and Information Science Warsaw University of Technology 00-661 Warszawa, Poland 1 Call and Put Spot Options

More information

ECON 815. Uncertainty and Asset Prices

ECON 815. Uncertainty and Asset Prices ECON 815 Uncertainty and Asset Prices Winter 2015 Queen s University ECON 815 1 Adding Uncertainty Endowments are now stochastic. endowment in period 1 is known at y t two states s {1, 2} in period 2 with

More information

LECTURE 4: BID AND ASK HEDGING

LECTURE 4: BID AND ASK HEDGING LECTURE 4: BID AND ASK HEDGING 1. Introduction One of the consequences of incompleteness is that the price of derivatives is no longer unique. Various strategies for dealing with this exist, but a useful

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

Value of Flexibility in Managing R&D Projects Revisited

Value of Flexibility in Managing R&D Projects Revisited Value of Flexibility in Managing R&D Projects Revisited Leonardo P. Santiago & Pirooz Vakili November 2004 Abstract In this paper we consider the question of whether an increase in uncertainty increases

More information

Competitive Market Model

Competitive Market Model 57 Chapter 5 Competitive Market Model The competitive market model serves as the basis for the two different multi-user allocation methods presented in this thesis. This market model prices resources based

More information

Online Supplement: Price Commitments with Strategic Consumers: Why it can be Optimal to Discount More Frequently...Than Optimal

Online Supplement: Price Commitments with Strategic Consumers: Why it can be Optimal to Discount More Frequently...Than Optimal Online Supplement: Price Commitments with Strategic Consumers: Why it can be Optimal to Discount More Frequently...Than Optimal A Proofs Proof of Lemma 1. Under the no commitment policy, the indifferent

More information

B. Online Appendix. where ɛ may be arbitrarily chosen to satisfy 0 < ɛ < s 1 and s 1 is defined in (B1). This can be rewritten as

B. Online Appendix. where ɛ may be arbitrarily chosen to satisfy 0 < ɛ < s 1 and s 1 is defined in (B1). This can be rewritten as B Online Appendix B1 Constructing examples with nonmonotonic adoption policies Assume c > 0 and the utility function u(w) is increasing and approaches as w approaches 0 Suppose we have a prior distribution

More information

Modern Methods of Option Pricing

Modern Methods of Option Pricing Modern Methods of Option Pricing Denis Belomestny Weierstraß Institute Berlin Motzen, 14 June 2007 Denis Belomestny (WIAS) Modern Methods of Option Pricing Motzen, 14 June 2007 1 / 30 Overview 1 Introduction

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA 1. Refresh the concept of no arbitrage and how to bound option prices using just the principle of no arbitrage 2. Work on applying

More information

In chapter 5, we approximated the Black-Scholes model

In chapter 5, we approximated the Black-Scholes model Chapter 7 The Black-Scholes Equation In chapter 5, we approximated the Black-Scholes model ds t /S t = µ dt + σ dx t 7.1) with a suitable Binomial model and were able to derive a pricing formula for option

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

sample-bookchapter 2015/7/7 9:44 page 1 #1 THE BINOMIAL MODEL

sample-bookchapter 2015/7/7 9:44 page 1 #1 THE BINOMIAL MODEL sample-bookchapter 2015/7/7 9:44 page 1 #1 1 THE BINOMIAL MODEL In this chapter we will study, in some detail, the simplest possible nontrivial model of a financial market the binomial model. This is a

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Viability, Arbitrage and Preferences

Viability, Arbitrage and Preferences Viability, Arbitrage and Preferences H. Mete Soner ETH Zürich and Swiss Finance Institute Joint with Matteo Burzoni, ETH Zürich Frank Riedel, University of Bielefeld Thera Stochastics in Honor of Ioannis

More information

Lecture 6. 1 Polynomial-time algorithms for the global min-cut problem

Lecture 6. 1 Polynomial-time algorithms for the global min-cut problem ORIE 633 Network Flows September 20, 2007 Lecturer: David P. Williamson Lecture 6 Scribe: Animashree Anandkumar 1 Polynomial-time algorithms for the global min-cut problem 1.1 The global min-cut problem

More information

American options and early exercise

American options and early exercise Chapter 3 American options and early exercise American options are contracts that may be exercised early, prior to expiry. These options are contrasted with European options for which exercise is only

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Haiyang Feng College of Management and Economics, Tianjin University, Tianjin , CHINA

Haiyang Feng College of Management and Economics, Tianjin University, Tianjin , CHINA RESEARCH ARTICLE QUALITY, PRICING, AND RELEASE TIME: OPTIMAL MARKET ENTRY STRATEGY FOR SOFTWARE-AS-A-SERVICE VENDORS Haiyang Feng College of Management and Economics, Tianjin University, Tianjin 300072,

More information

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model International Journal of Basic & Applied Sciences IJBAS-IJNS Vol:3 No:05 47 Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model Sheik Ahmed Ullah

More information

Hedging and Pricing in the Binomial Model

Hedging and Pricing in the Binomial Model Hedging and Pricing in the Binomial Model Peter Carr Bloomberg LP and Courant Institute, NYU Continuous Time Finance Lecture 2 Wednesday, January 26th, 2005 One Period Model Initial Setup: 0 risk-free

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

Chapter 6: Risky Securities and Utility Theory

Chapter 6: Risky Securities and Utility Theory Chapter 6: Risky Securities and Utility Theory Topics 1. Principle of Expected Return 2. St. Petersburg Paradox 3. Utility Theory 4. Principle of Expected Utility 5. The Certainty Equivalent 6. Utility

