Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

Size: px
Start display at page:

Download "Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14"

Transcription

1 Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Liuren Wu, Baruch College Joint work with Peter Carr, New York University The American Finance Association meetings January 7, 2011 Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

2 Background: Structural versus reduced-form models Structural models, such as Merton (1974): Derive equity price dynamics as a function of firm value dynamics. Pros: Link equity volatility to financial leverage and asset volatility. Cons: Stylized, and/or not tractable for pricing equity options. (Cremers, Driessen, Maenhout, Weinbaum (2008)) Reduced models, such as Merton (1976): Directly model equity dynamics (as a function of several reduced-form factors) to price stock options. Pros: Tractable, practical, operational. Cons: Economic meanings (of hidden factors) are unclear. One can specify stochastic volatility for the equity return and allow volatility to be correlated with equity return, but it is unclear: Where the stochastic volatility comes from? Asset volatility variation or leverage variation? What is causing the interactions equity return and volatility? Leverage effect or volatility feedback? Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

3 A structural reduced-form model We propose a reduced-form model that can answer structural questions. We propose a model for the equity index that allows three distinct economic channels of interaction between return and volatility: 1 The leverage effect: With business risk fixed, an increase in financial leverage level leads to an increase in equity volatility level. A financial leverage increase can come from stock price decline while the debt level is fixed Black (76) s classic leverage story. It can also come from active leverage management. 2 The volatility feedback effect on asset valuation: A positive shock to business risk increases the discounting of future cash flows, and reduces the asset value, regardless of the level of financial leverage. 3 The self-exciting behavior of market disruptions: A downside jump in the index leads to an upside spike in the chances of having more of the same. We explore what structural questions can be answered from observations on stock index options. Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

4 Separate the financial leverage variation from the asset value dynamics Decompose the forward value of the equity index F t into a product of the asset value A t and the equity-to-asset ratio (EAR) X t, F t = A t X t. This is just a tautology, (1) Model leverage X t as a stand-alone CEV process: dx t /X t = δx p t dw t, p > 0. (2) Leverage effect: A decline in X increases leverage [by definition], reduces equity value [via (1)], and raises equity volatility [via X p ]. Structural link: When A is fixed, the equity return volatility becomes a pure power function of the leverage ratio. A similar (more restricted) volatility structure can be obtained from the structural model of Leland (94). Firms can (and do) actively manage their leverages (Adrian & Shin (2008)). Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

5 The asset value dynamics Model the asset value A t separately, in addition to leverage variation, da t A t = vt Z dz t + (e x 1) ( µ + (dx, dt) π 0 J +(x)dxvt J dt ) + 0 (ex 1) ( µ (dx, dt) π J (x)dxvt J dt ) ( ), dvt Z = κ Z θz vt Z dt + σz vt dzt v, E [dzt v dz t ] = ρdt, ( ) dvt J = κ J θj vt J 0 dt σj x ( µ (dx, dt) π J (x)dxvt J dt ). Volatility feedback ρ < 0. Self-exciting crashes σ J > 0. Negative jumps in asset return are associated with positive jumps in the jump arrival rate v J t. Jump specification: Variance gamma high-frequency jump: π J +(x) = e x/v J + x 1, π J (x) = e x /v J x 1. When X is fixed, the equity dynamics follow the asset dynamics. ρ < 0 is often referred to as the leverage effect. Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

6 The stock price dynamics The stock price dynamics: 1 {}}{ 2 3 ( ) p { }}{{ }}{ Ft df t /F t = δ dw t + vt Z dz t + (e x 1) ( µ(dx, dt) π(x)dxvt J dt ) A t Linking/extending 3 strands of literature: 1 The local volatility effect of Dupire (94): Scaling F t by A t (both in dollars) makes the return variance a unitless quantity, and renders the dynamics scale free. Power dependence on leverage is supported by Leland (94). 2 The stochastic volatility of Heston (93): Used purely for volatility feedback, regardless of leverage. 3 The high-frequency jump of Madan,Carr,Chang (98): Arrival rate varies stochastically, and jumps synchronously with VG jump in return. Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

