Data Structures. Binomial Heaps Fibonacci Heaps. Haim Kaplan & Uri Zwick December 2013

Size: px
Start display at page:

Download "Data Structures. Binomial Heaps Fibonacci Heaps. Haim Kaplan & Uri Zwick December 2013"

Transcription

1 Data Structures Binomial Heaps Fibonacci Heaps Haim Kaplan & Uri Zwick December 13 1

2 Heaps / Priority queues Binary Heaps Binomial Heaps Lazy Binomial Heaps Fibonacci Heaps Insert Find-min Delete-min Decrease-key Meld Worst case Amortized Delete can be implemented using Decrease-key + Delete-min Decrease-key in time important for Dijkstra and Prim

3 Binomial Heaps [Vuillemin (1978)] 3

4 Binomial Trees B 0 B 1 B 2 B 3 B 4 4

5 Binomial Trees B 0 B 1 B 2 B 3 B 4 5

6 Binomial Trees B 0 B 1 B 2 B 3 B k B k B k 1 B k 1 B k 1 B k 2 6

7 Binomial Trees B 0 B k B k B k 1 B k 1 B k 1 B k 2 7

8 Min-heap Ordered Binomial Trees key of child key of parent 8

9 Tournaments Binomial Trees D D D F F A C A D F G G E B A B C D E F G H H The children of x are the items that lost matches with x, in the order in which the matches took place. 9

10 Binomial Heap A list of binomial trees, at most one of each rank Pointer to root with minimal key Each number n can be written in a unique way as a sum of powers of 2 11 = (1011) 2 = At most log 2 (n+1) trees

11 Ordered forest Binary tree x 23 info key child next pointers per node child leftmost child next next sibling 11

12 Forest Binary tree Heap order half ordered

13 Q Binomial heap representation n first min 2 pointers per node No explicit rank information How do we determine ranks? x info key child next Structure V [Brown (1978)]

14 Q Alternative representation n first min Reverse sibling pointers Make lists circular Avoids reversals during meld info key child next Structure R [Brown (1978)]

15 Linking binomial trees y b a b x a B k B k 1 B k 1 time 15

16 Linking binomial trees Linking in first representation Linking in second representation 16

17 Melding binomial heaps Link trees of same degree Q 1 : Q 2 :

18 Melding binomial heaps Link trees of same degree B 1 B 2 B 3 Q 1 : B 0 B 1 B 3 Q 2 : B 0 B 2 B 3 B 3 B 4 Like adding binary numbers Maintain a pointer to the minimum time 18

19 Insert New item is a one tree binomial heap Meld it to the original heap time 19

20 Delete-min When we delete the minimum, we get a binomial heap

21 Delete-min When we delete the minimum, we get a binomial heap Meld it to the original heap time (Need to reverse list of roots in first representation) 21

22 Decrease-key using sift-up I Decrease-key(Q,I,7) 22

23 Decrease-key using sift-up I Need parent pointers (not needed before) 23

24 Decrease-key using sift-up I Need to update the node pointed by I 24

25 Decrease-key using sift-up I Need to update the node pointed by I 25

26 Decrease-key using sift-up I How can we do it?

27 Q n first min Adding parent pointers

28 Q n first min Adding a level of indirection Endogenous vs. exogenous I 23 x info key node item child next parent Nodes and items are distinct entities 28

29 Heaps / Priority queues Binary Heaps Binomial Heaps Lazy Binomial Heaps Fibonacci Heaps Insert Find-min Delete-min Decrease-key Meld Worst case Amortized

30 Lazy Binomial Heaps 30

31 Binomial Heaps A list of binomial trees, at most one of each rank, sorted by rank (at most trees) Pointer to root with minimal key Lazy Binomial Heaps An arbitrary list of binomial trees (possibly n trees of size 1) Pointer to root with minimal key

32 Lazy Binomial Heaps An arbitrary list of binomial trees Pointer to root with minimal key

33 Lazy Meld Concatenate the two lists of trees Update the pointer to root with minimal key worst case time Lazy Insert Add the new item to the list of roots Update the pointer to root with minimal key worst case time 33

34 Lazy Delete-min? Remove the minimum root and meld? May need (n) time to find the new minimum

35 Consolidating / Successive Linking

36 Consolidating / Successive Linking

37 Consolidating / Successive Linking

38 Consolidating / Successive Linking

39 Consolidating / Successive Linking

40 Consolidating / Successive Linking

41 Consolidating / Successive Linking

42 Consolidating / Successive Linking

43 Consolidating / Successive Linking

44 Consolidating / Successive Linking At the end of the process, we obtain a non-lazy binomial heap containing at most log (n+1) trees, at most one of each rank

45 Consolidating / Successive Linking At the end of the process, we obtain a non-lazy binomial heap containing at most log n trees, at most one of each degree Worst case cost O(n) Amortized cost Potential = Number of Trees

46 Cost of Consolidating T 0 Number of trees before T 1 Number of trees after L Number of links T 1 = T 0 L (Each link reduces the number of tree by 1) Total number of trees processed T 0 +L (Each link creates a new tree) Putting trees into buckets or finding trees to link with Linking Handling the buckets Total cost = O( (T 0 +L) + L + log 2 n ) = O( T 0 + log 2 n ) As L T 0

47 Amortized Cost of Consolidating (Scaled) actual cost = T 0 + log 2 n Change in potential = = T 1 T 0 Amortized cost = (T 0 + log 2 n ) + (T 1 T 0 ) = T 1 + log 2 n 2 log 2 n As T 1 log 2 n Another view: A link decreases the potential by 1. This can pay for handling all the trees involved in the link. The only unaccounted trees are those that were not the input nor the output of a link operation.