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

Financial Mathematics. Christel Geiss Department of Mathematics University of Innsbruck

Financial Mathematics. Christel Geiss Department of Mathematics University of Innsbruck Financial Mathematics Christel Geiss Department of Mathematics University of Innsbruck September 11, 212 2 Contents 1 Introduction 5 1.1 Financial markets......................... 5 1.2 Types of financial

More information

Topics in Contract Theory Lecture 1

Topics in Contract Theory Lecture 1 Leonardo Felli 7 January, 2002 Topics in Contract Theory Lecture 1 Contract Theory has become only recently a subfield of Economics. As the name suggest the main object of the analysis is a contract. Therefore

More information

MARTINGALES AND LOCAL MARTINGALES

MARTINGALES AND LOCAL MARTINGALES MARINGALES AND LOCAL MARINGALES If S t is a (discounted) securtity, the discounted P/L V t = need not be a martingale. t θ u ds u Can V t be a valid P/L? When? Winter 25 1 Per A. Mykland ARBIRAGE WIH SOCHASIC

More information

Mathematical Finance in discrete time

Mathematical Finance in discrete time Lecture Notes for Mathematical Finance in discrete time University of Vienna, Faculty of Mathematics, Fall 2015/16 Christa Cuchiero University of Vienna christa.cuchiero@univie.ac.at Draft Version June

More information

CS364A: Algorithmic Game Theory Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games

CS364A: Algorithmic Game Theory Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games CS364A: Algorithmic Game Theory Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games Tim Roughgarden November 6, 013 1 Canonical POA Proofs In Lecture 1 we proved that the price of anarchy (POA)

More information

Pricing and hedging in the presence of extraneous risks

Pricing and hedging in the presence of extraneous risks Stochastic Processes and their Applications 117 (2007) 742 765 www.elsevier.com/locate/spa Pricing and hedging in the presence of extraneous risks Pierre Collin Dufresne a, Julien Hugonnier b, a Haas School

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

Properties of American option prices

Properties of American option prices Stochastic Processes and their Applications 114 (2004) 265 278 www.elsevier.com/locate/spa Properties of American option prices Erik Ekstrom Department of Mathematics, Uppsala University, Box. 480, 75106

More information

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

Homework 2: Dynamic Moral Hazard

Homework 2: Dynamic Moral Hazard Homework 2: Dynamic Moral Hazard Question 0 (Normal learning model) Suppose that z t = θ + ɛ t, where θ N(m 0, 1/h 0 ) and ɛ t N(0, 1/h ɛ ) are IID. Show that θ z 1 N ( hɛ z 1 h 0 + h ɛ + h 0m 0 h 0 +

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

Help Session 4. David Sovich. Washington University in St. Louis

Help Session 4. David Sovich. Washington University in St. Louis Help Session 4 David Sovich Washington University in St. Louis TODAY S AGENDA More on no-arbitrage bounds for calls and puts Some discussion of American options Replicating complex payoffs Pricing in the

More information

The Probabilistic Method - Probabilistic Techniques. Lecture 7: Martingales

The Probabilistic Method - Probabilistic Techniques. Lecture 7: Martingales The Probabilistic Method - Probabilistic Techniques Lecture 7: Martingales Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2015-2016 Sotiris Nikoletseas, Associate

More information

Lecture 8: Asset pricing

Lecture 8: Asset pricing BURNABY SIMON FRASER UNIVERSITY BRITISH COLUMBIA Paul Klein Office: WMC 3635 Phone: (778) 782-9391 Email: paul klein 2@sfu.ca URL: http://paulklein.ca/newsite/teaching/483.php Economics 483 Advanced Topics

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +...

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +... No-Arbitrage Pricing Theory Single-Period odel There are N securities denoted ( S,S,...,S N ), they can be stocks, bonds, or any securities, we assume they are all traded, and have prices available. Ω

More information

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition.

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition. The Real Numbers Here we show one way to explicitly construct the real numbers R. First we need a definition. Definitions/Notation: A sequence of rational numbers is a funtion f : N Q. Rather than write

More information

Online Appendix for Debt Contracts with Partial Commitment by Natalia Kovrijnykh

Online Appendix for Debt Contracts with Partial Commitment by Natalia Kovrijnykh Online Appendix for Debt Contracts with Partial Commitment by Natalia Kovrijnykh Omitted Proofs LEMMA 5: Function ˆV is concave with slope between 1 and 0. PROOF: The fact that ˆV (w) is decreasing in

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Stochastic Finance - A Numeraire Approach

Stochastic Finance - A Numeraire Approach Stochastic Finance - A Numeraire Approach Stochastické modelování v ekonomii a financích 28th November and 5th December 2011 1 Motivation for Numeraire Approach 1 Motivation for Numeraire Approach 2 1

More information

MATH 121 GAME THEORY REVIEW

MATH 121 GAME THEORY REVIEW MATH 121 GAME THEORY REVIEW ERIN PEARSE Contents 1. Definitions 2 1.1. Non-cooperative Games 2 1.2. Cooperative 2-person Games 4 1.3. Cooperative n-person Games (in coalitional form) 6 2. Theorems and

More information

Risk Neutral Valuation, the Black-

Risk Neutral Valuation, the Black- Risk Neutral Valuation, the Black- Scholes Model and Monte Carlo Stephen M Schaefer London Business School Credit Risk Elective Summer 01 C = SN( d )-PV( X ) N( ) N he Black-Scholes formula 1 d (.) : cumulative

More information