Monitoring and data filtering I. Classical Methods

Size: px
Start display at page:

Download "Monitoring and data filtering I. Classical Methods"

Transcription

1 Monitoring and data filtering I. Classical Methods Advanced Herd Management Dan Børge Jensen, IPH Dias 1

2 Outline Framework and Introduction Shewart Control chart Basic principles Examples: milk yield and daily gain Alarms ---- Break Moving Average Control Chart EWMA Control Chart Monitoring autocorrelation Model for autocorrelation UseEWMA ---- Break & exercises Dias 2

3 Framework Dias 3

4 Class Question: what sgoingon, and whatto do? (2 minutes) Average daily weight gain, Pig herds Results from 2 herds Gain (g) Quarter Expected Herd A Herd B Dias 4 Is the conclusion the same in both herds?

5 Introduction(2/3) So far Control: compare key figures (k) with expected results κ= θ+ e s + e o Deviation: see if significant from a statistical point of view If deviation: adjustement plan or/and implementation Problem: we assume that results can be evaluated without considering results from the previous period Dias 5

6 Introduction (3/3) Key figures regarded as a time series of observations, treated as a whole How to model the results? κ t = θ+ e st + e ot = θ+ ν t κ t : observedvalueof the keyfigure θ: true underlying value e st : sample error(biologicalvariation) e ot : observation error(observation method) Dias 6

7 The Shewart Control Chart: basic principles (1/2) Sample quality characteristic Upper Control Limit (UCL) Center Line Lower Control Limit (LCL) κ 1, κ 2,... κ n θ' Sample number, or time Dias 7 Here: all the points fall inside the CL. Process in control

8 The Shewart Control Chart: basic principles (2/2) Center line = target value CL = θ Determination of the control limits UCL t = θ + a σ t LCL t = θ -a σ t Usuallydistance parameter a = 2 or 3 If a = 2 : 2-sigma controllimit Wetest the hypothesish 0 : θ =θ a = 2 correspondsto approx. 5% precisionlevel Dias 8

9 Example7.1: milkyield I llshow you! Target value: CL = θ = kg for firstlactation Overall herd SD over 24 weeks: 490 kg milk N.Cows at beginning: 275 Control limits: UCL t = θ + a σ t LCL t = θ -a σ t Standard deviation calculated according to number of cows behind the average Dias 9

10 Example 1: milk yield Shewart control chart, 2-sigma CL Dias 10

11 Example 1: milk yield Shewart control chart, 2-sigma CL Dias 11

12 Control and warning limits (1/3) UCL and LCL determinedby a(e.g. a=2 <-> p=0.05) Choiceof significancelevel/ distance parameter: tradeoff between number of False Positives and False Negatives! Possible Scenarios: System HAS changed Low a Alarm No Alarm True Positive High a False Negative Type II Error System has NOT changed False Positive True Negative Dias 12 Type I Error

13 Class Questions(5 minutes): If you have a HIGH observation frequency (e.g. every houror every second) which sort of error should you MINIMIZE? And why? If you have a very LOW observation frequency (e.g. every quarteror every year) which sort of error should you MINIMIZE? And why? Alarm No Alarm System HAS changed True Positive False Negative System has NOT changed False Positive True Negative Dias 13

14 Control and warning limits (2/3) Sampling Frequency The more frequent κis calculated, the higher a shouldbe Average Run Length ARL=1/q ARL: expected number of obs between 2 out-of-control alarms. q: the probability of an arbitrary point exceeding the control limits Average Time to Signal ATS=ARL/ν v: sampling frequency, defined as observations per time unit Dias 14

15 Control and warning limits (2.1/3) Example: Processin control q= p a = 2 p = 0.05 Quaterly obs ARL 0 = 1/q = 1/p = 1/0.05 = 20 Obs/Alarm ATS 0 = ARL 0 /ν Two obs per second ATS 0 = ARL 0 /ν Dias 15

16 Control and warning limits (3/3) Whatis the costof a False Negative? Whatis the costof a False Positive? Alternative: useof warninglimits Dias 16

17 Dias 17 5 Minute Break

18 Pattern detection Whatdo wedetect? - Level change, outliers, increase in variation (control limits) - Trend (increase, decrease), cyclic pattern, autocorrelation Rules of thumb: 1- One point outside the control limits 2- Two out of three consecutive points outside the warning limits 3-Fourout of fiveconsecutivepoints at a distance of more than 1σ from the expected level 4-Eightconsecutivepoints on the same side of the expectedlevel Dias 18