7 Alternative representation Let vt X = δ 2 Xt 2p. The stock price dynamics can be written as a three-factor stochastic volatility model: df t /F t = v X t dw t + v Z t dz t + R 0 (e x 1) ( µ(dx, dt) π(x)dxv J t dt ). where dv X t = κ X (v X t ) 2 dt σ X (v X t ) 3/2 dw t, a 3/2-process. (3) with κ X = p(2p + 1) and σ X = 2p. Henceforth, normalize δ = 1. Financial leverage variation is a separate source of stochastic volatility for stock return. The 3/2-vol of vol dependence in (3) has been shown to perform better than square-root dependence, e.g., Bakshi, Ju, Yang (2006). The model can be represented either as a local vol model with level dependence or a pure scale-free stochastic volatility model without level dependence unifying the two strands of literature. Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

8 Market prices of risks and Active managerial decisions on financial leverage The specifications so far are on the risk-neutral dynamics: Simplifying assumptions: Constant market prices (γ v, γ J ) for diffusion variance risk (Z t ) and jump risk (J t ). Structural questions: Financial managers make financial leverage decisions based on the current levels of all three types of risks: dx t = Xt 1 p ( ax κ XX X t κ XZ vt Z κ XJ vt J ) dt + X 1 p t dwt P. Market price of W t risk is γ X t = a X κ XX X t κ XZ v Z t κ XJ v J t. κ XX : Mean reversion, leverage level targeting. κ XZ : Response to diffusion business risk. κ XJ : Response to jump business risk. Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

9 Data OTC implied volatility quotes on SPX options, January 1996 to March 2008, 583 weeks. 40 time series on a grid of 5 relative strikes: 80, 90, 100, 110, 120% of spot. 8 fixed time to maturities: 1m, 3m, 6m, 1y, 2y, 3y, 4y, 5y. Listed market focuses on short-term options (within 3 years). OTC market is very active on long-dated options. Why include long-dated options? At one maturity, an implied volatility smile/skew can be generated by many different mechanisms all you can learn is a heavy-tailed distribution. To distinguish the different roles played by the different mechanisms and answer the structural questions, we need to look at how these smiles/skews evolve across a wide range of maturities and over different time periods. Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

10 Option pricing and model estimation Option pricing: Quadrature integration of FFT option prices on asset [ c (F t, K, T ) = E t E t [(X A T K) + ] ] (XT = X ) Xt Estimation: Fix model parameters and use the 3 states (X t, v Z t, v J t ) to capture the variation of the 5 8 implied volatility surface: Let V t [X t, v Z t, v J t ] be the state. State propagation equation: V t = f (V t 1 ; Θ) + Q t 1 ε t. Let the 40 option series be the observation. Measurement equation: y t = h(v t ; Θ) + Re t, (40 1) y: OTM option prices scaled by the BS vega of the option. Assume that the pricing errors on the scaled option series are iid. Estimate 17 parameters over 23,320 options (11 years, 583 weeks, 40 options each day), using (quasi) maximum likelihood method joint with unscented Kalman filter. Leverage Effect, Volatility Feedback, and Self-Exciting Market AFA, Disruptions 1/7/ / 14

11 Relative variance and skew contributions Θ Estimates Std Error p ρ σ J v J v J Average instantaneous return variance contributions from (X t, v Z t, v J t ): Source Variance Volatility Leverage: E P [Xt 2p ] = (10.91%) Asset diffusion: E P [vt Z ] = (15.19%) Asset jump: E P [(vj 2 + v 2 + J )v J t ] = (10.79%) All three types of interactions are strong: Leverage effect (p = ), volatility feedback (ρ = ), and self-excitement ( σ J = ). Much larger downside jumps than upside jumps (v J v J +). Leverage Effect, Volatility Feedback, and Self-Exciting Market AFA, Disruptions 1/7/ / 14

12 Implied volatility term structure variations 0.27 Effects of X t variation 0.26 Effects of v Z t variation 0.25 Effects of v J t variation At the money implied volatility, % At the money implied volatility, % At the money implied volatility, % Maturity, years Maturity, years Maturity, years 1 Leverage v X t : Mean-repelling (drift=p(2p + 1)(v X t ) 2 dt) Responses to shocks become larger at longer maturities. 2 Diffusion business risk v Z t : Strong mean reversion (κ Z = ) Responses decline quickly as option maturity increases. 3 Jump business risk v J t : Slow mean reversion (κ J = ) Responses do not decline. The impacts are vt Z (volatility feedback) are mainly an short term options. X t (leverage) and vt J (self-exciting jump) extend to long-term options. Long term structure is needed to differentiate the three risk sources. Leverage Effect, Volatility Feedback, and Self-Exciting Market AFA, Disruptions 1/7/ / 14

