A Model for Tax Advantages of Portfolios with Many Assets

Size: px
Start display at page:

Download "A Model for Tax Advantages of Portfolios with Many Assets"

Transcription

1 A Model for Tax Advantages of Portfolios with Many Assets John R. Birge The University of Chicago Graduate School of Business, Chicago, Illinois 6637, USA Song Yang Northwestern University, IEMS Department, Evanston, Illinois 628, USA August 29, 25 Abstract Taxable portfolios present challenges for optimization models with even a limited number of assets. Holding many assets, however, has a distinct tax advantage over holding few assets. In this paper, we develop a model that takes an extreme view of a portfolio as a continuum of assets to gain the broadest possible advantage from holding many assets. We find the optimal strategy for trading in this portfolio in the absence of transaction costs and develop bounding approximations on the optimal value. We compare the results in a simulation study to a portfolio consisting only of a market index and show that the multi-asset portfolio s tax advantage can lead either to significant consumption or bequest increases. This work was supported in part by the National Science Foundation under Grants DMI-2429 and and by The University of Chicago Graduate School of Business. We gratefully acknowledge comments from Antje Berndt, George Constantinides, Victor DeMiguel, Xin Guo, Retsef Levi, David Luenberger, James Primbs, Stan Uryasev, and other participants at the Financial Engineering Seminar at Cornell University and the Conference on Risk Management and Quantitative Finance at the University of Florida. 1

2 2 Key Words: Taxes, portfolio optimization 1 Introduction Taxes present complications for dynamic portfolio optimization due to the explosion in potential portfolio states that accompanies assets with many cost bases and the non-convexity imposed by high short-term and lower long-term tax rates. Finding optimal strategies with even two assets (see, e.g., Dybvig and Koo (1996) and DeMiguel and Uppal (24)) leads to difficult optimization problems. While limiting the number of assets (or treating groups of assets as a single asset category) may have little effect on optimal non-taxable portfolios, such aggregations for taxable portfolios cannot capture a major individual investor benefit of holding many individual assets to use losses to offset gains and to take advantage of tax basis re-setting at death. This paper aims to quantify this advantages for holding many assets over holding a single asset (e.g., a market index fund) in each asset class. Other relevant papers on the effect of taxes on portfolios include the seminal papers by Constantinides and Scholes (198) and Constantinides (1983, 1984). Constantinides and Scholes show that capital gains taxes can be effectively deferred until death (and thus avoided completely) with the use of derivatives assuming zero transaction costs. Constantinides (1983) proves that an optimal policy (with no transaction costs and equal long-term and short-term rates) is to realize losses as soon as they occur and to defer capital gains until a forced liquidation. Constantinides (1984) considers differences in short-term and long-term rates and provides a critical ratio for the decision to realize a long-term gain (and, thereby, re-set the tax basis for a potential short-term loss). This paper also includes a computational study of different policies including transaction costs that supports a policy of annually realizing short-term losses and long-term gains with sufficiently high short to long-term rate ratios.

3 3 In more recent studies, Dybvig and Kou (1996) and DeMiguel and Uppal (24) find optimal policies for small portfolios using the exact tax basis. Studies by Dammon, Spatt, and Zhang (21, 24), Garlappi, Naik and Slive (21), and Gallmeyer, Kaniel, and Tompaidis (21) use the average tax basis. In addition, these studies assume full use of capital losses (in contrast to legal limitations) and, in many cases, allow wash sales that are also prohibited under current U.S. guidelines. In contrast, Gallmeyer and Srivastava (23) consider a model with limitations on tax loss uses and without wash sales. Their results generally imply lower equity positions than would be held with unlimited tax loss rebates and allowable wash sales. Other results from this set of papers include the observations in DeMiguel and Uppal (24) that the exact tax basis and average tax basis give similar results, in Garlappi, et al. (21) that multiple assets create advantages over a single periodically re-balanced fund, and in Gallmeyer, et al. (21) that short sales costs can significantly alter optimal portfolio choice. Dammon, et al. (24) also show how tax-deferral options can influence optimal portfolio choice, while Huang (23) shows that location of assets in either a taxable or tax-deferred account can be separated from the allocation of funds to those assets. Other tax considerations include studies of asset pricing in the context of taxes, such as Ross (1987), Dermody and Rockafellar (1991, 1995), and Wang and Poon (2). Our approach in this paper takes a different view of portfolio composition and the implications of taxes by explicitly considering the value of holding multiple assets. This approach follows Garlappi, et al. (21), to some extent, but, instead of considering only a small number of assets that are amenable to exact optimization, we will follow simple policies that can consider any number of assets. The intuitive motivation is that a portfolio with a large number of assets often has loss positions that can be used to offset gains. Our goal is to describe the potential of such portfolios to offset taxes purely through diversification without incurring costs due to short sales or derivative

4 4 purchases. Our numerical results show that this potential can be considerable, equivalent, in a typical example of 5% annual portfolio liquidation, to an average annual consumption increase over 1 years of 5% over a single-fund portfolio when bequest amounts are held constant or to a 7% increase in bequest amount after 25 years when consumption is equal for the index and multi-asset portfolio. This result does not include the tax consequences of rebalances within the single fund or the use of (a limited amount of) capital losses to offset income taxed at a higher rate, suggesting that investors in multiple individual assets may gain significant tax advantages over those holding indexes, including exchange-traded index funds with limited embedded capital gains. In the next section, we describe the market model and portfolio representation and provide some comparison results among different basic portfolios. Section 3 presents a stochastic dominance argument for the optimal trading strategy in the presented model. Section 4 provides a bounding approximation using a periodic discretization of the asset price distribution. Simulation results appear in Section 5 with conclusions in Section 6. 2 Model 2.1 Market Model Our basic model takes a departure from other portfolio models by our assuming an infinite number of assets to test the limits of diversification in multiple assets. In this way, the portfolio will be characterized by a measure over share prices instead of a number of shares or value of an individual asset. We assume that portfolio rebalances occur only at fixed time intervals (e.g., years) indexed by t. We then say that the portfolio consists of a continuum of assets such that each asset, indexed by θ Θ, has a price S t (θ) with distribution such that, given S t 1 (θ), ln(s t (θ)/s t 1 (θ)) = µ + σ W + σw θ, (1)