19 Illustration of pattern detection From Example 1! Rule 4 Dias 19

20 Example 2: daily gain of growing pigs Target value: θ = CL = 775 g Precision estimates(σ) Random sampling: 20.2 g Control limits: UCL = aσ, a = 2 LCL = 775 aσ, a = 2 Dias 20

21 Example 2: daily gain of growing pigs Shewart control chart, 2-sigma CL Dias 21

22 Example 2: daily gain of growing pigs Processout of control8 obsout of 16 Seasonnal variation is to be expected in slaughter pig production If there is an expected pattern: use of other monitoring techniques to takeit intoaccount e.g. other classical techniques(presented next) or state space models (chapter 8) If no expected pattern: further analysis/ intervention Dias 22

23 Moving Average Control Charts (1/2) The moving average is the average of the most recent n observations M t κ t n+ 1 + K+ κt 1 + κt ( n) =, n t n with variance 2 σ n E.g. n = 4 M7(n) = 750 M6(n) = 744 M5(n) = 756 M4(n) = 763 Dias 23

24 Moving Average Control Charts (2/2) Using n=4, a=3 What can we conclude? Dias 24

25 Exponentially Weighted Moving Average control charts (1/3) The EWMA is a weighted average of allobservations until now z t λκ with variance, for large t, λ = t + ( 1 ) zt 1 2 σ z t 2 λ σ 2 λ The most recent observations are always given highest weights The EWMA control chart is built the same way as the Shewart control chart Dias 25

26 Exponentially Weighted Moving Average control charts (2/3) First lactation, a=2, λ=0.68 Dias 26

27 Exponentially Weighted Moving Average control charts (3/3) Choice of lambda: Small values favor detection of small shifts of θ! Can take time to detect : small lambda = low weight to new obs Shewart control chart is suggested for detecting large shifts Combination of EWMA + Shewart for both small and large shifts Dias 27

28 Check for autocorrelation - Milk Yield example Present versus previous observation Positive autocorrelation Sample autocorrelation First lactation First lactation milk yields First lactation milk yields Dias 28

29 A model for autocorrelation Model Predict next obs. Errors = Observed- predicted e e,..., e t 1, 2 Forecast error Variance Dias 29 Forecast error Control chart!

30 Control chart correlated data The point of a model: IF everything is fine THEN things progress as expected Therefore: IF things progress UN-expectedly THEN Something is wrong! Dias 30

31 EWMA for autocorrelated data Use EWMA as one-step-ahead predictor for autocorrelated data e t ˆκ t+1 z t Choose λ by minimizing the sum of the squared forecast errors = κt zt 1 t i= 1 2 e i The variance of the forecast errors is calculated as Dias 31 σ 2 e t = i = 1 t e 2 i

32 Concluding remarks Wehave shiftedfocusfrom observinga keyfigureκat time t to an entiretime series (κ 1, κ 2,... κ t ) We tried to detect changes in process(alarms) - Raw data (Shewart control chart) - Averaged data (Moving/ Exponentially Moving Average) We observed autocorrelation: model, e.g. EWMA We observed seasonality Next time: other, slightly more advanced methods for modelling! Dias 32

33 Dias 33 Break and exercises, until 5 PM

Monitoring - revisited

Monitoring - revisited Monitoring - revisited Anders Ringgaard Kristensen Slide 1 Outline Filtering techniques applied to monitoring of daily gain in slaughter pigs: Introduction Basic monitoring Shewart control charts DLM and

More information

The Kalman filter - and other methods

The Kalman filter - and other methods The Kalman filter - and other methods Anders Ringgaard Kristensen Slide 1 Outline Filtering techniques applied to monitoring of daily gain in slaughter pigs: Introduction Basic monitoring Shewart control

More information

The Kalman filter - and other methods

The Kalman filter - and other methods The Kalman filter - and other methods Anders Ringgaard Kristensen Slide 1 Outline Filtering techniques applied to monitoring of daily gain in slaughter pigs: Introduction Basic monitoring Shewart control

More information

ISyE 512 Chapter 6. Control Charts for Variables. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison

ISyE 512 Chapter 6. Control Charts for Variables. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison ISyE 512 Chapter 6 Control Charts for Variables Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: oom 3017 (Mechanical Engineering Building)