48 Lazy Binomial Heaps Actual cost Change in potential Amortized cost Insert 1 Find-min 0 Delete-min O(k+T 0 +log n) k 1+T 1 T 0 Decrease-key 0 Meld 0 Rank of deleted root

49 Heaps / Priority queues Binary Heaps Binomial Heaps Lazy Binomial Heaps Fibonacci Heaps Insert Find-min Delete-min Decrease-key Meld Worst case Amortized

50 One-pass successive linking A tree produced by a link is immediately put in the output list and not linked again Worst case cost O(n) Amortized cost Potential = Number of Trees Exercise: Prove it!

51 One-pass successive Linking

52 One-pass successive Linking

53 One-pass successive Linking Output list: 10 29

54 Fibonacci Heaps [Fredman-Tarjan (1987)] 54

55 Decrease-key in time? 2 x Decrease-key(Q,x,30) 55

56 Decrease-key in time? 2 x Decrease-key(Q,x,10) 56

57 Decrease-key in time? 2 x Heap order violation 57

58 Decrease-key in time? 2 x Cut the edge 58

59 Decrease-key in time? 2 x Tree no longer binomial 59

60 Fibonacci Heaps A list of heap-ordered trees Pointer to root with minimal key Not all trees may appear in Fibonacci heaps 60

61 Q Fibonacci heap representation min 23 Explicit ranks = degrees Doubly linked lists of children Arbitrary order of children child points to an arbitrary child pointers + rank + mark bit per node 61

62 Q Fibonacci heap representation x min info key rank mark child next prev parent pointers + rank + mark bit per node

63 Are simple cuts enough? A binomial tree of rank k contains at least 2 k We may get trees of rank k containing only k+1 nodes Ranks not necessarily Analysis breaks down 63

64 Cascading cuts Invariant: Each node looses at most one child after becoming a child itself To maintain the invariant, use a mark bit Each node is initially unmarked. When a non-root node looses its first child, it becomes marked When a marked node looses a second child, it is cut from its parent 64

65 Cascading cuts Invariant: Each node looses at most one child after becoming a child itself When x y is cut: x becomes unmarked If y is unmarked, it becomes marked If y is marked, it is cut from its parent Our convention: Roots are unmarked 65

66 Cascading cuts Cut x from its parent y Perform a cascading-cut process starting at x 66

67 Cascading cuts 67

68 Cascading cuts 68

69 Cascading cuts 69

70 Cascading cuts 70

71 Cascading cuts 71

72 Cascading cuts 72

73 Cascading cuts 73

74 Cascading cuts 74

75 Cascading cuts 75

76 Number of cuts A decrease-key operation may trigger many cuts Lemma 1: The first d decrease-key operations trigger at most 2d cuts Proof in a nutshell: Number of times a second child is lost is at most the number of times a first child is lost Potential = Number of marked nodes 76

77 Number of cuts Potential = Number of marked nodes Amortized number of cuts c + (1 (c 1)) = 2

78 Trees formed by cascading cuts Lemma 2: Let x be a node of rank k and let y 1,y 2,,y k be the current children of x, in the order in which they were linked to x. Then, the rank of y i is at least i 2. Proof: When y i was linked to x, y 1, y i 1 were already children of x. At that time, the rank of x and y i was at least i 1. As y i is still a child of x, it lost at most one child. 78

79 Trees formed by cascading cuts Lemma 3: A node of rank k in a Fibonacci Heap has at least F k+2 k descendants, including itself. n F n

80 Trees formed by cascading cuts Lemma 3: A node of rank k in a Fibonacci Heap has at least F k+2 k descendants, including itself. k 2 k 3 k Let S k be the minimum number of descendants of a node of rank at least k 80

81 Trees formed by cascading cuts Lemma 3: A node of rank k in a Fibonacci Heap has at least F k+2 k descendants, including itself. Corollary: In a Fibonacci heap containing n items, all ranks are at most log n log 2 n Ranks are again Are we done? 81

82 Putting it all together Are we done? A cut increases the number of trees We need a potential function that gives good amortized bounds on both successive linking and cascading cuts Potential = #trees + 2 #marked 82

83 Cost of Consolidating T 0 Number of trees before T 1 Number of trees after L Number of links T 1 = T 0 L (Each link reduces the number of tree by 1) Total number of trees processed T 0 +L (Each link creates a new tree) Putting trees into buckets or finding trees to link with Linking Handling the buckets Total cost = O( (T 0 +L) + L + log n ) = O( T 0 + log n ) As L T 0

84 Cost of Consolidating T 0 Number of trees before T 1 Number of trees after L Number of links T 1 = T 0 L (Each link reduces the number of tree by 1) Total number of trees processed T 0 +L (Each link creates a new tree) Only change: log n instead of log 2 n Total cost = O( (T 0 +L) + L + log n ) = O( T 0 + log n ) As L T 0

85 Fibonacci heaps Actual cost Trees Marks Amortized cost Insert 1 0 Find-min 0 0 Delete-min Decreasekey Meld O(k+T 0 +log n) O(c) k 1+T 1 T 0 c 0 Rank of deleted root 0 2 c 0 Number of cuts performed

86 Heaps / Priority queues Binary Heaps Binomial Heaps Lazy Binomial Heaps Fibonacci Heaps Insert Find-min Delete-min Decrease-key Meld Worst case Amortized