5 5 where W and W θ are independent standard normal random variables and W θ1 is independent of W θ2 for any θ 1 θ 2. In this way, each asset price has a component that depends on the market and an independent component. Our basic assumption is that this continuum of assets ensures full diversification of the idiosyncratic risk of each asset. The result of full diversification is that this portfolio does not require rebalancing to maintain diversification and allow for the gains from volatility pumping (as in, e.g., Luenberger (1998)). Defining such a portfolio precisely requires care due to the non-measurability in general of processes with continuous parameters (see, e.g., examples in Doob (1953, p. 67) and Judd (1985)). Khan and Sung (1997, 21, 23) resolve this dilemma for arbitrage pricing theory (Ross (1976)) using hyperfinite processes (see also Sun (1998)) and the Loeb (1975) product measure to obtain a consistent characterization of full diversification. Our interests in this paper focus on the extremes of portfolio diversification and the limiting case of convergence of the portfolio prices in distribution to a fixed (and, in our analysis, stationary) distribution. We assume this limiting case to bound results for discrete-asset portfolios. To keep the state space manageable, we assume the tax basis for each asset is normalized to 1. The total initial portfolio value is also 1, and the initial carryover loss is. The asset prices in the portfolio at t = 1, conditioning on the return of the market µ 1 = µ + σ W (1), then follow a lognormal distribution where the mean of the log-return is µ 1 and the standard deviation is σ. The total portfolio value, given the market return, is then: e µ 1+y f(y)dy = e µ 1+σ 2 /2, where f(y) is the density of a normal random variable with mean and standard deviation σ. As noted earlier, we wish to restrict ourselves to simple trading strategies that we can analyze for this case of infinitely many assets. For our analysis here, we also assume no transaction costs. Since we have an infinite choice of assets, we do not face a wash sales restriction (i.e., we can always

6 6 choose an identically distributed but different asset from that sold). We assume that all capital gains are long-term and that capital losses can only be used to offset capital gains. As shown in Constantinides (1983), in this context without transaction costs and with a single long-term tax rate, it is optimal to realize losses as they occur and to defer capital gains until a forced liquidation. We assume here that consumption is only possible through asset sales (i.e., no borrowing) and that, therefore, the investor may need to take capital gains. Our strategy in that case is to sell assets with the least capital gain first. The result is the following trading strategy. Trading Strategy: Realize all capital losses in each period, regardless of consumption; When necessary to realize a capital gain in order to meet the consumption need, sell assets with the lowest embedded gain first; Do not realize capital gains when not necessary for consumption. We suppose that consumption in each period t is C t (generally a fraction of wealth as in Samuelson (1969) and Merton (1969) models). All sale proceeds at t minus C t and taxes are reinvested in equivalent assets and again have a tax basis of 1. In this way, the tax basis of all assets remains at 1. Calculations for the strategy going forward should follow each remaining portfolio asset s price (but this would create a very complex model). To simplify the analysis, we will assume that the prices of all remaining assets will be clustered at a finite number of points representing distinct intervals of assets prices. This approximation effectively replaces the integral (sum) of independent lognormal random variables with different starting prices by a single lognormal distribution. We will show how these points can obtain both lower and upper bounds on the portfolio value.

7 7 2.2 Portfolio Model To track the portfolio over times, our assumed state will consist of a measure ν t (consisting of continuous and singular components) on the prices of assets in the portfolio and the carryover loss L t. The initial portfolio measure ν consists of an atom at 1 with mass 1 and carryover loss L =. Given that the log-return in year 1 is µ(ω), the portfolio at year 1 before trading has a measure ν 1 corresponding to the lognormal density with mean e µ(ω)+σ2 /2 as described earlier. 2.3 Optimal Problem Formulation Based on the above model, the inter-temporal investment-consumption problem can be described as an optimization problem. We state the problem formally but will develop a simple optimal policy. We assume a data process (determining here the market return and time of death), ω := {ω t : t =, 1, 2,...} in a (canonical) probability space (Ω, Σ, P ). Associated with the data process is a filtration IF := {Σ t } T t=, where Σ t := σ(ω t ) is the σ field of the history process ω t := {ω,..., ω t } and the Σ t satisfy {, Ω} Σ Σ. In this case, our states are random measures ν t (ω) on the current prices of assets in the portfolio and a random variable L t (ω) representing the carryover losses at t. The controls or actions in each state are represented by a measure µ t (ω). In addition, we define an outgoing portfolio (after sales) by νt, C t as consumption at time t; R t as the amount sold and reinvested at t; G t as the taxable gain at time t; and V t as the total wealth (and bequest at T ). If we define this decision process as µ t (ω) M, where M is the space of finite measures on R +, we can let x t = (µ t, ν t, νt, L t, C t, R t, G t, W t ) be the decision process in the product space, X, of the products of M M M R 5 for each t =, 1,.... By defining a σ-field X on X (using, for example, a metric on measures), we can formalize that x t is Σ-measurable. To obtain adaptive control, we also require x t to be Σ t -measurable. A characterization of this nonanticipative property is that x t (ω) = E[x t (ω) Σ t ] a.s., t =, 1, 2,...,, where E[ Σ t ] is conditional expectation with respect to

8 8 the σ field Σ t. Using the projection operator Π t : z π t z := E[z Σ t ], t =, 1, 2,...,, this is equivalent to (I Π t )x t =, t =, 1, 2,...,. We then let N denote this closed linear subspace of nonanticipative processes defined for X, so that the optimization is over x N. Other notation in the following formulation includes T, horizon length (or time of death assumed here for one life and where T (ω) is necessarily Σ T -measurable); B, the σ-algebra of Lebesque measurable sets of R; u, the utility (assumed concave and increasing) of intermediate consumption ; U, the utility (assumed concave and increasing) of a bequest at T ; ρ, a subjective, constant one-period discount rate. With this formal setup, we can then form the optimization problem as follows. T (ω) Max x N F (x) = E[ ( 1 + ρ )t u(c t (ω)) + ( 1 + ρ )T (ω) U(V T (ω) (ω))] (2) t=1 s.t. : ν (B) = 1 1 B; B B, (3) ν t (ω, B) = ν t(ω, B) µ t (ω, B) B (R t (ω)), a.s., B B, ν t (ω, B) = ( t = 1,..., T (ω) 1; (4) 1 xe µ+σ W t(ω)+σy B f(y)dy)ν t 1 (ω, dx), B B, G t (ω) L t (ω) 1 C t (ω) + R t (ω) = 1 (x 1)µ t (ω, dx) t = 1,..., T (ω); (5) (1 x)µ t (ω, dx) L t 1 (ω), t = 1,..., T (ω) 1; (6) xµ t (ω, dx) τg t (ω), t = 1,..., T (ω) 1; (7) G t (ω), L t (ω), C t (ω), R t (ω), a.s., t = 1,..., T (ω) 1; (8) V t (ω) = ν t (ω, dx), t = 1,..., T (ω). (9) The objective is the discounted cumulative expected utility for consumption and bequest. Con-