More information

Lecture # 35. Prof. John W. Sutherland. Nov. 16, 2005

Lecture # 35. Prof. John W. Sutherland. Nov. 16, 2005 Lecture # 35 Prof. John W. Sutherland Nov. 16, 2005 More on Control Charts for Individuals Last time we worked with X and Rm control charts. Remember -- only makes sense to use such a chart when the formation

More information

Control Chart for Autocorrelated Processes with Heavy Tailed Distributions

Control Chart for Autocorrelated Processes with Heavy Tailed Distributions Heldermann Verlag Economic Quality Control ISSN 0940-5151 Vol 23 (2008), No. 2, 197 206 Control Chart for Autocorrelated Processes with Heavy Tailed Distributions Keoagile Thaga Abstract: Standard control

More information

SAMPLE STANDARD DEVIATION(s) CHART UNDER THE ASSUMPTION OF MODERATENESS AND ITS PERFORMANCE ANALYSIS

SAMPLE STANDARD DEVIATION(s) CHART UNDER THE ASSUMPTION OF MODERATENESS AND ITS PERFORMANCE ANALYSIS Science SAMPLE STANDARD DEVIATION(s) CHART UNDER THE ASSUMPTION OF MODERATENESS AND ITS PERFORMANCE ANALYSIS Kalpesh S Tailor * * Assistant Professor, Department of Statistics, M K Bhavnagar University,

More information

Background. opportunities. the transformation. probability. at the lower. data come

Background. opportunities. the transformation. probability. at the lower. data come The T Chart in Minitab Statisti cal Software Background The T chart is a control chart used to monitor the amount of time between adverse events, where time is measured on a continuous scale. The T chart

More information

CHAPTER-1 BASIC CONCEPTS OF PROCESS CAPABILITY ANALYSIS

CHAPTER-1 BASIC CONCEPTS OF PROCESS CAPABILITY ANALYSIS CHAPTER-1 BASIC CONCEPTS OF PROCESS CAPABILITY ANALYSIS Manufacturing industries across the globe today face several challenges to meet international standards which are highly competitive. They also strive

More information

NEWCASTLE UNIVERSITY. School SEMESTER /2013 ACE2013. Statistics for Marketing and Management. Time allowed: 2 hours

NEWCASTLE UNIVERSITY. School SEMESTER /2013 ACE2013. Statistics for Marketing and Management. Time allowed: 2 hours NEWCASTLE UNIVERSITY School SEMESTER 2 2012/2013 Statistics for Marketing and Management Time allowed: 2 hours Candidates should attempt ALL questions. Marks for each question are indicated. However you

More information

Confidence Intervals for an Exponential Lifetime Percentile

Confidence Intervals for an Exponential Lifetime Percentile Chapter 407 Confidence Intervals for an Exponential Lifetime Percentile Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for a percentile

More information

ON PROPERTIES OF BINOMIAL Q-CHARTS FOR ATTJUBUTES. Cbarles P. Quesenberry. Institute of Statistics Mimeo Series Number 2253.

ON PROPERTIES OF BINOMIAL Q-CHARTS FOR ATTJUBUTES. Cbarles P. Quesenberry. Institute of Statistics Mimeo Series Number 2253. --,. -,..~ / ON PROPERTIES OF BINOMIAL Q-CHARTS FOR ATTJUBUTES by Cbarles P. Quesenberry Institute of Statistics Mimeo Series Number 2253 May, 1993 NORTH CAROLINA STATE UNIVERSITY Raleigh, North Carolina

More information

Reading the Tea Leaves: Model Uncertainty, Robust Foreca. Forecasts, and the Autocorrelation of Analysts Forecast Errors

Reading the Tea Leaves: Model Uncertainty, Robust Foreca. Forecasts, and the Autocorrelation of Analysts Forecast Errors Reading the Tea Leaves: Model Uncertainty, Robust Forecasts, and the Autocorrelation of Analysts Forecast Errors December 1, 2016 Table of Contents Introduction Autocorrelation Puzzle Hansen-Sargent Autocorrelation

More information

Statistics for Engineering, 4C3/6C3, 2012 Assignment 4

Statistics for Engineering, 4C3/6C3, 2012 Assignment 4 Statistics for Engineering, 4C3/6C3, 2012 Assignment 4 Kevin Dunn, dunnkg@mcmaster.ca Due date: 06 February 2012, at noon Question 1 [1] Describe what S and a n represent in the derivation of the Shewhart