13 The capital structure decision dx t = Xt 1 p ( ax κ XX X t κ XZ vt Z κ XJ vt J Θ Estimates Std Error a X κ XX κ XZ κ XJ ) dt + X 1 p t dwt P κ XX = : Capital structure is very persistent. κ XZ = : High diffusion business risk reduces X t and hence increases the financial leverage. κ XJ = : High jump business risk increases X t and hence reduces the financial leverage. The key concern of financial leverage decision is default/crash (sustainability), not daily fluctuations Levering up increases your fluctuation, but also increases your return,... if only you can survive. Leverage Effect, Volatility Feedback, and Self-Exciting Market AFA, Disruptions 1/7/ / 14

14 Concluding remarks Many structural models have been proposed to answer structural questions, in stylized manner. Many reduced-form models/mechanisms have been proposed to match implied volatility smiles, without worrying about structural meanings. We propose a model that is tractable and generates very good option pricing performance. Meanwhile, it can infer structural information from equity options. It is helpful to model the variation of the financial leverage and the business risk separately to bring structures to reduced-form models, to link local volatility models with stochastic volatility models, to generate good pricing performance on equity options over both short and long option maturities. The approach has potentials in analyzing single name stock options. Link the different capital structure management styles to the different behaviors of the option implied volatility surface. Leverage Effect, Volatility Feedback, and Self-Exciting Market AFA, Disruptions 1/7/ / 14

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions 11/4/ / 24

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions 11/4/ / 24 Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Liuren Wu, Baruch College and Graduate Center Joint work with Peter Carr, New York University and Morgan Stanley CUNY Macroeconomics

More information

Option Pricing Modeling Overview

Option Pricing Modeling Overview Option Pricing Modeling Overview Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch) Stochastic time changes Options Markets 1 / 11 What is the purpose of building a

More information

Model Estimation. Liuren Wu. Fall, Zicklin School of Business, Baruch College. Liuren Wu Model Estimation Option Pricing, Fall, / 16

Model Estimation. Liuren Wu. Fall, Zicklin School of Business, Baruch College. Liuren Wu Model Estimation Option Pricing, Fall, / 16 Model Estimation Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 Liuren Wu Model Estimation Option Pricing, Fall, 2007 1 / 16 Outline 1 Statistical dynamics 2 Risk-neutral dynamics 3 Joint

More information

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Peter Carr and Liuren Wu The authors thank Hendrik Bessembinder (the editor), an anonymous referee, Gurdip Bakshi, Bruno Dupire,

More information

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Liuren Wu, Baruch College Joint work with Peter Carr and Xavier Gabaix at New York University Board of

More information

Simple Robust Hedging with Nearby Contracts

Simple Robust Hedging with Nearby Contracts Simple Robust Hedging with Nearby Contracts Liuren Wu and Jingyi Zhu Baruch College and University of Utah October 22, 2 at Worcester Polytechnic Institute Wu & Zhu (Baruch & Utah) Robust Hedging with

More information

A New Framework for Analyzing Volatility Risk and Premium Across Option Strikes and Expiries

A New Framework for Analyzing Volatility Risk and Premium Across Option Strikes and Expiries A New Framework for Analyzing Volatility Risk and Premium Across Option Strikes and Expiries Liuren Wu, Baruch College Joint work with Peter Carr from Morgan Stanley Singapore Management University July

More information

Dynamic Relative Valuation

Dynamic Relative Valuation Dynamic Relative Valuation Liuren Wu, Baruch College Joint work with Peter Carr from Morgan Stanley October 15, 2013 Liuren Wu (Baruch) Dynamic Relative Valuation 10/15/2013 1 / 20 The standard approach

More information

Simple Robust Hedging with Nearby Contracts

Simple Robust Hedging with Nearby Contracts Simple Robust Hedging with Nearby Contracts Liuren Wu and Jingyi Zhu Baruch College and University of Utah April 29, 211 Fourth Annual Triple Crown Conference Liuren Wu (Baruch) Robust Hedging with Nearby

More information

Implied Volatility Surface

Implied Volatility Surface Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 1 Implied volatility Recall the

More information

Option P&L Attribution and Pricing

Option P&L Attribution and Pricing Option P&L Attribution and Pricing Liuren Wu joint with Peter Carr Baruch College March 23, 2018 Stony Brook University Carr and Wu (NYU & Baruch) P&L Attribution and Option Pricing March 23, 2018 1 /