9 9 straint (3) gives the initial endowment; Constraints (4) ensure no short positions at any price asset; Constraints (5) give the dynamics of determining the distribution in the next period; Constraints (6-8), together with the assumption of concave, increasing utilities, ensures that capital gains taxes and re-investment are subtracted from sales before consumption and that losses, if any remain, are carried over to the next period. Constraints (9) keeps the full wealth process. 3 Optimal Trading Strategy As shown in Dammon, Spatt, and Zhang (21), optimal consumption will vary according to relative values of the utility functions for consumption and bequest and will also be influenced by the embedded capital gain in the portfolio. Our goal here is not to consider the relative effects of the consumption decisions but rather to determine optimal liquidations to finance given consumption or bequest levels. We first demonstrate a general result on the value function. In contrast to other results that hold for any sample path of prices, the optimal policy of selling assets with the lowest price first does not hold on all sample paths in the general case with multiple random assets. 1 Instead of using a sample path argument, we will prove the result using stochastic 2 dominance and the assumptions on the utility functions. The form of stochastic dominance here is, for two measures A and B on R, that A dominates B (A B) if z A(dy) z B(dy) z R. We suppose that Problem (2-9) 1 As an example, suppose that an investor has one share each of two assets A and B where each has a cost basis of 1 while the current prices are S A = 2 and S B = 3 respectively. Suppose in the next period, that S A 1 = 1 and S B 1 = 6. If we follow the proposed strategy in the theorem, we sell.5 share of A now and then.5 Share of A and 1/12 share of B in the next period to finance consumption. The result is a capital gain of.5(2 1) =.5 now and (1/12)(6 1) = 5/12 at time 1, for a total capital gain of 11/12. If, however, we sell B now, then we can sell 1/3 share of B now followed by 1 share of A at time 1. In that case, the total capital gain is 2/3 < 11/12; thus, on this sample path, the strategy is not optimal. 2 We use stochastic dominance although the measures µ are not probability measures.

10 1 can be interpreted as a dynamic program with a Σ t -measurable state, (ν t (ω), L t(ω)) at time t and value function, F t (ν t (ω), L t(ω)), as an optimal continuation from that state for periods t + 1 to T (ω). Lemma 3.1 If V 1 t (ω) = ν 1 t (ω) ν 2 t yνt 1 (ω), a.s.,, then F t (ν 1 t (ω, dy) yν 2 t (ω, dy) = Vt 2 (ω), a.s., L 1 t (ω) L 2 t (ω), and (ω), L 1 t (ω)) F t (ν 2 t (ω), L 2 t (ω)), a.s., for all t 1. Proof. We proceed by backward induction on t and note that, for t = T (ω), the result holds since U is an increasing function. We assume that the result holds for all t + 1 t T (ω) for all ω and wish to show the result holds for t. In this case, from (5), we must have ν 1 t+1 (ω) νt+1 2 (ω). Suppose (µ2 t+1 (ω), C2 t+1 (ω), R2 t+1 (ω), G2 t+1 (ω), L2 t+1 (ω)) is part of an optimal strategy given the state, (νt 2 (ω), L 2 t (ω)). We will construct µ 1 t+1 (ω) that yields a better state at t + 1. For this construction, there exists some c(ω) such that c(ω) xν 1 t+1 (ω, dx) = µ 2 t+1 (ω, dx) or ν1 t+1 (ω) has a singular value at c(ω) with c(ω) xνt+1 1 (ω, dx) < µ 2 t+1 (ω, dx) and c(ω) xνt+1 1 (ω, dx) > µ 2 t+1 (ω, dx). In either case, this is possible because V 1 t (ω) Vt 2 (ω). We then let µ 1 t+1 (ω, B) = νt+1 1 (ω, B) for all B (, c(ω)) and partition any singular part at c(ω) so that xµ 1 t+1 (ω, dx) = xµ 2 t+1 (ω, dx) and by construction µ1 t+1 µ2 t+1, or z µ1 t+1 (ω, dx) z µ2 t+1 (ω, dx) for any z and, in particular, for z =. The left-hand side of Constraint (6) for t + 1 and ω is then no greater with µ 1 t+1 and L1 t than with µ 2 t+1 and L2 t ; therefore, we can find G 1 t+1 (ω) G2 t+1 (ω) and L 1 t+1 (ω) L2 t+1 (ω) for any ω a.s. Given this relation, we can then choose C1 t+1 (ω) C2 t+1 (ω) and Rt+1 1 (ω) R2 t+1 (ω) and satisfy Constraints (7) and (8). With these values, we then let ν1 t+1 be defined by ν 1 t+1, µ1 t+1, and R1 t+1 according to (4). The overall result is that ν1 t+1 ν2 t+1, V t+1 1 (ω) V 2 t+1 (ω), L1 t+1 (ω) L2 t+1 (ω), and u(c1 t+1 (ω)) u(c2 t+1 (ω)), which implies F t(ν 1 (ω), L 1 t (ω)) F t (νt 2 (ω), L 2 t (ω)), a.s. to complete the induction.

11 11 The next theorem states that our proposed trading strategy is optimal for Problem (2 9). Theorem 3.2 (Optimal Trading Strategy): An optimal trading strategy for (2 9) includes the following policy: 1. realize all losses in each period (i.e., µ t (ω, B) = ν t (ω, B) B [, 1)), regardless of consumption; 2. do not realize capital gains except when necessary to finance consumption (i.e., µ t (ω, B) = B [1, ) if C t (ω) 1 xµ t(ω, dx)); 3. if necessary to realize capital gains, sell those with the lowest price first (i.e., c xµ t(ω, dx) = c xν t(ω, dx) for some c 1). Proof. The first two items follow from Theorem 1 in Constantinides (1983), although we can also use the result in Lemma 3.1. Item 3 is an immediate result of the lemma. If this policy is not followed for some µ 2 t (ω) resulting in νt 2 (ω), then following the policy in Item 3 would yield some ν 1 t such that ν 1 t ν 2 t with V 1 t (ω) V 2 t (ω) and L 1 t (ω) L 2 t (ω) for any ω. In that case, Lemma 3.1 implies that µ 2 t is dominated by a strategy following Item 3. 4 Bounding the optimal solution with a multi-point discrete approximation While Theorem 3.2 provides an optimal policy for asset sales, computations involving the convolution in Constraint (5) can be complicated for lognormal distributions since this class of distributions is not closed under addition (and, here, integration). To obtain computable results, at each period t, we replace νt with a discrete approximation in such a way that the resulting value is either a lower or upper bound on the optimal value of (2 9). We assume two possible alternatives:

12 12 Definition 4.1 Measures ν L t and ν U t defined from ν t are called lower and upper bounding measures respectively if they satisfy the following conditions: Lower bound: ν L t Upper bound: ν U t such that xν L t (ω, dx) = xν t (ω, dx) and νl t (ω) ν t such that xν U t (ω, dx) = xν t (ω, dx) and νu t (ω) ν t (ω) for all ω; (ω) for all ω. Corollary 4.1 For any lower and upper bounding measures, ν L t and ν U t, as in Definition 4.1, F t (ν L t (ω), L t (ω)) F t (ν t (ω), L t(ω)) F t (ν U t (ω), L t (ω)), a.s., for all t 1. Proof. This follows immediately from the definition and Lemma 3.1. In our computational results, we re-define νt L and νt U at each t on a given sample path (corresponding to a realization of ω) and obtain overall bounds on the optimal value in (2 9). We use a discrete approximation that depends on a partition (that may depend on t and ω) of R + into intervals I 1, I 2,..., I K, where I j = [a j, b j ). With this partition, we then let ν U t have atoms at a j with mass m U j so that m U j a j = I j xν t (ω, dx). Similarly, νl t has atoms at b j with mass m L j so that m L j b j = I j xν t (ω, dx) for j < K. To maintain a finite lower bound for the last interval, j = K, we replace ν t over I K with an atom at I K xν t (ω, dx)/ I k ν t (ω, dx) and only allow transitions in Constraint (5) from I K(t) at period t to I K(t+1) at period t + 1 for all t. This ensures that no losses result from assets with prices in interval I K and maintains the lower bounding property. 5 Algorithms and Computation Results For the computational results, we suppose that all assets begin with the same basis (normalized to 1). This situation can model the case in which an investor elects a lump-sum distribution of a qualified plan at retirement (and, hence, in the United States, would pay tax on post-1974

13 13 contributions as ordinary income). The investor then purchases assets with the after-tax amount. We assume that this investment then finances all consumption until death. 3 In comparing results, we will not generally specify the utility forms u and U to keep the results general. Our main comparisons will be with a portfolio that holds only a market index and a hypothetical portfolio that pays no capital gains tax. In our comparison test, we calculated both upper and lower bounding results as well as an average approximation of the portfolio holding a continuum of assets according to the process in (1). The upper and lower bounds were sufficiently close (see Table 1) that our summaries only include the intermediate approximation. Our comparisons focus on either the consumption or bequest amounts separately. In the first set of comparisons (equal-bequest case), we assume that the index portfolio and the continuum portfolio both attain the same bequest amount. In the second set of comparisons (equal-consumption case), we assume the same consumption in the index portfolio and the continuum portfolio. In each case, we observe the difference in the quantity (either consumption or bequest) that varies across the portfolios. In the first set of examples, to maintain the bequest amount, we assume that the different portfolios spend the same total on consumption plus taxes as a fixed percentage of the portfolio value in each period. In the second set of examples, we maintain that consumption alone is a fixed percentage value in each period. (For a specific utility, this percentage may change depending on t and the portfolio s unrealized capital gain. We keep the percentage fixed to make the comparisons across portfolios more direct.) Our results also use a fixed time horizon T, although we will show results for varying T. We 3 Our purpose in choosing the lump-sum distribution is to set the tax basis to 1 as in our model and not to endorse this practice over maintaining a tax-deferred amount or making another distribution election. Our goals, as stated in the introduction, are to measure the potential benefit of broadly diversified portfolios from a tax-savings perspective and not to make specific recommendations on other forms of asset allocation.

14 14 assume that the market overall has an average return of 12%. As observed in Campbell, et al. (21), our base case assumes that the idiosyncratic volatility (σ) is twice the market volatility (σ ). We also consider cases where the volatility ratio (σ/σ ) is 1 and 3. We also explore a range of consumption fractions (equivalent to selling 5%, 7%, and 1% of the portfolio in each period) to model varying potential investor utilities. In our simulations, we ran cases with no taxes, the continuum of assets (including upper bound, lower bound, and approximation), and the market index with equal-bequest and equal-consumption. The no-tax case is straightforward. The next subsections provide more details on the other cases. 5.1 Continuum Assets Case In the continuum case, we use a dynamically allocated partition to discretize the portfolio and to maintain the upper and lower bounds as in Corollary 4.1. We generate the partition {I 1, I 2,...I K }, such that the value of the portfolio with prices between any two adjacent points is fixed, i.e, for a given constant D, which is.1 in our simulation, and any partition interval, I j = [a j, b j ), (where b j = a j+1 for j < K), we have: b j a j xν t (ω, dx) = D; the value in interval I K is the remainder of the portfolio that is then less than D. In the lower bound case, the distribution places all weight at b j for j < K as noted earlier. For interval I K, we place the remaining assets into an account that is not liquidated until the bequest calculation. In this way, these funds cannot generate losses, maintaining the lower bound. The upper bound proceeds as discussed in Section 4 with the distributional weight of each interval I j placed at a j. In the approximation case, besides generating a partition, we place the weight in each I j at the conditional mean of the interval (i.e., we let m app j = I j ν t (ω, dx) be the mass at point x app j = ( I j xν t (ω, dx))/m app j, where ν t (ω, dx) is the distribution found in the simulation at time t

15 15 under scenario ω). In this way, the approximation ensures that the share measure and the total value of assets in each interval match the true continuum case (given the previous period s asset distribution). 5.2 Market Index Cases with Equal Bequest and Equal Consumption In the market index case, the portfolio is just a single asset that follows our specified market movement and trading strategy. In the equal-bequest case, we close out the specified percentage or all of the portfolio if the price is lower than the basis. In the equal-consumption case, we match the consumption in each year to the consumption in the lower bound case, which gives a favorable bias to the index case relative to the continuum portfolio. 5.3 Simulation Results The results below assume that µ =.2, µ + (σ 2 + σ2 )/2 =.12, and the tax rate τ =.15. For the volatility, we vary σ/σ = {1, 2, 3} while maintaining σ 2 + σ2 =.2. In the 1 : 2 volatilityratio case, we then have σ =.4 and σ =.2. We also considered varying liquidation fractions, c =.5,.7,.1, which denote the portion of the portfolio that is used for consumption and tax payments. For each combination, we ran 2 simulations up to T = 5. Table 1 gives the results from each combination for ratio of bequest and consumption of the continuum portfolio approximation to the relevant index portfolio (equal-consumption case for bequest comparisons and equal-bequest case for consumption comparisons). The bequest amounts consider the ratio at T = 1 and T = 25 years. The consumption values give the average ratio of consumption with the continuum portfolio approximation to that of the index portfolio for the first 1 years (when the advantage of the continuum portfolio is greatest). We also include the ratio over the first 1 years of the certainty equivalent consumption value for discounted utility using