More information

MAX-CUSUM CHART FOR AUTOCORRELATED PROCESSES

MAX-CUSUM CHART FOR AUTOCORRELATED PROCESSES Statistica Sinica 15(2005), 527-546 MAX-CUSUM CHART FOR AUTOCORRELATED PROCESSES Smiley W. Cheng and Keoagile Thaga University of Manitoba and University of Botswana Abstract: A Cumulative Sum (CUSUM)

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence Measures of Variation Section -5 1 Waiting Times of Bank Customers at Different Banks in minutes Jefferson Valley Bank 6.5 6.6 6.7 6.8 7.1 7.3 7.4 Bank of Providence 4. 5.4 5.8 6. 6.7 8.5 9.3 10.0 Mean

More information

NORTH CAROLINA STATE UNIVERSITY Raleigh, North Carolina

NORTH CAROLINA STATE UNIVERSITY Raleigh, North Carolina ./. ::'-," SUBGROUP SIZE DESIGN AND SOME COMPARISONS OF Q(X) crrarts WITH CLASSICAL X CHARTS by Charles P. Quesenberry Institute of Statistics Mimeo Series Number 2233 September, 1992 NORTH CAROLINA STATE

More information

Simultaneous Use of X and R Charts for Positively Correlated Data for Medium Sample Size

Simultaneous Use of X and R Charts for Positively Correlated Data for Medium Sample Size International Journal of Performability Engineering Vol. 11, No. 1, January 2015, pp. 15-22. RAMS Consultants Printed in India Simultaneous Use of X and R Charts for Positively Correlated Data for Medium

More information

SPC Binomial Q-Charts for Short or long Runs

SPC Binomial Q-Charts for Short or long Runs SPC Binomial Q-Charts for Short or long Runs CHARLES P. QUESENBERRY North Carolina State University, Raleigh, North Carolina 27695-8203 Approximately normalized control charts, called Q-Charts, are proposed

More information

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS

ARIMA ANALYSIS WITH INTERVENTIONS / OUTLIERS TASK Run intervention analysis on the price of stock M: model a function of the price as ARIMA with outliers and interventions. SOLUTION The document below is an abridged version of the solution provided

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 850 Introduction Cox proportional hazards regression models the relationship between the hazard function λ( t X ) time and k covariates using the following formula λ log λ ( t X ) ( t) 0 = β1 X1

More information

Market Risk Analysis Volume II. Practical Financial Econometrics

Market Risk Analysis Volume II. Practical Financial Econometrics Market Risk Analysis Volume II Practical Financial Econometrics Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume II xiii xvii xx xxii xxvi

More information

CSC Advanced Scientific Programming, Spring Descriptive Statistics

CSC Advanced Scientific Programming, Spring Descriptive Statistics CSC 223 - Advanced Scientific Programming, Spring 2018 Descriptive Statistics Overview Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

More information

Properties of Probability Models: Part Two. What they forgot to tell you about the Gammas

Properties of Probability Models: Part Two. What they forgot to tell you about the Gammas Quality Digest Daily, September 1, 2015 Manuscript 285 What they forgot to tell you about the Gammas Donald J. Wheeler Clear thinking and simplicity of analysis require concise, clear, and correct notions

More information

Dashboard Terminology. December 2017

Dashboard Terminology. December 2017 Dashboard Terminology December 2017 Contents Green Boundary O/E Ratio Equity Ratio Ideal Level Standard Deviation Z-Score Statistical process control SPC methods Run chart Control chart Cumulative sum

More information

CONSTRUCTION OF DOUBLE SAMPLING s-control CHARTS FOR AGILE MANUFACTURING

CONSTRUCTION OF DOUBLE SAMPLING s-control CHARTS FOR AGILE MANUFACTURING QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL Qual. Reliab. Engng. Int. 00; 18: 343 355 DOI: 10.100/qre.466) CONSTRUCTION OF DOUBLE SAMPLING s-control CHARTS FOR AGILE MANUFACTURING DAVID HE AND ARSEN

More information

9 Cumulative Sum and Exponentially Weighted Moving Average Control Charts

9 Cumulative Sum and Exponentially Weighted Moving Average Control Charts 9 Cumulative Sum and Exponentially Weighted Moving Average Control Charts 9.1 The Cumulative Sum Control Chart The x-chart is a good method for monitoring a process mean when the magnitude of the shift