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY Exploring Volatility Derivatives: New Advances in Modelling Bruno Dupire Bloomberg L.P. NY bdupire@bloomberg.net Global Derivatives 2005, Paris May 25, 2005 1. Volatility Products Historical Volatility

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005 Valuation of Volatility Derivatives Jim Gatheral Global Derivatives & Risk Management 005 Paris May 4, 005 he opinions expressed in this presentation are those of the author alone, and do not necessarily

More information

Calibration Lecture 4: LSV and Model Uncertainty

Calibration Lecture 4: LSV and Model Uncertainty Calibration Lecture 4: LSV and Model Uncertainty March 2017 Recap: Heston model Recall the Heston stochastic volatility model ds t = rs t dt + Y t S t dw 1 t, dy t = κ(θ Y t ) dt + ξ Y t dw 2 t, where

More information

Stochastic Volatility and Jump Modeling in Finance

Stochastic Volatility and Jump Modeling in Finance Stochastic Volatility and Jump Modeling in Finance HPCFinance 1st kick-off meeting Elisa Nicolato Aarhus University Department of Economics and Business January 21, 2013 Elisa Nicolato (Aarhus University

More information

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 Modeling the Implied Volatility Surface Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 This presentation represents only the personal opinions of the author and not those

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Predictability of Interest Rates and Interest-Rate Portfolios

Predictability of Interest Rates and Interest-Rate Portfolios Predictability of Interest Rates and Interest-Rate Portfolios Liuren Wu Zicklin School of Business, Baruch College Joint work with Turan Bali and Massoud Heidari July 7, 2007 The Bank of Canada - Rotman

More information

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions On-line Appendix for Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Peter Carr 1 and Liuren Wu 2 I. Model Summary We fix a filtered probability space {Ω,F,P,(F t ) t 0 } and

More information

arxiv: v1 [q-fin.pr] 18 Feb 2010

arxiv: v1 [q-fin.pr] 18 Feb 2010 CONVERGENCE OF HESTON TO SVI JIM GATHERAL AND ANTOINE JACQUIER arxiv:1002.3633v1 [q-fin.pr] 18 Feb 2010 Abstract. In this short note, we prove by an appropriate change of variables that the SVI implied

More information

Pricing and hedging with rough-heston models

Pricing and hedging with rough-heston models Pricing and hedging with rough-heston models Omar El Euch, Mathieu Rosenbaum Ecole Polytechnique 1 January 216 El Euch, Rosenbaum Pricing and hedging with rough-heston models 1 Table of contents Introduction

More information

A Simple Robust Link Between American Puts and Credit Protection

A Simple Robust Link Between American Puts and Credit Protection A Simple Robust Link Between American Puts and Credit Protection Liuren Wu Baruch College Joint work with Peter Carr (Bloomberg) The Western Finance Association Meeting June 24, 2008, Hawaii Carr & Wu

More information

A Multifrequency Theory of the Interest Rate Term Structure

A Multifrequency Theory of the Interest Rate Term Structure A Multifrequency Theory of the Interest Rate Term Structure Laurent Calvet, Adlai Fisher, and Liuren Wu HEC, UBC, & Baruch College Chicago University February 26, 2010 Liuren Wu (Baruch) Cascade Dynamics

More information

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Guang-Hua Lian Collaboration with Robert Elliott University of Adelaide Feb. 2, 2011 Robert Elliott,

More information

Using Lévy Processes to Model Return Innovations

Using Lévy Processes to Model Return Innovations Using Lévy Processes to Model Return Innovations Liuren Wu Zicklin School of Business, Baruch College Option Pricing Liuren Wu (Baruch) Lévy Processes Option Pricing 1 / 32 Outline 1 Lévy processes 2 Lévy

More information

Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model Heston Stochastic Local Volatility Model Klaus Spanderen 1 R/Finance 2016 University of Illinois, Chicago May 20-21, 2016 1 Joint work with Johannes Göttker-Schnetmann Klaus Spanderen Heston Stochastic

More information

Lecture 9: Practicalities in Using Black-Scholes. Sunday, September 23, 12

Lecture 9: Practicalities in Using Black-Scholes. Sunday, September 23, 12 Lecture 9: Practicalities in Using Black-Scholes Major Complaints Most stocks and FX products don t have log-normal distribution Typically fat-tailed distributions are observed Constant volatility assumed,