16 16 β = 1 1+ρ =.1 and power utility, u(c) = Cγ /γ with γ =.5. Table 1 also includes the average ratios over T {1,..., 1} and T {1,..., 5} between the lower bound and upper bound on consumption. Since these errors are generally small, we focus on the ratios for the intermediate approximation. The table also includes the standard error of the simulations on the average bequest ratio between the continuum approximation and the equalconsumption index case at T = 25. (Standard errors had similar relative orders for other ratios.) The average number of years that the continuum approximation portfolio had no tax obligation is also given. Indiv. to Market Fraction Sold Avg. Ratio of Continuum Approx. to Index Volatility Ratio Each Period Bequest T=1 Bequest T=25 Avg. Cons n. Disc d. Cons n. T=1-1 Cert. Eq. T= Avg. Upper/Lower Avg. Upper/Lower Average No-Tax Standard Error Bound Bound Years Bequest Ratio (T=1..1) (T=1..5) (T=1..5) T= Table 1: Summary results for simulations with varying volatilities and consumption fractions. From Table 1, we observe, as expected, that higher relative individual asset volatility leads to greater gains relative to the index portfolio. The relative gain also increases for bequest amounts

17 17 as the portfolio fraction sold for consumption in each period increases (and consumption amounts for the index portfolio equal that of the continuum approximation), but the relative gain in consumption decreases as the portfolio fraction sold increases when bequest amounts are held constant. Intuitively, the advantage of the continuum portfolio is highest relative to the equal-bequest index portfolio when the fraction sold is small and can be covered by losses in the continuum portfolio. Conversely, the advantage of the continuum portfolio relative to the equal-consumption index portfolio increases with the fraction that the equal-consumption index must sacrifice for taxes in each period. That tax fraction in turn increases with the liquidation fraction. The average number of years without taxes in Table 1 contrasts with the index portfolios, which had averages of 4.35 years for the equal-consumption index portfolio and 4.34 years for the equalliquidation-fraction portfolio. The average number of years without tax obligations decreases as the consumption fraction increases in each case as expected. The average number of no-tax periods also decreases with increasing individual asset to market volatility ratio, which seems somewhat counterintuitive. This outcome appears to occur because periods with overall market losses allow lower-idiosyncratic-volatility portfolios to realize more loss positions than can higher-volatility portfolios and may extend no-tax periods in those cases. Figures 1 6 present the results for the average ratio of consumption and bequest in the continuum approximation portfolio to the relevant index portfolio for the initial years in the simulation for the 3 volatility cases. The consumption figures (4 6) also show the ratio of consumption in the no-tax case to the index portfolio for the 5% liquidation case (which is similar to those at 7% and 1% liquidation). The bequest figures (1 3) display the increase in bequest advantage as time increases. The consumption figures (4 6) show that the relative advantage of the continuum portfolio over the index portfolio increases to a maximum (over 8% for 5% annual liquidation with σ = 3σ ) at 5 to 8 years and then declines. The continuum portfolio advantage also closely tracks

18 18 Figure 1: Ratio of average bequest from the continuum approximation portfolio to the index portfolio with σ = 3σ for years 1 to 25 for 1%, 7%, and 5% annual liquidation. that of the no-tax portfolio until the relative advantage over the index portfolio starts to decline. Overall, the results indicate that a widely diversified portfolio can lead to significant consumption or bequest increases over an index portfolio. Consumption levels can average as high as 5 or 6% over those from an index portfolio over the first 1 years. Bequest levels at 1 years have similar advantages over an equal-consumption index portfolio and have much greater advantages over longer horizons. The impact of diversification on capital gains taxes in this model decreases for later years in the equal-bequest comparisons, but this model does not include intermediate rebalancing that may also take advantage of diversification within an asset class and allow the fully diversified portfolio s relative advantage to continue over a longer horizon than shown here. 6 Conclusions and Areas for Further Study The results in this model suggest that holding many assets in a portfolio can give investors a significant tax advantage over holding a single index portfolio. To some extent, this advantage

19 19 Figure 2: Ratio of average bequest from the continuum approximation portfolio to the index portfolio with σ = 2σ for years 1 to 25 for 1%, 7%, and 5% annual liquidation. Figure 3: Ratio of average bequest from the continuum approximation portfolio to the index portfolio with σ = σ for years 1 to 25 for 1%, 7%, and 5% annual liquidation.

20 2 Figure 4: Ratio of average consumption from the continuum approximation portfolio to the index portfolio with σ = 3σ for years 1 to 2 for 1%, 7%, and 5% annual liquidation and for the no-tax portfolio with 5% liquidation. Figure 5: Ratio of average consumption from the continuum approximation portfolio to the index portfolio with σ = 2σ for years 1 to 2 for 1%, 7%, and 5% annual liquidation and for the no-tax portfolio with 5% liquidation.

21 21 Figure 6: Ratio of average consumption from the continuum approximation portfolio to the index portfolio with σ = σ for years 1 to 2 for 1%, 7%, and 5% annual liquidation and for the no-tax portfolio with 5% liquidation. could be larger in practice since we did not include capital gains of an index fund that rebalances to maintain specified asset weights. We also did not include possibilities for realizing losses more frequently than annually and the ability to use capital gain losses to offset some portion of other income with a higher tax rate. While this model provides some indication of the potential for portfolios with many assets, the model includes many simplifications that may not hold in practice and should be considered for further research. The accuracy of the continuum model as a surrogate for a portfolio of many assets is an open question. An additional study could consider the difference between the continuum portfolio here and a portfolio with a large discrete number of assets and the number of assets necessary to provide a reasonable approximation of the continuum results. Our results have also ignored heterogeneous asset volatilities, multiple return factors, additional asset categories (including borrowing and derivatives), and transaction costs. Additional studies

22 22 could consider these effects as well. These cases require determining a strategy to rebalance across asset classes as well as when to take losses, since it may not always be optimal to realize losses as they occur. We have also not addressed the potential effects on asset pricing implied by the diversification advantage. Without transaction costs or other externalities, this model would suggest that tax-liable investors would be willing to pay a price premium for assets with higher idiosyncratic volatility. This result would then predict that observed before-tax returns would decrease with increasing idiosyncratic volatility due to the increasing after-tax advantage of the timing option to sell for a loss (even when the market has a gain). This observation is consistent with the analysis in Guo and Savickas (24) that finds idiosyncratic volatility to have negative correlation with return. Further implications for pricing in more general portfolio models are additional areas of future research. References [1] J.Y. Campbell, M. Lettau, B.G. Malkiel, and Y. Xu, Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk, Journal of Finance 56 (21), pp [2] G.M. Constantinides, Capital market equilibrium with personal taxes, Econometrica 51 (1983), pp [3] G.M. Constantinides, The optimal trading and pricing of securities with asymmetric capital gains taxes, Journal of Financial Economics 13 (1984), pp [4] G.M. Constantinides and M.S. Scholes, Optimal liquidation of assets in the presence of personal tax: implications for asset pricing, Journal of Finance 35 (198), pp