More information

ENGM 720 Statistical Process Control 4/27/2016. REVIEW SHEET FOR FINAL Topics

ENGM 720 Statistical Process Control 4/27/2016. REVIEW SHEET FOR FINAL Topics REVIEW SHEET FOR FINAL Topics Introduction to Statistical Quality Control 1. Definition of Quality (p. 6) 2. Cost of Quality 3. Review of Elementary Statistics** a. Stem & Leaf Plot b. Histograms c. Box

More information

Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach

Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach P1.T4. Valuation & Risk Models Linda Allen, Jacob Boudoukh and Anthony Saunders, Understanding Market, Credit and Operational Risk: The Value at Risk Approach Bionic Turtle FRM Study Notes Reading 26 By

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Technical Note: An Improved Range Chart for Normal and Long-Tailed Symmetrical Distributions

Technical Note: An Improved Range Chart for Normal and Long-Tailed Symmetrical Distributions Technical Note: An Improved Range Chart for Normal and Long-Tailed Symmetrical Distributions Pandu Tadikamalla, 1 Mihai Banciu, 1 Dana Popescu 2 1 Joseph M. Katz Graduate School of Business, University

More information

Numerical Descriptive Measures. Measures of Center: Mean and Median

Numerical Descriptive Measures. Measures of Center: Mean and Median Steve Sawin Statistics Numerical Descriptive Measures Having seen the shape of a distribution by looking at the histogram, the two most obvious questions to ask about the specific distribution is where

More information

WHY ARE PROJECTS ALWAYS LATE?

WHY ARE PROJECTS ALWAYS LATE? WHY ARE PROJECTS ALWAYS LATE? (what can the Project Manager DO about that?) Craig Henderson, MBA, PMP ARVEST Bank Operations Introduction PM Basics FIO GID KISS (Figure it out) (Get it done) (Keep it simple,

More information

Control Charts. A control chart consists of:

Control Charts. A control chart consists of: Control Charts The control chart is a graph that represents the variability of a process variable over time. Control charts are used to determine whether a process is in a state of statistical control,

More information

Martingales, Part II, with Exercise Due 9/21

Martingales, Part II, with Exercise Due 9/21 Econ. 487a Fall 1998 C.Sims Martingales, Part II, with Exercise Due 9/21 1. Brownian Motion A process {X t } is a Brownian Motion if and only if i. it is a martingale, ii. t is a continuous time parameter

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 126 Spring 2006 Final Exam Wednesday, May 17, 8am 11am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 180 minutes to complete the final. The final consists of

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Continuous RVs (Normal); Confidence Intervals Outline Continuous random variables Normal distribution CLT Point estimation Confidence intervals http://www.isrec.isb-sib.ch/~darlene/geneve/

More information

Tests for One Variance

Tests for One Variance Chapter 65 Introduction Occasionally, researchers are interested in the estimation of the variance (or standard deviation) rather than the mean. This module calculates the sample size and performs power

More information

2. The sum of all the probabilities in the sample space must add up to 1

2. The sum of all the probabilities in the sample space must add up to 1 Continuous Random Variables and Continuous Probability Distributions Continuous Random Variable: A variable X that can take values on an interval; key feature remember is that the values of the variable

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

... especially dynamic volatility

... especially dynamic volatility More about volatility...... especially dynamic volatility Add a little wind and we get a little increase in volatility. Add a hurricane and we get a huge increase in volatility. (c) 2017, Gary R. Evans

More information

Modeling dynamic diurnal patterns in high frequency financial data

Modeling dynamic diurnal patterns in high frequency financial data Modeling dynamic diurnal patterns in high frequency financial data Ryoko Ito 1 Faculty of Economics, Cambridge University Email: ri239@cam.ac.uk Website: www.itoryoko.com This paper: Cambridge Working

More information

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences

Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Chapter 510 Non-Inferiority Tests for Two Means in a 2x2 Cross-Over Design using Differences Introduction This procedure computes power and sample size for non-inferiority tests in 2x2 cross-over designs

More information

Monitoring Processes with Highly Censored Data

Monitoring Processes with Highly Censored Data Monitoring Processes with Highly Censored Data Stefan H. Steiner and R. Jock MacKay Dept. of Statistics and Actuarial Sciences University of Waterloo Waterloo, N2L 3G1 Canada The need for process monitoring