87 Consolidating / Successive linking

Heaps. Heap/Priority queue. Binomial heaps: Advanced Algorithmics (4AP) Heaps Binary heap. Binomial heap. Jaak Vilo 2009 Spring

Heaps. Heap/Priority queue. Binomial heaps: Advanced Algorithmics (4AP) Heaps Binary heap. Binomial heap. Jaak Vilo 2009 Spring .0.00 Heaps http://en.wikipedia.org/wiki/category:heaps_(structure) Advanced Algorithmics (4AP) Heaps Jaak Vilo 00 Spring Binary heap http://en.wikipedia.org/wiki/binary_heap Binomial heap http://en.wikipedia.org/wiki/binomial_heap

More information

Heaps

Heaps AdvancedAlgorithmics (4AP) Heaps Jaak Vilo 2009 Spring Jaak Vilo MTAT.03.190 Text Algorithms 1 Heaps http://en.wikipedia.org/wiki/category:heaps_(structure) Binary heap http://en.wikipedia.org/wiki/binary_heap

More information

Priority Queues 9/10. Binary heaps Leftist heaps Binomial heaps Fibonacci heaps

Priority Queues 9/10. Binary heaps Leftist heaps Binomial heaps Fibonacci heaps Priority Queues 9/10 Binary heaps Leftist heaps Binomial heaps Fibonacci heaps Priority queues are important in, among other things, operating systems (process control in multitasking systems), search

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 9 November 19, 2014 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 9 November 19, 2014 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 9 November 19, 2014 洪國寶 1 Outline Advanced data structures Binary heaps(review) Binomial heaps Fibonacci heaps Data structures for disjoint sets 2 Mergeable

More information

Advanced Algorithmics (4AP) Heaps

Advanced Algorithmics (4AP) Heaps Advanced Algorithmics (4AP) Heaps Jaak Vilo 2009 Spring Jaak Vilo MTAT.03.190 Text Algorithms 1 Heaps http://en.wikipedia.org/wiki/category:heaps_(structure) Binary heap http://en.wikipedia.org/wiki/binary

More information

Design and Analysis of Algorithms. Lecture 9 November 20, 2013 洪國寶

Design and Analysis of Algorithms. Lecture 9 November 20, 2013 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 9 November 20, 2013 洪國寶 1 Outline Advanced data structures Binary heaps (review) Binomial heaps Fibonacci heaps Dt Data structures t for disjoint dijitsets

More information

Meld(Q 1,Q 2 ) merge two sets

Meld(Q 1,Q 2 ) merge two sets Priority Queues MakeQueue Insert(Q,k,p) Delete(Q,k) DeleteMin(Q) Meld(Q 1,Q 2 ) Empty(Q) Size(Q) FindMin(Q) create new empty queue insert key k with priority p delete key k (given a pointer) delete key

More information

Outline for Today. Quick refresher on binomial heaps and lazy binomial heaps. An important operation in many graph algorithms.

Outline for Today. Quick refresher on binomial heaps and lazy binomial heaps. An important operation in many graph algorithms. Fibonacci Heaps Outline for Today Review from Last Time Quick refresher on binomial heaps and lazy binomial heaps. The Need for decrease-key An important operation in many graph algorithms. Fibonacci Heaps

More information

Fibonacci Heaps Y Y o o u u c c an an s s u u b b m miitt P P ro ro b blle e m m S S et et 3 3 iin n t t h h e e b b o o x x u u p p fro fro n n tt..

Fibonacci Heaps Y Y o o u u c c an an s s u u b b m miitt P P ro ro b blle e m m S S et et 3 3 iin n t t h h e e b b o o x x u u p p fro fro n n tt.. Fibonacci Heaps You You can can submit submit Problem Problem Set Set 3 in in the the box box up up front. front. Outline for Today Review from Last Time Quick refresher on binomial heaps and lazy binomial

More information

Fibonacci Heaps CLRS: Chapter 20 Last Revision: 21/09/04

Fibonacci Heaps CLRS: Chapter 20 Last Revision: 21/09/04 Fibonacci Heaps CLRS: Chapter 20 Last Revision: 21/09/04 1 Binary heap Binomial heap Fibonacci heap Procedure (worst-case) (worst-case) (amortized) Make-Heap Θ(1) Θ(1) Θ(1) Insert Θ(lg n) O(lg n) Θ(1)

More information

Priority Queues. Fibonacci Heap

Priority Queues. Fibonacci Heap ibonacci Heap hans to Sartaj Sahni for the original version of the slides Operation mae-heap insert find-min delete-min union decrease-ey delete Priority Queues Lined List Binary Binomial Heaps ibonacci

More information

Outline for this Week

Outline for this Week Binomial Heaps Outline for this Week Binomial Heaps (Today) A simple, fexible, and versatile priority queue. Lazy Binomial Heaps (Today) A powerful building block for designing advanced data structures.

More information

Binary and Binomial Heaps. Disclaimer: these slides were adapted from the ones by Kevin Wayne

Binary and Binomial Heaps. Disclaimer: these slides were adapted from the ones by Kevin Wayne Binary and Binomial Heaps Disclaimer: these slides were adapted from the ones by Kevin Wayne Priority Queues Supports the following operations. Insert element x. Return min element. Return and delete minimum

More information

PRIORITY QUEUES. binary heaps d-ary heaps binomial heaps Fibonacci heaps. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley

PRIORITY QUEUES. binary heaps d-ary heaps binomial heaps Fibonacci heaps. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley PRIORITY QUEUES binary heaps d-ary heaps binomial heaps Fibonacci heaps Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Last updated

More information

Priority queue. Advanced Algorithmics (6EAP) Binary heap. Heap/Priority queue. Binomial heaps: Merge two heaps.