23 23 [5] R.M. Dammon, C.S. Spatt, and H.H. Zhang, Optimal consumption and investment with capital gains taxes, Review of Financial Studies 14 (21), pp [6] R.M. Dammon, C.S. Spatt, and H.H. Zhang, Optimal asset location and allocation with taxable and tax-defereed investing, Journal of Finance 59 (24), pp [7] A.V. DeMiguel and R. Uppal, Portfolio investment with the exact tax basis via nonlinear programming, Working Paper, London Business, School, July 24. [8] J.C. Dermody and R.T. Rockafellar, Cash stream valuation in the face of transaction costs and taxes, Mathematical Finance 1 (1991), pp [9] J.C. Dermody and R.T. Rockafellar, Tax bais and non-linearity in cash stream valuation, Mathematical Finance 5 (1995), pp [1] P.H. Dybvig and H-K. Koo, Investment with taxes, Working paper, Washington University in St. Louis, [11] M.F. Gallmeyer, R. Kaniel, and S. Tompaidis, Tax management strategies with multiple risky assets, Journal of Financial Economics, forthcoming? [12] M.F. Gallmeyer and S. Srivastava, Arbitrage and the tax code, Working paper, Carnegie Mellon University, 23. [13] L. Garlappi, V. Naik, and J. Slive, Portfolio selection with multiple assets and capital gains taxes, Working paper, University of British Columbia, 21. [14] H. Guo and R. Savickas, Idiosyncratic volatility, stock market volatility, and expected stock market returns, AFA 25 Philadelphia Meetings, February 24.

24 24 [15] J.C. Huang, Portfolio decisions with taxable and tax-deferred accounts: a tax-arbitrage approach, University of Texas at Austin, Finance Working Paper, April 23. [16] K.L. Judd, The law of large numbers with a continuum of iid random variables, Journal of Economic Theory 35 (1985), pp [17] M. Ali Khan and Y.N. Sun, The capital-asset-pricing model and arbitrage pricing theory: a unification, Proceedings of the National Academy of Science 94 (1997), pp [18] M. Ali Khan and Y.N. Sun, Asymptotic arbitrage and the APT with or without measuretheoretic structures, Journal of Economic Theory 11 (21), pp [19] M. Ali Khan and Y.N. Sun, Exact arbitrage, well-diversified portfolios and asset pricing in large markets, Journal of Economic Theory 11 (23), pp [2] P.A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Transactions of the Americal Mathematical Society 211 (1975), pp [21] D.G. Luenberger, Investment Science, Oxford University Press, New York, [22] R.C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case, The Review of Economics and Statistics, 51 (1969), pp [23] S.A. Ross, The abitrage theory of capital asset pricing, Journal of Economic Theory 13 (1976), pp [24] S.A. Ross, Arbitrage and martingales with taxation, Journal of Political Economy 95 (1987), pp

25 25 [25] P.A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, The Review of Economics and Statistics, 51 (1969), pp [26] Y.N. Sun, A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN, Journal of Mathematical Economics 29 (1998), pp [27] P. Wang and S-H. Poon, Multiperiod asset pricing in the presence of transaction costs and taxes, Lancaster University Working Paper No. 2-2, February 2.

Efficient Rebalancing of Taxable Portfolios

Efficient Rebalancing of Taxable Portfolios Efficient Rebalancing of Taxable Portfolios Sanjiv R. Das 1 Santa Clara University @RFinance Chicago, IL May 2015 1 Joint work with Dan Ostrov, Dennis Yi Ding and Vincent Newell. Das, Ostrov, Ding, Newell

More information

Efficient Rebalancing of Taxable Portfolios

Efficient Rebalancing of Taxable Portfolios Efficient Rebalancing of Taxable Portfolios Sanjiv R. Das & Daniel Ostrov 1 Santa Clara University @JOIM La Jolla, CA April 2015 1 Joint work with Dennis Yi Ding and Vincent Newell. Das and Ostrov (Santa

More information

Asset Location and Allocation with. Multiple Risky Assets

Asset Location and Allocation with. Multiple Risky Assets Asset Location and Allocation with Multiple Risky Assets Ashraf Al Zaman Krannert Graduate School of Management, Purdue University, IN zamanaa@mgmt.purdue.edu March 16, 24 Abstract In this paper, we report

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Optimal Tax-Timing and Asset Allocation when Tax Rebates on Capital Losses are Limited

Optimal Tax-Timing and Asset Allocation when Tax Rebates on Capital Losses are Limited Optimal Tax-Timing and Asset Allocation when Tax Rebates on Capital Losses are Limited Marcel Marekwica This version: December 18, 2007, Comments welcome! Abstract This article analyzes the optimal dynamic

More information

Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses

Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses Paul Ehling BI Norwegian Business School Sanjay Srivastava OS Financial Trading Systems Michael Gallmeyer McIntire School of Commerce

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

Online Appendix: Extensions

Online Appendix: Extensions B Online Appendix: Extensions In this online appendix we demonstrate that many important variations of the exact cost-basis LUL framework remain tractable. In particular, dual problem instances corresponding

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

Optimal Investment with Deferred Capital Gains Taxes

Optimal Investment with Deferred Capital Gains Taxes Optimal Investment with Deferred Capital Gains Taxes A Simple Martingale Method Approach Frank Thomas Seifried University of Kaiserslautern March 20, 2009 F. Seifried (Kaiserslautern) Deferred Capital

More information

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel)

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) First Name: Waterloo, April 2013. Last Name: UW ID #:

More information

LECTURE NOTES 10 ARIEL M. VIALE

LECTURE NOTES 10 ARIEL M. VIALE LECTURE NOTES 10 ARIEL M VIALE 1 Behavioral Asset Pricing 11 Prospect theory based asset pricing model Barberis, Huang, and Santos (2001) assume a Lucas pure-exchange economy with three types of assets:

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements, state

More information

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Lars Tyge Nielsen INSEAD Maria Vassalou 1 Columbia University This Version: January 2000 1 Corresponding

More information

Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses

Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses Paul Ehling BI Norwegian School of Management Michael Gallmeyer McIntire School of Commerce University of Virginia Sanjay Srivastava

More information

All Investors are Risk-averse Expected Utility Maximizers

All Investors are Risk-averse Expected Utility Maximizers All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) AFFI, Lyon, May 2013. Carole Bernard All Investors are