More information

Implied Volatility Surface

Implied Volatility Surface Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 Liuren Wu Implied Volatility Surface Option Pricing, Fall, 2007 1 / 22 Implied volatility Recall the BSM formula:

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Two-Factor Capital Structure Models for Equity and Credit

Two-Factor Capital Structure Models for Equity and Credit Two-Factor Capital Structure Models for Equity and Credit Zhuowei Zhou Joint work with Tom Hurd Mathematics and Statistics, McMaster University 6th World Congress of the Bachelier Finance Society Outline

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Rough volatility models: When population processes become a new tool for trading and risk management

Rough volatility models: When population processes become a new tool for trading and risk management Rough volatility models: When population processes become a new tool for trading and risk management Omar El Euch and Mathieu Rosenbaum École Polytechnique 4 October 2017 Omar El Euch and Mathieu Rosenbaum

More information

Unified Credit-Equity Modeling

Unified Credit-Equity Modeling Unified Credit-Equity Modeling Rafael Mendoza-Arriaga Based on joint research with: Vadim Linetsky and Peter Carr The University of Texas at Austin McCombs School of Business (IROM) Recent Advancements

More information

Portfolio Management Using Option Data

Portfolio Management Using Option Data Portfolio Management Using Option Data Peter Christoffersen Rotman School of Management, University of Toronto, Copenhagen Business School, and CREATES, University of Aarhus 2 nd Lecture on Friday 1 Overview

More information

Local Variance Gamma Option Pricing Model

Local Variance Gamma Option Pricing Model Local Variance Gamma Option Pricing Model Peter Carr at Courant Institute/Morgan Stanley Joint work with Liuren Wu June 11, 2010 Carr (MS/NYU) Local Variance Gamma June 11, 2010 1 / 29 1 Automated Option

More information

Credit-Implied Volatility

Credit-Implied Volatility Credit-Implied Volatility Bryan Kelly University of Chicago Gerardo Manzo Two Sigma Diogo Palhares AQR American Financial Association January 7, 2018 Disclaimer This document is being distributed for informational

More information

A Closed-form Solution for Outperfomance Options with Stochastic Correlation and Stochastic Volatility

A Closed-form Solution for Outperfomance Options with Stochastic Correlation and Stochastic Volatility A Closed-form Solution for Outperfomance Options with Stochastic Correlation and Stochastic Volatility Jacinto Marabel Romo Email: jacinto.marabel@grupobbva.com November 2011 Abstract This article introduces

More information

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model American Journal of Theoretical and Applied Statistics 2018; 7(2): 80-84 http://www.sciencepublishinggroup.com/j/ajtas doi: 10.11648/j.ajtas.20180702.14 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

Stochastic Volatility (Working Draft I)

Stochastic Volatility (Working Draft I) Stochastic Volatility (Working Draft I) Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu 1 Introduction When using the Black-Scholes-Merton model to price derivative

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Chapter 18 Volatility Smiles

Chapter 18 Volatility Smiles Chapter 18 Volatility Smiles Problem 18.1 When both tails of the stock price distribution are less heavy than those of the lognormal distribution, Black-Scholes will tend to produce relatively high prices

More information

Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach

Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach Steven L. Heston and Saikat Nandi Federal Reserve Bank of Atlanta Working Paper 98-20 December 1998 Abstract: This

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

Managing the Newest Derivatives Risks

Managing the Newest Derivatives Risks Managing the Newest Derivatives Risks Michel Crouhy IXIS Corporate and Investment Bank / A subsidiary of NATIXIS Derivatives 2007: New Ideas, New Instruments, New markets NYU Stern School of Business,

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen Parametric Inference and Dynamic State Recovery from Option Panels Torben G. Andersen Joint work with Nicola Fusari and Viktor Todorov The Third International Conference High-Frequency Data Analysis in

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

A Lower Bound for Calls on Quadratic Variation

A Lower Bound for Calls on Quadratic Variation A Lower Bound for Calls on Quadratic Variation PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Chicago,

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari Parametric Inference and Dynamic State Recovery from Option Panels Nicola Fusari Joint work with Torben G. Andersen and Viktor Todorov July 2012 Motivation Under realistic assumptions derivatives are nonredundant

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

STOCHASTIC VOLATILITY MODELS: CALIBRATION, PRICING AND HEDGING. Warrick Poklewski-Koziell