Priority queue. Advanced Algorithmics (6EAP) Binary heap. Heap/Priority queue. Binomial heaps: Merge two heaps. Priority queue Advanced Algorithmics (EAP) MTAT.03.38 Heaps Jaak Vilo 0 Spring Insert Q, x Retrieve x from Q s.t. x.value is min (or max) Sorted linked list: O(n) to insert x into right place O() access-

More information

Algorithms PRIORITY QUEUES. binary heaps d-ary heaps binomial heaps Fibonacci heaps. binary heaps d-ary heaps binomial heaps Fibonacci heaps

Algorithms PRIORITY QUEUES. binary heaps d-ary heaps binomial heaps Fibonacci heaps. binary heaps d-ary heaps binomial heaps Fibonacci heaps Priority queue data type Lecture slides by Kevin Wayne Copyright 05 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos PRIORITY QUEUES binary heaps d-ary heaps binomial heaps Fibonacci

More information

1.6 Heap ordered trees

1.6 Heap ordered trees 1.6 Heap ordered trees A heap ordered tree is a tree satisfying the following condition. The key of a node is not greater than that of each child if any In a heap ordered tree, we can not implement find

More information

3/7/13. Binomial Tree. Binomial Tree. Binomial Tree. Binomial Tree. Number of nodes with respect to k? N(B o ) = 1 N(B k ) = 2 N(B k-1 ) = 2 k

3/7/13. Binomial Tree. Binomial Tree. Binomial Tree. Binomial Tree. Number of nodes with respect to k? N(B o ) = 1 N(B k ) = 2 N(B k-1 ) = 2 k //1 Adapted from: Kevin Wayne B k B k B k : a binomial tree with the addition of a left child with another binomial tree Number of nodes with respect to k? N(B o ) = 1 N(B k ) = 2 N( ) = 2 k B 1 B 2 B

More information

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES WIKTOR JAKUBIUK, KESHAV PURANMALKA 1. Introduction Dijkstra s algorithm solves the single-sourced shorest path problem on a

More information

Outline for this Week

Outline for this Week Binomial Heaps Outline for this Week Binomial Heaps (Today) A simple, flexible, and versatile priority queue. Lazy Binomial Heaps (Today) A powerful building block for designing advanced data structures.

More information

Design and Analysis of Algorithms 演算法設計與分析. Lecture 8 November 16, 2016 洪國寶

Design and Analysis of Algorithms 演算法設計與分析. Lecture 8 November 16, 2016 洪國寶 Design and Analysis of Algorithms 演算法設計與分析 Lecture 8 November 6, 206 洪國寶 Outline Review Amortized analysis Advanced data structures Binary heaps Binomial heaps Fibonacci heaps Data structures for disjoint

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms Instructor: Sharma Thankachan Lecture 9: Binomial Heap Slides modified from Dr. Hon, with permission 1 About this lecture Binary heap supports various operations quickly:

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Binomial Heaps CLRS 6.1, 6.2, 6.3 University of Manitoba Priority queues A priority queue is an abstract data type formed by a set S of

More information

The potential function φ for the amortized analysis of an operation on Fibonacci heap at time (iteration) i is given by the following equation:

The potential function φ for the amortized analysis of an operation on Fibonacci heap at time (iteration) i is given by the following equation: Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 01 Advanced Data Structures

More information

Lecture l(x) 1. (1) x X

Lecture l(x) 1. (1) x X Lecture 14 Agenda for the lecture Kraft s inequality Shannon codes The relation H(X) L u (X) = L p (X) H(X) + 1 14.1 Kraft s inequality While the definition of prefix-free codes is intuitively clear, we

More information

1 Solutions to Tute09

1 Solutions to Tute09 s to Tute0 Questions 4. - 4. are straight forward. Q. 4.4 Show that in a binary tree of N nodes, there are N + NULL pointers. Every node has outgoing pointers. Therefore there are N pointers. Each node,

More information

Heaps. c P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Heaps 1

Heaps. c P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Heaps 1 Heaps (Version of 21 November 2005) A min-heap (resp. max-heap) is a data structure with fast extraction of the smallest (resp. largest) item (in O(lg n) time), as well as fast insertion (also in O(lg

More information

Administration CSE 326: Data Structures

Administration CSE 326: Data Structures Administration CSE : Data Structures Binomial Queues Neva Cherniavsky Summer Released today: Project, phase B Due today: Homework Released today: Homework I have office hours tomorrow // Binomial Queues

More information

1 Binomial Tree. Structural Properties:

1 Binomial Tree. Structural Properties: Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 0 Advanced Data Structures

More information

SET 1C Binary Trees. 2. (i) Define the height of a binary tree or subtree and also define a height balanced (AVL) tree. (2)

SET 1C Binary Trees. 2. (i) Define the height of a binary tree or subtree and also define a height balanced (AVL) tree. (2) SET 1C Binary Trees 1. Construct a binary tree whose preorder traversal is K L N M P R Q S T and inorder traversal is N L K P R M S Q T 2. (i) Define the height of a binary tree or subtree and also define