More information

KIER DISCUSSION PAPER SERIES

KIER DISCUSSION PAPER SERIES KIER DISCUSSION PAPER SERIES KYOTO INSTITUTE OF ECONOMIC RESEARCH http://www.kier.kyoto-u.ac.jp/index.html Discussion Paper No. 657 The Buy Price in Auctions with Discrete Type Distributions Yusuke Inami

More information

Optimization Models in Financial Mathematics

Optimization Models in Financial Mathematics Optimization Models in Financial Mathematics John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge Illinois Section MAA, April 3, 2004 1 Introduction Trends in financial mathematics

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Dynamic Asset and Liability Management Models for Pension Systems

Dynamic Asset and Liability Management Models for Pension Systems Dynamic Asset and Liability Management Models for Pension Systems The Comparison between Multi-period Stochastic Programming Model and Stochastic Control Model Muneki Kawaguchi and Norio Hibiki June 1,

More information

Multistage risk-averse asset allocation with transaction costs

Multistage risk-averse asset allocation with transaction costs Multistage risk-averse asset allocation with transaction costs 1 Introduction Václav Kozmík 1 Abstract. This paper deals with asset allocation problems formulated as multistage stochastic programming models.

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Intertemporally Dependent Preferences and the Volatility of Consumption and Wealth

Intertemporally Dependent Preferences and the Volatility of Consumption and Wealth Intertemporally Dependent Preferences and the Volatility of Consumption and Wealth Suresh M. Sundaresan Columbia University In this article we construct a model in which a consumer s utility depends on

More information

Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses

Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses Portfolio Choice with Capital Gain Taxation and the Limited Use of Losses Paul Ehling BI Norwegian School of Management Michael Gallmeyer Mays Business School Texas A&M University Sanjay Srivastava Stathis

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 65 Outline 1 An Introduction

More information

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? DOI 0.007/s064-006-9073-z ORIGINAL PAPER Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? Jules H. van Binsbergen Michael W. Brandt Received:

More information

1 Answers to the Sept 08 macro prelim - Long Questions

1 Answers to the Sept 08 macro prelim - Long Questions Answers to the Sept 08 macro prelim - Long Questions. Suppose that a representative consumer receives an endowment of a non-storable consumption good. The endowment evolves exogenously according to ln

More information

1 Precautionary Savings: Prudence and Borrowing Constraints

1 Precautionary Savings: Prudence and Borrowing Constraints 1 Precautionary Savings: Prudence and Borrowing Constraints In this section we study conditions under which savings react to changes in income uncertainty. Recall that in the PIH, when you abstract from

More information

Valuation of a New Class of Commodity-Linked Bonds with Partial Indexation Adjustments

Valuation of a New Class of Commodity-Linked Bonds with Partial Indexation Adjustments Valuation of a New Class of Commodity-Linked Bonds with Partial Indexation Adjustments Thomas H. Kirschenmann Institute for Computational Engineering and Sciences University of Texas at Austin and Ehud

More information

Portfolio Optimization using Conditional Sharpe Ratio

Portfolio Optimization using Conditional Sharpe Ratio International Letters of Chemistry, Physics and Astronomy Online: 2015-07-01 ISSN: 2299-3843, Vol. 53, pp 130-136 doi:10.18052/www.scipress.com/ilcpa.53.130 2015 SciPress Ltd., Switzerland Portfolio Optimization

More information

Tax management strategies with multiple risky assets $

Tax management strategies with multiple risky assets $ Journal of Financial Economics ] (]]]]) ]]] ]]] www.elsevier.com/locate/jfec Tax management strategies with multiple risky assets $ Michael F. Gallmeyer a,, Ron Kaniel b, Stathis Tompaidis c a Mays Business

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Numerical Evaluation of Multivariate Contingent Claims

Numerical Evaluation of Multivariate Contingent Claims Numerical Evaluation of Multivariate Contingent Claims Phelim P. Boyle University of California, Berkeley and University of Waterloo Jeremy Evnine Wells Fargo Investment Advisers Stephen Gibbs University

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Asset Pricing under Information-processing Constraints

Asset Pricing under Information-processing Constraints The University of Hong Kong From the SelectedWorks of Yulei Luo 00 Asset Pricing under Information-processing Constraints Yulei Luo, The University of Hong Kong Eric Young, University of Virginia Available

More information

Problem set Fall 2012.

Problem set Fall 2012. Problem set 1. 14.461 Fall 2012. Ivan Werning September 13, 2012 References: 1. Ljungqvist L., and Thomas J. Sargent (2000), Recursive Macroeconomic Theory, sections 17.2 for Problem 1,2. 2. Werning Ivan

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Lars Holden PhD, Managing director t: +47 22852672 Norwegian Computing Center, P. O. Box 114 Blindern, NO 0314 Oslo,

More information

Financial Mathematics III Theory summary

Financial Mathematics III Theory summary Financial Mathematics III Theory summary Table of Contents Lecture 1... 7 1. State the objective of modern portfolio theory... 7 2. Define the return of an asset... 7 3. How is expected return defined?...

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Continuous time Asset Pricing

Continuous time Asset Pricing Continuous time Asset Pricing Julien Hugonnier HEC Lausanne and Swiss Finance Institute Email: Julien.Hugonnier@unil.ch Winter 2008 Course outline This course provides an advanced introduction to the methods

More information

The Role of Risk Aversion and Intertemporal Substitution in Dynamic Consumption-Portfolio Choice with Recursive Utility

The Role of Risk Aversion and Intertemporal Substitution in Dynamic Consumption-Portfolio Choice with Recursive Utility The Role of Risk Aversion and Intertemporal Substitution in Dynamic Consumption-Portfolio Choice with Recursive Utility Harjoat S. Bhamra Sauder School of Business University of British Columbia Raman

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Lifetime Portfolio Selection: A Simple Derivation

Lifetime Portfolio Selection: A Simple Derivation Lifetime Portfolio Selection: A Simple Derivation Gordon Irlam (gordoni@gordoni.com) July 9, 018 Abstract Merton s portfolio problem involves finding the optimal asset allocation between a risky and a

More information

Basics of Asset Pricing. Ali Nejadmalayeri

Basics of Asset Pricing. Ali Nejadmalayeri Basics of Asset Pricing Ali Nejadmalayeri January 2009 No-Arbitrage and Equilibrium Pricing in Complete Markets: Imagine a finite state space with s {1,..., S} where there exist n traded assets with a