STOCHASTIC VOLATILITY MODELS: CALIBRATION, PRICING AND HEDGING. Warrick Poklewski-Koziell STOCHASTIC VOLATILITY MODELS: CALIBRATION, PRICING AND HEDGING by Warrick Poklewski-Koziell Programme in Advanced Mathematics of Finance School of Computational and Applied Mathematics University of the

More information

Predicting Inflation without Predictive Regressions

Predicting Inflation without Predictive Regressions Predicting Inflation without Predictive Regressions Liuren Wu Baruch College, City University of New York Joint work with Jian Hua 6th Annual Conference of the Society for Financial Econometrics June 12-14,

More information

Explaining the Level of Credit Spreads:

Explaining the Level of Credit Spreads: Explaining the Level of Credit Spreads: Option-Implied Jump Risk Premia in a Firm Value Model Authors: M. Cremers, J. Driessen, P. Maenhout Discussant: Liuren Wu Baruch College http://faculty.baruch.cuny.edu/lwu/

More information

Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP

Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP ICASQF 2016, Cartagena - Colombia C. Alexander Grajales 1 Santiago Medina 2 1 University of Antioquia, Colombia 2 Nacional

More information

Errata, Mahler Study Aids for Exam 3/M, Spring 2010 HCM, 1/26/13 Page 1

Errata, Mahler Study Aids for Exam 3/M, Spring 2010 HCM, 1/26/13 Page 1 Errata, Mahler Study Aids for Exam 3/M, Spring 2010 HCM, 1/26/13 Page 1 1B, p. 72: (60%)(0.39) + (40%)(0.75) = 0.534. 1D, page 131, solution to the first Exercise: 2.5 2.5 λ(t) dt = 3t 2 dt 2 2 = t 3 ]

More information

Youngrok Lee and Jaesung Lee

Youngrok Lee and Jaesung Lee orean J. Math. 3 015, No. 1, pp. 81 91 http://dx.doi.org/10.11568/kjm.015.3.1.81 LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES Youngrok Lee and Jaesung Lee Abstract. This paper

More information

A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices arxiv: v2 [q-fin.pr] 8 Aug 2017

A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices arxiv: v2 [q-fin.pr] 8 Aug 2017 A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices arxiv:1708.01665v2 [q-fin.pr] 8 Aug 2017 Mark Higgins, PhD - Beacon Platform Incorporated August 10, 2017 Abstract We describe

More information

A Simple Robust Link Between American Puts and Credit Insurance

A Simple Robust Link Between American Puts and Credit Insurance A Simple Robust Link Between American Puts and Credit Insurance Peter Carr and Liuren Wu Bloomberg LP and Baruch College Carr & Wu American Puts & Credit Insurance 1 / 35 Background: Linkages between equity

More information

Developments in Volatility Derivatives Pricing

Developments in Volatility Derivatives Pricing Developments in Volatility Derivatives Pricing Jim Gatheral Global Derivatives 2007 Paris, May 23, 2007 Motivation We would like to be able to price consistently at least 1 options on SPX 2 options on

More information

Short-Time Asymptotic Methods In Financial Mathematics

Short-Time Asymptotic Methods In Financial Mathematics Short-Time Asymptotic Methods In Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Department of Applied Mathematics, Illinois Institute of Technology

More information

FX Smile Modelling. 9 September September 9, 2008

FX Smile Modelling. 9 September September 9, 2008 FX Smile Modelling 9 September 008 September 9, 008 Contents 1 FX Implied Volatility 1 Interpolation.1 Parametrisation............................. Pure Interpolation.......................... Abstract

More information

A Simple Robust Link Between American Puts and Credit Insurance

A Simple Robust Link Between American Puts and Credit Insurance A Simple Robust Link Between American Puts and Credit Insurance Liuren Wu at Baruch College Joint work with Peter Carr Ziff Brothers Investments, April 2nd, 2010 Liuren Wu (Baruch) DOOM Puts & Credit Insurance

More information

Jump and Volatility Risk Premiums Implied by VIX

Jump and Volatility Risk Premiums Implied by VIX Jump and Volatility Risk Premiums Implied by VIX Jin-Chuan Duan and Chung-Ying Yeh (First Draft: January 22, 2007) (This Draft: March 12, 2007) Abstract An estimation method is developed for extracting