More information

Binomial Heaps. Bryan M. Franklin

Binomial Heaps. Bryan M. Franklin Binomial Heaps Bryan M. Franklin bmfrankl@mtu.edu 1 Tradeoffs Worst Case Operation Binary Heap Binomial Heap Make-Heap Θ(1) Θ(1) Insert Θ(lg n) O(lg n) Minimum Θ(1) O(lg n) Extract-Min Θ(lg n) Θ(lg n)

More information

Splay Trees. Splay Trees - 1

Splay Trees. Splay Trees - 1 Splay Trees In balanced tree schemes, explicit rules are followed to ensure balance. In splay trees, there are no such rules. Search, insert, and delete operations are like in binary search trees, except

More information

Initializing A Max Heap. Initializing A Max Heap

Initializing A Max Heap. Initializing A Max Heap Initializing A Max Heap 3 4 5 6 7 8 70 8 input array = [-,,, 3, 4, 5, 6, 7, 8,, 0, ] Initializing A Max Heap 3 4 5 6 7 8 70 8 Start at rightmost array position that has a child. Index is n/. Initializing

More information

AVL Trees. The height of the left subtree can differ from the height of the right subtree by at most 1.

AVL Trees. The height of the left subtree can differ from the height of the right subtree by at most 1. AVL Trees In order to have a worst case running time for insert and delete operations to be O(log n), we must make it impossible for there to be a very long path in the binary search tree. The first balanced

More information

Fundamental Algorithms - Surprise Test

Fundamental Algorithms - Surprise Test Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dmytro Chibisov Sandeep Sadanandan Winter Semester 007/08 Sheet Model Test January 16, 008 Fundamental Algorithms

More information

Introduction to Greedy Algorithms: Huffman Codes

Introduction to Greedy Algorithms: Huffman Codes Introduction to Greedy Algorithms: Huffman Codes Yufei Tao ITEE University of Queensland In computer science, one interesting method to design algorithms is to go greedy, namely, keep doing the thing that

More information

Lecture 5: Tuesday, January 27, Peterson s Algorithm satisfies the No Starvation property (Theorem 1)

Lecture 5: Tuesday, January 27, Peterson s Algorithm satisfies the No Starvation property (Theorem 1) Com S 611 Spring Semester 2015 Advanced Topics on Distributed and Concurrent Algorithms Lecture 5: Tuesday, January 27, 2015 Instructor: Soma Chaudhuri Scribe: Nik Kinkel 1 Introduction This lecture covers

More information

Basic Data Structures. Figure 8.1 Lists, stacks, and queues. Terminology for Stacks. Terminology for Lists. Chapter 8: Data Abstractions

Basic Data Structures. Figure 8.1 Lists, stacks, and queues. Terminology for Stacks. Terminology for Lists. Chapter 8: Data Abstractions Chapter 8: Data Abstractions Computer Science: An Overview Tenth Edition by J. Glenn Brookshear Chapter 8: Data Abstractions 8.1 Data Structure Fundamentals 8.2 Implementing Data Structures 8.3 A Short

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

Sublinear Time Algorithms Oct 19, Lecture 1

Sublinear Time Algorithms Oct 19, Lecture 1 0368.416701 Sublinear Time Algorithms Oct 19, 2009 Lecturer: Ronitt Rubinfeld Lecture 1 Scribe: Daniel Shahaf 1 Sublinear-time algorithms: motivation Twenty years ago, there was practically no investigation

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Splay Trees Date: 9/27/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Splay Trees Date: 9/27/16 600.463 Introduction to lgoritms / lgoritms I Lecturer: Micael initz Topic: Splay Trees ate: 9/27/16 8.1 Introduction Today we re going to talk even more about binary searc trees. -trees, red-black trees,

More information

> asympt( ln( n! ), n ); n 360n n

> asympt( ln( n! ), n ); n 360n n 8.4 Heap Sort (heapsort) We will now look at our first (n ln(n)) algorithm: heap sort. It will use a data structure that we have already seen: a binary heap. 8.4.1 Strategy and Run-time Analysis Given

More information

CSE 417 Algorithms. Huffman Codes: An Optimal Data Compression Method

CSE 417 Algorithms. Huffman Codes: An Optimal Data Compression Method CSE 417 Algorithms Huffman Codes: An Optimal Data Compression Method 1 Compression Example 100k file, 6 letter alphabet: a 45% b 13% c 12% d 16% e 9% f 5% File Size: ASCII, 8 bits/char: 800kbits 2 3 >

More information

9.7 Binomial Queues. This excerpt made available by permission of Robert Sedgewick, and of Pearson Education, Inc.

9.7 Binomial Queues. This excerpt made available by permission of Robert Sedgewick, and of Pearson Education, Inc. 406 9.7 CH lgorithms, 3rd dition, in Java, arts 1-4: Fundamentals, Data tructures, orting, and earching. obert edgewick, ddison-esley 2002. his excerpt made available by permission of obert edgewick, and

More information

Structural Induction

Structural Induction Structural Induction Jason Filippou CMSC250 @ UMCP 07-05-2016 Jason Filippou (CMSC250 @ UMCP) Structural Induction 07-05-2016 1 / 26 Outline 1 Recursively defined structures 2 Proofs Binary Trees Jason

More information

CSE 100: TREAPS AND RANDOMIZED SEARCH TREES

CSE 100: TREAPS AND RANDOMIZED SEARCH TREES CSE 100: TREAPS AND RANDOMIZED SEARCH TREES Midterm Review Practice Midterm covered during Sunday discussion Today Run time analysis of building the Huffman tree AVL rotations and treaps Huffman s algorithm

More information

Practical session No. 5 Trees

Practical session No. 5 Trees Practical session No. 5 Trees Tree Binary Tree k-tree Trees as Basic Data Structures ADT that stores elements hierarchically. Each node in the tree has a parent (except for the root), and zero or more

More information

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions CSE 1 Winter 016 Homework 6 Due: Wednesday, May 11, 016 at 11:59pm Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the

More information

Stanford University, CS 106X Homework Assignment 5: Priority Queue Binomial Heap Optional Extension

Stanford University, CS 106X Homework Assignment 5: Priority Queue Binomial Heap Optional Extension Stanford University, CS 106X Homework Assignment 5: Priority Queue Binomial Heap Optional Extension Extension description by Jerry Cain. This document describes an optional extension to the assignment.