More information

Which GARCH Model for Option Valuation? By Peter Christoffersen and Kris Jacobs

Which GARCH Model for Option Valuation? By Peter Christoffersen and Kris Jacobs Online Appendix Sample Index Returns Which GARCH Model for Option Valuation? By Peter Christoffersen and Kris Jacobs In order to give an idea of the differences in returns over the sample, Figure A.1 plots

More information

1/2 2. Mean & variance. Mean & standard deviation

1/2 2. Mean & variance. Mean & standard deviation Question # 1 of 10 ( Start time: 09:46:03 PM ) Total Marks: 1 The probability distribution of X is given below. x: 0 1 2 3 4 p(x): 0.73? 0.06 0.04 0.01 What is the value of missing probability? 0.54 0.16

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

Generalized Additive Modelling for Sample Extremes: An Environmental Example

Generalized Additive Modelling for Sample Extremes: An Environmental Example Generalized Additive Modelling for Sample Extremes: An Environmental Example V. Chavez-Demoulin Department of Mathematics Swiss Federal Institute of Technology Tokyo, March 2007 Changes in extremes? Likely

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

FINA 695 Assignment 1 Simon Foucher

FINA 695 Assignment 1 Simon Foucher Answer the following questions. Show your work. Due in the class on March 29. (postponed 1 week) You are expected to do the assignment on your own. Please do not take help from others. 1. (a) The current

More information

THE EUROSYSTEM S EXPERIENCE WITH FORECASTING AUTONOMOUS FACTORS AND EXCESS RESERVES

THE EUROSYSTEM S EXPERIENCE WITH FORECASTING AUTONOMOUS FACTORS AND EXCESS RESERVES THE EUROSYSTEM S EXPERIENCE WITH FORECASTING AUTONOMOUS FACTORS AND EXCESS RESERVES reserve requirements, together with its forecasts of autonomous excess reserves, form the basis for the calibration of

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributions Probability distributions Discrete random variables Expected values (mean) Variance Linear functions - mean & standard deviation Standard deviation 1 Probability distributions

More information

Autocorrelated SPC for Non-Normal Situations. Clear Water Bay, Kowloon, Hong Kong

Autocorrelated SPC for Non-Normal Situations. Clear Water Bay, Kowloon, Hong Kong QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL Qual. Reliab. Engng. Int. 2005; 21:131 161 Published online 27 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/qre.612 Research

More information

A Bayesian Control Chart for the Coecient of Variation in the Case of Pooled Samples

A Bayesian Control Chart for the Coecient of Variation in the Case of Pooled Samples A Bayesian Control Chart for the Coecient of Variation in the Case of Pooled Samples R van Zyl a,, AJ van der Merwe b a PAREXEL International, Bloemfontein, South Africa b University of the Free State,

More information

Stochastic Models. Statistics. Walt Pohl. February 28, Department of Business Administration

Stochastic Models. Statistics. Walt Pohl. February 28, Department of Business Administration Stochastic Models Statistics Walt Pohl Universität Zürich Department of Business Administration February 28, 2013 The Value of Statistics Business people tend to underestimate the value of statistics.

More information

Alternatives to Shewhart Charts

Alternatives to Shewhart Charts Alternatves to Shewhart Charts CUSUM & EWMA S Wongsa Overvew Revstng Shewhart Control Charts Cumulatve Sum (CUSUM) Control Chart Eponentally Weghted Movng Average (EWMA) Control Chart 2 Revstng Shewhart

More information

Measuring the potential value of demand response using historical market data

Measuring the potential value of demand response using historical market data Measuring the potential value of demand response using historical market data Graziano Abrate, University of Piemonte Orientale and FEEM Daniele Benintendi, FEEM Milano, 24 September 2009 Agenda 1. Motivation

More information

Planning Sample Size for Randomized Evaluations

Planning Sample Size for Randomized Evaluations Planning Sample Size for Randomized Evaluations Jed Friedman, World Bank SIEF Regional Impact Evaluation Workshop Beijing, China July 2009 Adapted from slides by Esther Duflo, J-PAL Planning Sample Size

More information

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay Homework Assignment #2 Solution April 25, 2003 Each HW problem is 10 points throughout this quarter.