More information

Structural GARCH: The Volatility-Leverage Connection

Structural GARCH: The Volatility-Leverage Connection Structural GARCH: The Volatility-Leverage Connection Robert Engle 1 Emil Siriwardane 1 1 NYU Stern School of Business University of Chicago: 11/25/2013 Leverage and Equity Volatility I Crisis highlighted

More information

7.1 Volatility Simile and Defects in the Black-Scholes Model

7.1 Volatility Simile and Defects in the Black-Scholes Model Chapter 7 Beyond Black-Scholes Model 7.1 Volatility Simile and Defects in the Black-Scholes Model Before pointing out some of the flaws in the assumptions of the Black-Scholes world, we must emphasize

More information

Statistical methods for financial models driven by Lévy processes

Statistical methods for financial models driven by Lévy processes Statistical methods for financial models driven by Lévy processes José Enrique Figueroa-López Department of Statistics, Purdue University PASI Centro de Investigación en Matemátics (CIMAT) Guanajuato,

More information

Applying stochastic time changes to Lévy processes

Applying stochastic time changes to Lévy processes Applying stochastic time changes to Lévy processes Liuren Wu Zicklin School of Business, Baruch College Option Pricing Liuren Wu (Baruch) Stochastic time changes Option Pricing 1 / 38 Outline 1 Stochastic

More information

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model Option Pricing for a Stochastic-Volatility Jump-Diffusion Model Guoqing Yan and Floyd B. Hanson Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Conference

More information

Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution?

Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution? Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution? Jens H. E. Christensen & Glenn D. Rudebusch Federal Reserve Bank of San Francisco Term Structure Modeling and the Lower Bound Problem

More information

Unifying Volatility Models

Unifying Volatility Models The University of Reading THE BUSINESS SCHOOL FOR FINANCIAL MARKETS Unifying Volatility Models Carol Alexander (Co-authored works with E. Lazar and L. Nogueira) ISMA Centre, University of Reading Email:

More information

2.4 Industrial implementation: KMV model. Expected default frequency

2.4 Industrial implementation: KMV model. Expected default frequency 2.4 Industrial implementation: KMV model Expected default frequency Expected default frequency (EDF) is a forward-looking measure of actual probability of default. EDF is firm specific. KMV model is based

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

Dynamic Portfolio Choice with Frictions

Dynamic Portfolio Choice with Frictions Dynamic Portfolio Choice with Frictions Nicolae Gârleanu UC Berkeley, CEPR, and NBER Lasse H. Pedersen NYU, Copenhagen Business School, AQR, CEPR, and NBER December 2014 Gârleanu and Pedersen Dynamic Portfolio

More information

TopQuants. Integration of Credit Risk and Interest Rate Risk in the Banking Book

TopQuants. Integration of Credit Risk and Interest Rate Risk in the Banking Book TopQuants Integration of Credit Risk and Interest Rate Risk in the Banking Book 1 Table of Contents 1. Introduction 2. Proposed Case 3. Quantifying Our Case 4. Aggregated Approach 5. Integrated Approach

More information

The Evaluation of American Compound Option Prices under Stochastic Volatility. Carl Chiarella and Boda Kang

The Evaluation of American Compound Option Prices under Stochastic Volatility. Carl Chiarella and Boda Kang The Evaluation of American Compound Option Prices under Stochastic Volatility Carl Chiarella and Boda Kang School of Finance and Economics University of Technology, Sydney CNR-IMATI Finance Day Wednesday,

More information

Multi-factor Stochastic Volatility Models A practical approach

Multi-factor Stochastic Volatility Models A practical approach Stockholm School of Economics Department of Finance - Master Thesis Spring 2009 Multi-factor Stochastic Volatility Models A practical approach Filip Andersson 20573@student.hhs.se Niklas Westermark 20653@student.hhs.se

More information

Mixing Di usion and Jump Processes

Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes 1/ 27 Introduction Using a mixture of jump and di usion processes can model asset prices that are subject to large, discontinuous changes,

More information

7 pages 1. Premia 14

7 pages 1. Premia 14 7 pages 1 Premia 14 Calibration of Stochastic Volatility model with Jumps A. Ben Haj Yedder March 1, 1 The evolution process of the Heston model, for the stochastic volatility, and Merton model, for the

More information

Chapter 9 Dynamic Models of Investment

Chapter 9 Dynamic Models of Investment George Alogoskoufis, Dynamic Macroeconomic Theory, 2015 Chapter 9 Dynamic Models of Investment In this chapter we present the main neoclassical model of investment, under convex adjustment costs. This