More information

2 all subsequent nodes. 252 all subsequent nodes. 401 all subsequent nodes. 398 all subsequent nodes. 330 all subsequent nodes

2 all subsequent nodes. 252 all subsequent nodes. 401 all subsequent nodes. 398 all subsequent nodes. 330 all subsequent nodes ¼ À ÈÌ Ê ½¾ ÈÊÇ Ä ÅË ½µ ½¾º¾¹½ ¾µ ½¾º¾¹ µ ½¾º¾¹ µ ½¾º¾¹ µ ½¾º ¹ µ ½¾º ¹ µ ½¾º ¹¾ µ ½¾º ¹ µ ½¾¹¾ ½¼µ ½¾¹ ½ (1) CLR 12.2-1 Based on the structure of the binary tree, and the procedure of Tree-Search, any

More information

COSC160: Data Structures Binary Trees. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Binary Trees. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Binary Trees Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Binary Trees I. Implementations I. Memory Management II. Binary Search Tree I. Operations Binary Trees A

More information

Supporting Information

Supporting Information Supporting Information Novikoff et al. 0.073/pnas.0986309 SI Text The Recap Method. In The Recap Method in the paper, we described a schedule in terms of a depth-first traversal of a full binary tree,

More information

Chapter 7 Sorting (Part II)

Chapter 7 Sorting (Part II) Data Structure t Chapter 7 Sorting (Part II) Angela Chih-Wei i Tang Department of Communication Engineering National Central University Jhongli, Taiwan 2010 Spring Outline Heap Max/min heap Insertion &

More information

On the Optimality of a Family of Binary Trees

On the Optimality of a Family of Binary Trees On the Optimality of a Family of Binary Trees Dana Vrajitoru Computer and Information Sciences Department Indiana University South Bend South Bend, IN 46645 Email: danav@cs.iusb.edu William Knight Computer

More information

Successor. CS 361, Lecture 19. Tree-Successor. Outline

Successor. CS 361, Lecture 19. Tree-Successor. Outline Successor CS 361, Lecture 19 Jared Saia University of New Mexico The successor of a node x is the node that comes after x in the sorted order determined by an in-order tree walk. If all keys are distinct,

More information

Ch 10 Trees. Introduction to Trees. Tree Representations. Binary Tree Nodes. Tree Traversals. Binary Search Trees

Ch 10 Trees. Introduction to Trees. Tree Representations. Binary Tree Nodes. Tree Traversals. Binary Search Trees Ch 10 Trees Introduction to Trees Tree Representations Binary Tree Nodes Tree Traversals Binary Search Trees 1 Binary Trees A binary tree is a finite set of elements called nodes. The set is either empty

More information

Practice Second Midterm Exam II

Practice Second Midterm Exam II CS13 Handout 34 Fall 218 November 2, 218 Practice Second Midterm Exam II This exam is closed-book and closed-computer. You may have a double-sided, 8.5 11 sheet of notes with you when you take this exam.

More information

CSCI 104 B-Trees (2-3, 2-3-4) and Red/Black Trees. Mark Redekopp David Kempe

CSCI 104 B-Trees (2-3, 2-3-4) and Red/Black Trees. Mark Redekopp David Kempe 1 CSCI 104 B-Trees (2-3, 2-3-4) and Red/Black Trees Mark Redekopp David Kempe 2 An example of B-Trees 2-3 TREES 3 Definition 2-3 Tree is a tree where Non-leaf nodes have 1 value & 2 children or 2 values

More information

CSCE 750, Fall 2009 Quizzes with Answers

CSCE 750, Fall 2009 Quizzes with Answers CSCE 750, Fall 009 Quizzes with Answers Stephen A. Fenner September 4, 011 1. Give an exact closed form for Simplify your answer as much as possible. k 3 k+1. We reduce the expression to a form we ve already

More information

UNIT 2. Greedy Method GENERAL METHOD

UNIT 2. Greedy Method GENERAL METHOD UNIT 2 GENERAL METHOD Greedy Method Greedy is the most straight forward design technique. Most of the problems have n inputs and require us to obtain a subset that satisfies some constraints. Any subset

More information

NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* YASUICHI HORIBE INTRODUCTION 1. FIBONACCI TREES

NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* YASUICHI HORIBE INTRODUCTION 1. FIBONACCI TREES 0#0# NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* YASUICHI HORIBE Shizuoka University, Hamamatsu, 432, Japan (Submitted February 1982) INTRODUCTION Continuing a previous paper [3], some new observations

More information

useful than solving these yourself, writing up your solution and then either comparing your

useful than solving these yourself, writing up your solution and then either comparing your CSE 441T/541T: Advanced Algorithms Fall Semester, 2003 September 9, 2004 Practice Problems Solutions Here are the solutions for the practice problems. However, reading these is far less useful than solving

More information

On the Optimality of a Family of Binary Trees Techical Report TR

On the Optimality of a Family of Binary Trees Techical Report TR On the Optimality of a Family of Binary Trees Techical Report TR-011101-1 Dana Vrajitoru and William Knight Indiana University South Bend Department of Computer and Information Sciences Abstract In this

More information

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class

Homework #4. CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class Homework #4 CMSC351 - Spring 2013 PRINT Name : Due: Thu Apr 16 th at the start of class o Grades depend on neatness and clarity. o Write your answers with enough detail about your approach and concepts

More information

Practical session No. 5 Trees

Practical session No. 5 Trees Practical session No. 5 Trees Tree Trees as Basic Data Structures ADT that stores elements hierarchically. With the exception of the root, each node in the tree has a parent and zero or more children nodes.