More information

DATA ANALYSIS AND SOFTWARE

DATA ANALYSIS AND SOFTWARE DATA ANALYSIS AND SOFTWARE 3 cr, pass/fail http://datacourse.notlong.com Session 27.11.2009 (Keijo Ruohonen): QUALITY ASSURANCE WITH MATLAB 1 QUALITY ASSURANCE WHAT IS IT? Quality Design (actually part

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

How To: Perform a Process Capability Analysis Using STATGRAPHICS Centurion

How To: Perform a Process Capability Analysis Using STATGRAPHICS Centurion How To: Perform a Process Capability Analysis Using STATGRAPHICS Centurion by Dr. Neil W. Polhemus July 17, 2005 Introduction For individuals concerned with the quality of the goods and services that they

More information

Market Volatility and Risk Proxies

Market Volatility and Risk Proxies Market Volatility and Risk Proxies... an introduction to the concepts 019 Gary R. Evans. This slide set by Gary R. Evans is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 42

STA258H5. Al Nosedal and Alison Weir. Winter Al Nosedal and Alison Weir STA258H5 Winter / 42 STA258H5 Al Nosedal and Alison Weir Winter 2017 Al Nosedal and Alison Weir STA258H5 Winter 2017 1 / 42 CONFIDENCE INTERVALS FOR σ 2 Al Nosedal and Alison Weir STA258H5 Winter 2017 2 / 42 Background We

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

Simple Random Sampling. Sampling Distribution

Simple Random Sampling. Sampling Distribution STAT 503 Sampling Distribution and Statistical Estimation 1 Simple Random Sampling Simple random sampling selects with equal chance from (available) members of population. The resulting sample is a simple

More information

Bus 701: Advanced Statistics. Harald Schmidbauer

Bus 701: Advanced Statistics. Harald Schmidbauer Bus 701: Advanced Statistics Harald Schmidbauer c Harald Schmidbauer & Angi Rösch, 2008 About These Slides The present slides are not self-contained; they need to be explained and discussed. They contain

More information

Audit Sampling: Steering in the Right Direction

Audit Sampling: Steering in the Right Direction Audit Sampling: Steering in the Right Direction Jason McGlamery Director Audit Sampling Ryan, LLC Dallas, TX Jason.McGlamery@ryan.com Brad Tomlinson Senior Manager (non-attorney professional) Zaino Hall

More information

CHAPTER III METHODOLOGY

CHAPTER III METHODOLOGY CHAPTER III METHODOLOGY 3.1 Description In this chapter, the calculation steps, which will be done in the analysis section, will be explained. The theoretical foundations and literature reviews are already

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

Economic statistical design for x-bar control charts under non-normal distributed data with Weibull in-control time

Economic statistical design for x-bar control charts under non-normal distributed data with Weibull in-control time Journal of the Operational Research Society (2011) 62, 750 --759 2011 Operational Research Society Ltd. All rights reserved. 0160-5682/11 www.palgrave-journals.com/jors/ Economic statistical design for

More information

Planning Sample Size for Randomized Evaluations Esther Duflo J-PAL

Planning Sample Size for Randomized Evaluations Esther Duflo J-PAL Planning Sample Size for Randomized Evaluations Esther Duflo J-PAL povertyactionlab.org Planning Sample Size for Randomized Evaluations General question: How large does the sample need to be to credibly

More information

3.3-Measures of Variation

3.3-Measures of Variation 3.3-Measures of Variation Variation: Variation is a measure of the spread or dispersion of a set of data from its center. Common methods of measuring variation include: 1. Range. Standard Deviation 3.

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

The Control Chart for Attributes

The Control Chart for Attributes The Control Chart for Attributes Topic The Control charts for attributes The p and np charts Variable sample size Sensitivity of the p chart 1 Types of Data Variable data Product characteristic that can

More information

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices Bachelier Finance Society Meeting Toronto 2010 Henley Business School at Reading Contact Author : d.ledermann@icmacentre.ac.uk Alexander

More information

Investing in a Robotic Milking System: A Monte Carlo Simulation Analysis

Investing in a Robotic Milking System: A Monte Carlo Simulation Analysis J. Dairy Sci. 85:2207 2214 American Dairy Science Association, 2002. Investing in a Robotic Milking System: A Monte Carlo Simulation Analysis J. Hyde and P. Engel Department of Agricultural Economics and

More information

Applied Macro Finance

Applied Macro Finance Master in Money and Finance Goethe University Frankfurt Week 8: An Investment Process for Stock Selection Fall 2011/2012 Please note the disclaimer on the last page Announcements December, 20 th, 17h-20h:

More information

Confidence Intervals for the Difference Between Two Means with Tolerance Probability

Confidence Intervals for the Difference Between Two Means with Tolerance Probability Chapter 47 Confidence Intervals for the Difference Between Two Means with Tolerance Probability Introduction This procedure calculates the sample size necessary to achieve a specified distance from the

More information

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data.