More information

Short-Time Asymptotic Methods In Financial Mathematics

Short-Time Asymptotic Methods In Financial Mathematics Short-Time Asymptotic Methods In Financial Mathematics José E. Figueroa-López Department of Mathematics and Statistics Washington University in St. Louis School Of Mathematics, UMN March 14, 2019 Based

More information

Rough volatility models

Rough volatility models Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de October 18, 2018 Weierstrass Institute for Applied Analysis and Stochastics Rough volatility models Christian Bayer EMEA Quant

More information

Supplementary Appendix to The Risk Premia Embedded in Index Options

Supplementary Appendix to The Risk Premia Embedded in Index Options Supplementary Appendix to The Risk Premia Embedded in Index Options Torben G. Andersen Nicola Fusari Viktor Todorov December 214 Contents A The Non-Linear Factor Structure of Option Surfaces 2 B Additional

More information

Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps

Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps Anatoliy Swishchuk Department of Mathematics and Statistics University of Calgary Calgary, AB, Canada QMF 2009

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Hedging under Model Mis-Specification: Which Risk Factors Should You Not Forget?

Hedging under Model Mis-Specification: Which Risk Factors Should You Not Forget? Hedging under Model Mis-Specification: Which Risk Factors Should You Not Forget? Nicole Branger Christian Schlag Eva Schneider Norman Seeger This version: May 31, 28 Finance Center Münster, University

More information

Variance Derivatives and the Effect of Jumps on Them

Variance Derivatives and the Effect of Jumps on Them Eötvös Loránd University Corvinus University of Budapest Variance Derivatives and the Effect of Jumps on Them MSc Thesis Zsófia Tagscherer MSc in Actuarial and Financial Mathematics Faculty of Quantitative

More information

Supplementary Appendix to Parametric Inference and Dynamic State Recovery from Option Panels

Supplementary Appendix to Parametric Inference and Dynamic State Recovery from Option Panels Supplementary Appendix to Parametric Inference and Dynamic State Recovery from Option Panels Torben G. Andersen Nicola Fusari Viktor Todorov December 4 Abstract In this Supplementary Appendix we present

More information

Financial Engineering. Craig Pirrong Spring, 2006

Financial Engineering. Craig Pirrong Spring, 2006 Financial Engineering Craig Pirrong Spring, 2006 March 8, 2006 1 Levy Processes Geometric Brownian Motion is very tractible, and captures some salient features of speculative price dynamics, but it is

More information

Lecture 1: Stochastic Volatility and Local Volatility

Lecture 1: Stochastic Volatility and Local Volatility Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2003 Abstract

More information

Smile in the low moments

Smile in the low moments Smile in the low moments L. De Leo, T.-L. Dao, V. Vargas, S. Ciliberti, J.-P. Bouchaud 10 jan 2014 Outline 1 The Option Smile: statics A trading style The cumulant expansion A low-moment formula: the moneyness

More information

SOCIETY OF ACTUARIES Quantitative Finance and Investment Advanced Exam Exam QFIADV AFTERNOON SESSION

SOCIETY OF ACTUARIES Quantitative Finance and Investment Advanced Exam Exam QFIADV AFTERNOON SESSION SOCIETY OF ACTUARIES Exam QFIADV AFTERNOON SESSION Date: Friday, May 2, 2014 Time: 1:30 p.m. 3:45 p.m. INSTRUCTIONS TO CANDIDATES General Instructions 1. This afternoon session consists of 6 questions

More information

1. What is Implied Volatility?

1. What is Implied Volatility? Numerical Methods FEQA MSc Lectures, Spring Term 2 Data Modelling Module Lecture 2 Implied Volatility Professor Carol Alexander Spring Term 2 1 1. What is Implied Volatility? Implied volatility is: the

More information

What is Cyclical in Credit Cycles?

What is Cyclical in Credit Cycles? What is Cyclical in Credit Cycles? Rui Cui May 31, 2014 Introduction Credit cycles are growth cycles Cyclicality in the amount of new credit Explanations: collateral constraints, equity constraints, leverage

More information

Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles

Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles : A Potential Resolution of Asset Pricing Puzzles, JF (2004) Presented by: Esben Hedegaard NYUStern October 12, 2009 Outline 1 Introduction 2 The Long-Run Risk Solving the 3 Data and Calibration Results

More information