More information

Principles of Program Analysis: Algorithms

Principles of Program Analysis: Algorithms Principles of Program Analysis: Algorithms Transparencies based on Chapter 6 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. c

More information

On the Power of Structural Violations in Priority Queues

On the Power of Structural Violations in Priority Queues On the Power of Structural Violations in Priority Queues Amr Elmasry 1, Claus Jensen 2, Jyrki Katajainen 2, 1 Comuter Science Deartment, Alexandria University Alexandria, Egyt 2 Deartment of Comuting,

More information

Heap Building Bounds

Heap Building Bounds Heap Building Bounds Zhentao Li 1 and Bruce A. Reed 2 1 School of Computer Science, McGill University zhentao.li@mail.mcgill.ca 2 School of Computer Science, McGill University breed@cs.mcgill.ca Abstract.

More information

UNIT VI TREES. Marks - 14

UNIT VI TREES. Marks - 14 UNIT VI TREES Marks - 14 SYLLABUS 6.1 Non-linear data structures 6.2 Binary trees : Complete Binary Tree, Basic Terms: level number, degree, in-degree and out-degree, leaf node, directed edge, path, depth,

More information

Lecture 10/12 Data Structures (DAT037) Ramona Enache (with slides from Nick Smallbone and Nils Anders Danielsson)

Lecture 10/12 Data Structures (DAT037) Ramona Enache (with slides from Nick Smallbone and Nils Anders Danielsson) Lecture 10/12 Data Structures (DAT037) Ramona Enache (with slides from Nick Smallbone and Nils Anders Danielsson) Balanced BSTs: Problem The BST operahons take O(height of tree), so for unbalanced trees

More information

Optimal Satisficing Tree Searches

Optimal Satisficing Tree Searches Optimal Satisficing Tree Searches Dan Geiger and Jeffrey A. Barnett Northrop Research and Technology Center One Research Park Palos Verdes, CA 90274 Abstract We provide an algorithm that finds optimal

More information

Binary Tree Applications

Binary Tree Applications Binary Tree Applications Lecture 32 Section 19.2 Robb T. Koether Hampden-Sydney College Wed, Apr 17, 2013 Robb T. Koether (Hampden-Sydney College) Binary Tree Applications Wed, Apr 17, 2013 1 / 46 1 Expression

More information

Unit 6: Amortized Analysis

Unit 6: Amortized Analysis : Amortized Analysis Course contents: Aggregate method Accounting method Potential method Reading: Chapter 17 Y.-W. Chang 1 Amortized Analysis Why Amortized Analysis? Find a tight bound of a sequence of

More information

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify CSE 3500 Algorithms and Complexity Fall 2016 Lecture 17: October 25, 2016 Dijkstra s Algorithm Dijkstra s algorithm for the SSSP problem generates the shortest paths in nondecreasing order of the shortest

More information

Data Structures, Algorithms, & Applications in C++ ( Chapter 9 )

Data Structures, Algorithms, & Applications in C++ ( Chapter 9 ) ) Priority Queues Two kinds of priority queues: Min priority queue. Max priority queue. Min Priority Queue Collection of elements. Each element has a priority or key. Supports following operations: isempty

More information

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants Due Wednesday March 12, 2014. CS 20 students should bring a hard copy to class. CSCI

More information

A relation on 132-avoiding permutation patterns

A relation on 132-avoiding permutation patterns Discrete Mathematics and Theoretical Computer Science DMTCS vol. VOL, 205, 285 302 A relation on 32-avoiding permutation patterns Natalie Aisbett School of Mathematics and Statistics, University of Sydney,

More information

On the Power of Structural Violations in Priority Queues

On the Power of Structural Violations in Priority Queues On the Power of Structural Violations in Priority Queues Amr Elmasry 1 Claus Jensen 2 Jyrki Katajainen 2 1 Deartment of Comuter Engineering and Systems, Alexandria University Alexandria, Egyt 2 Deartment

More information

DESCENDANTS IN HEAP ORDERED TREES OR A TRIUMPH OF COMPUTER ALGEBRA

DESCENDANTS IN HEAP ORDERED TREES OR A TRIUMPH OF COMPUTER ALGEBRA DESCENDANTS IN HEAP ORDERED TREES OR A TRIUMPH OF COMPUTER ALGEBRA Helmut Prodinger Institut für Algebra und Diskrete Mathematik Technical University of Vienna Wiedner Hauptstrasse 8 0 A-00 Vienna, Austria

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

Chapter 16. Binary Search Trees (BSTs)

Chapter 16. Binary Search Trees (BSTs) Chapter 16 Binary Search Trees (BSTs) Search trees are tree-based data structures that can be used to store and search for items that satisfy a total order. There are many types of search trees designed