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data. -3: Measure of Central Tendency Chapter : Descriptive Statistics The value at the center or middle of a data set. It is a tool for analyzing data. Part 1: Basic concepts of Measures of Center Ex. Data

More information

The Robust Repeated Median Velocity System Working Paper October 2005 Copyright 2004 Dennis Meyers

The Robust Repeated Median Velocity System Working Paper October 2005 Copyright 2004 Dennis Meyers The Robust Repeated Median Velocity System Working Paper October 2005 Copyright 2004 Dennis Meyers In a previous article we examined a trading system that used the velocity of prices fit by a Least Squares

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12)

Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12) Wk 2 Hrs 1 (Tue, Jan 10) Wk 2 - Hr 2 and 3 (Thur, Jan 12) Descriptive statistics: - Measures of centrality (Mean, median, mode, trimmed mean) - Measures of spread (MAD, Standard deviation, variance) -

More information

This paper studies the X control chart in the situation that the limits are estimated and the process distribution is not normal.

This paper studies the X control chart in the situation that the limits are estimated and the process distribution is not normal. Research Article (www.interscience.wiley.com) DOI: 10.1002/qre.1029 Published online 26 June 2009 in Wiley InterScience The X Control Chart under Non-Normality Marit Schoonhoven and Ronald J. M. M. Does

More information

The SAS System 11:03 Monday, November 11,

The SAS System 11:03 Monday, November 11, The SAS System 11:3 Monday, November 11, 213 1 The CONTENTS Procedure Data Set Name BIO.AUTO_PREMIUMS Observations 5 Member Type DATA Variables 3 Engine V9 Indexes Created Monday, November 11, 213 11:4:19

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Actuarial Society of India EXAMINATIONS

Actuarial Society of India EXAMINATIONS Actuarial Society of India EXAMINATIONS 7 th June 005 Subject CT6 Statistical Models Time allowed: Three Hours (0.30 am 3.30 pm) INSTRUCTIONS TO THE CANDIDATES. Do not write your name anywhere on the answer

More information

Tests for Two Variances

Tests for Two Variances Chapter 655 Tests for Two Variances Introduction Occasionally, researchers are interested in comparing the variances (or standard deviations) of two groups rather than their means. This module calculates

More information

Power functions of the Shewhart control chart

Power functions of the Shewhart control chart Journal of Physics: Conference Series Power functions of the Shewhart control chart To cite this article: M B C Khoo 013 J. Phys.: Conf. Ser. 43 01008 View the article online for updates and enhancements.

More information

Unit 2 Measures of Variation

Unit 2 Measures of Variation 1. (a) Weight in grams (w) 6 < w 8 4 8 < w 32 < w 1 6 1 < w 1 92 1 < w 16 8 6 Median 111, Inter-quartile range 3 Distance in km (d) < d 1 1 < d 2 17 2 < d 3 22 3 < d 4 28 4 < d 33 < d 6 36 Median 2.2,

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Sample Exam 3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Question 1-7: The managers of a brokerage firm are interested in finding out if the

More information

ANALYZE. Chapter 2-3. Short Run SPC Institute of Industrial Engineers 2-3-1

ANALYZE. Chapter 2-3. Short Run SPC Institute of Industrial Engineers 2-3-1 Chapter 2-3 Short Run SPC 2-3-1 Consider the Following Low production quantity One process produces many different items Different operators use the same equipment These are all what we refer to as short

More information

Tests for Two ROC Curves

Tests for Two ROC Curves Chapter 65 Tests for Two ROC Curves Introduction Receiver operating characteristic (ROC) curves are used to summarize the accuracy of diagnostic tests. The technique is used when a criterion variable is

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. It is Time for Homework Again! ( ω `) Please hand in your homework. Third homework will be posted on the website,

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information