More information

Lecture 8 Feb 16, 2017

Lecture 8 Feb 16, 2017 CS 4: Advanced Algorithms Spring 017 Prof. Jelani Nelson Lecture 8 Feb 16, 017 Scribe: Tiffany 1 Overview In the last lecture we covered the properties of splay trees, including amortized O(log n) time

More information

Priority Queues Based on Braun Trees

Priority Queues Based on Braun Trees Priority Queues Based on Braun Trees Tobias Nipkow September 19, 2015 Abstract This theory implements priority queues via Braun trees. Insertion and deletion take logarithmic time and preserve the balanced

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

MAT385 Final (Spring 2009): Boolean Algebras, FSM, and old stuff

MAT385 Final (Spring 2009): Boolean Algebras, FSM, and old stuff MAT385 Final (Spring 2009): Boolean Algebras, FSM, and old stuff Name: Directions: Problems are equally weighted. Show your work! Answers without justification will likely result in few points. Your written

More information

The suffix binary search tree and suffix AVL tree

The suffix binary search tree and suffix AVL tree Journal of Discrete Algorithms 1 (2003) 387 408 www.elsevier.com/locate/jda The suffix binary search tree and suffix AVL tree Robert W. Irving, Lorna Love Department of Computing Science, University of

More information

Max Registers, Counters and Monotone Circuits

Max Registers, Counters and Monotone Circuits James Aspnes 1 Hagit Attiya 2 Keren Censor 2 1 Yale 2 Technion Counters Model Collects Our goal: build a cheap counter for an asynchronous shared-memory system. Two operations: increment and read. Read

More information

CS4311 Design and Analysis of Algorithms. Lecture 14: Amortized Analysis I

CS4311 Design and Analysis of Algorithms. Lecture 14: Amortized Analysis I CS43 Design and Analysis of Algorithms Lecture 4: Amortized Analysis I About this lecture Given a data structure, amortized analysis studies in a sequence of operations, the average time to perform an

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 21 Successive Shortest Path Problem In this lecture, we continue our discussion

More information

Smoothed Analysis of Binary Search Trees

Smoothed Analysis of Binary Search Trees Smoothed Analysis of Binary Search Trees Bodo Manthey and Rüdiger Reischuk Universität zu Lübeck, Institut für Theoretische Informatik Ratzeburger Allee 160, 23538 Lübeck, Germany manthey/reischuk@tcs.uni-luebeck.de

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

VARN CODES AND GENERALIZED FIBONACCI TREES

VARN CODES AND GENERALIZED FIBONACCI TREES Julia Abrahams Mathematical Sciences Division, Office of Naval Research, Arlington, VA 22217-5660 (Submitted June 1993) INTRODUCTION AND BACKGROUND Yarn's [6] algorithm solves the problem of finding an

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. COMPUT. Vol. 33, No. 5, pp. 1011 1034 c 2004 Society for Industrial and Applied Mathematics EFFICIENT ALGORITHMS FOR OPTIMAL STREAM MERGING FOR MEDIA-ON-DEMAND AMOTZ BAR-NOY AND RICHARD E. LADNER

More information

The Tree Data Model. Laura Kovács

The Tree Data Model. Laura Kovács The Tree Data Model Laura Kovács Trees (Baumstrukturen) Definition Trees are sets of points, called nodes (Knoten) and lines, called edges (Kanten), connecting two distinct nodes, such that: n 2 n 3 n

More information

TABLEAU-BASED DECISION PROCEDURES FOR HYBRID LOGIC

TABLEAU-BASED DECISION PROCEDURES FOR HYBRID LOGIC TABLEAU-BASED DECISION PROCEDURES FOR HYBRID LOGIC THOMAS BOLANDER AND TORBEN BRAÜNER Abstract. Hybrid logics are a principled generalization of both modal logics and description logics. It is well-known

More information

Binary Search Tree and AVL Trees. Binary Search Tree. Binary Search Tree. Binary Search Tree. Techniques: How does the BST works?

Binary Search Tree and AVL Trees. Binary Search Tree. Binary Search Tree. Binary Search Tree. Techniques: How does the BST works? Binary Searc Tree and AVL Trees Binary Searc Tree A commonly-used data structure for storing and retrieving records in main memory PUC-Rio Eduardo S. Laber Binary Searc Tree Binary Searc Tree A commonly-used

More information

Math 489/Math 889 Stochastic Processes and Advanced Mathematical Finance Dunbar, Fall 2007

Math 489/Math 889 Stochastic Processes and Advanced Mathematical Finance Dunbar, Fall 2007 Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Math 489/Math 889 Stochastic

More information

GeorgiaFIRST Budget Structure. Commitment Control

GeorgiaFIRST Budget Structure. Commitment Control GeorgiaFIRST Budget Structure: Commitment Control GeorgiaFIRST Budget Structure The purpose of this job aid is to provide an overview of the Commitment Control module budget structure. Sections: I. Introduction

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS November 17, 2016. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question.

More information

Outline. Objective. Previous Results Our Results Discussion Current Research. 1 Motivation. 2 Model. 3 Results

Outline. Objective. Previous Results Our Results Discussion Current Research. 1 Motivation. 2 Model. 3 Results On Threshold Esteban 1 Adam 2 Ravi 3 David 4 Sergei 1 1 Stanford University 2 Harvard University 3 Yahoo! Research 4 Carleton College The 8th ACM Conference on Electronic Commerce EC 07 Outline 1 2 3 Some

More information