More information

MODELLING OPTIMAL HEDGE RATIO IN THE PRESENCE OF FUNDING RISK

MODELLING OPTIMAL HEDGE RATIO IN THE PRESENCE OF FUNDING RISK MODELLING OPTIMAL HEDGE RATIO IN THE PRESENCE O UNDING RISK Barbara Dömötör Department of inance Corvinus University of Budapest 193, Budapest, Hungary E-mail: barbara.domotor@uni-corvinus.hu KEYWORDS

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Preliminary Examination: Macroeconomics Fall, 2009

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Preliminary Examination: Macroeconomics Fall, 2009 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Preliminary Examination: Macroeconomics Fall, 2009 Instructions: Read the questions carefully and make sure to show your work. You

More information

Dynamic Asset Allocation

Dynamic Asset Allocation The model Solution w/o transaction costs Solution w/ transaction costs Some extensions Dynamic Asset Allocation Chapter 18: Transaction costs Claus Munk Aarhus University August 2012 The model Solution

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

1 Consumption and saving under uncertainty

1 Consumption and saving under uncertainty 1 Consumption and saving under uncertainty 1.1 Modelling uncertainty As in the deterministic case, we keep assuming that agents live for two periods. The novelty here is that their earnings in the second

More information

Chapter 9 Dynamic Models of Investment

Chapter 9 Dynamic Models of Investment George Alogoskoufis, Dynamic Macroeconomic Theory, 2015 Chapter 9 Dynamic Models of Investment In this chapter we present the main neoclassical model of investment, under convex adjustment costs. This

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Consumption- Savings, Portfolio Choice, and Asset Pricing

Consumption- Savings, Portfolio Choice, and Asset Pricing Finance 400 A. Penati - G. Pennacchi Consumption- Savings, Portfolio Choice, and Asset Pricing I. The Consumption - Portfolio Choice Problem We have studied the portfolio choice problem of an individual

More information

Non-Time-Separable Utility: Habit Formation

Non-Time-Separable Utility: Habit Formation Finance 400 A. Penati - G. Pennacchi Non-Time-Separable Utility: Habit Formation I. Introduction Thus far, we have considered time-separable lifetime utility specifications such as E t Z T t U[C(s), s]

More information

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Multi-period mean variance asset allocation: Is it bad to win the lottery? Multi-period mean variance asset allocation: Is it bad to win the lottery? Peter Forsyth 1 D.M. Dang 1 1 Cheriton School of Computer Science University of Waterloo Guangzhou, July 28, 2014 1 / 29 The Basic

More information

CONSISTENCY AMONG TRADING DESKS

CONSISTENCY AMONG TRADING DESKS CONSISTENCY AMONG TRADING DESKS David Heath 1 and Hyejin Ku 2 1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, email:heath@andrew.cmu.edu 2 Department of Mathematics

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Financial Giffen Goods: Examples and Counterexamples

Financial Giffen Goods: Examples and Counterexamples Financial Giffen Goods: Examples and Counterexamples RolfPoulsen and Kourosh Marjani Rasmussen Abstract In the basic Markowitz and Merton models, a stock s weight in efficient portfolios goes up if its

More information

A unified framework for optimal taxation with undiversifiable risk

A unified framework for optimal taxation with undiversifiable risk ADEMU WORKING PAPER SERIES A unified framework for optimal taxation with undiversifiable risk Vasia Panousi Catarina Reis April 27 WP 27/64 www.ademu-project.eu/publications/working-papers Abstract This

More information

Approximate Revenue Maximization with Multiple Items

Approximate Revenue Maximization with Multiple Items Approximate Revenue Maximization with Multiple Items Nir Shabbat - 05305311 December 5, 2012 Introduction The paper I read is called Approximate Revenue Maximization with Multiple Items by Sergiu Hart

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side FINANCIAL OPTIMIZATION Lecture 5: Dynamic Programming and a Visit to the Soft Side Copyright c Philip H. Dybvig 2008 Dynamic Programming All situations in practice are more complex than the simple examples

More information

Consumption and Portfolio Choice under Uncertainty

Consumption and Portfolio Choice under Uncertainty Chapter 8 Consumption and Portfolio Choice under Uncertainty In this chapter we examine dynamic models of consumer choice under uncertainty. We continue, as in the Ramsey model, to take the decision of

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Dependence Structure and Extreme Comovements in International Equity and Bond Markets Dependence Structure and Extreme Comovements in International Equity and Bond Markets René Garcia Edhec Business School, Université de Montréal, CIRANO and CIREQ Georges Tsafack Suffolk University Measuring

More information

Price manipulation in models of the order book

Price manipulation in models of the order book Price manipulation in models of the order book Jim Gatheral (including joint work with Alex Schied) RIO 29, Búzios, Brasil Disclaimer The opinions expressed in this presentation are those of the author

More information

Should Norway Change the 60% Equity portion of the GPFG fund?

Should Norway Change the 60% Equity portion of the GPFG fund? Should Norway Change the 60% Equity portion of the GPFG fund? Pierre Collin-Dufresne EPFL & SFI, and CEPR April 2016 Outline Endowment Consumption Commitments Return Predictability and Trading Costs General

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2016

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2016 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Spring, 2016 Section 1. Suggested Time: 45 Minutes) For 3 of the following 6 statements,

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Quasi-Convex Stochastic Dynamic Programming

Quasi-Convex Stochastic Dynamic Programming Quasi-Convex Stochastic Dynamic Programming John R. Birge University of Chicago Booth School of Business JRBirge SIAM FM12, MSP, 10 July 2012 1 General Theme Many dynamic optimization problems dealing

More information

A portfolio approach to the optimal funding of pensions

A portfolio approach to the optimal funding of pensions A portfolio approach to the optimal funding of pensions Jayasri Dutta, Sandeep Kapur, J. Michael Orszag Faculty of Economics, University of Cambridge, Cambridge UK Department of Economics, Birkbeck College

More information

Path-dependent inefficient strategies and how to make them efficient.

Path-dependent inefficient strategies and how to make them efficient. Path-dependent inefficient strategies and how to make them efficient. Illustrated with the study of a popular retail investment product Carole Bernard (University of Waterloo) & Phelim Boyle (Wilfrid Laurier

More information

w w w. I C A o r g

w w w. I C A o r g w w w. I C A 2 0 1 4. o r g On improving pension product design Agnieszka K. Konicz a and John M. Mulvey b a Technical University of Denmark DTU Management Engineering Management Science agko@dtu.dk b

More information

Aggregation with a double non-convex labor supply decision: indivisible private- and public-sector hours

Aggregation with a double non-convex labor supply decision: indivisible private- and public-sector hours Ekonomia nr 47/2016 123 Ekonomia. Rynek, gospodarka, społeczeństwo 47(2016), s. 123 133 DOI: 10.17451/eko/47/2016/233 ISSN: 0137-3056 www.ekonomia.wne.uw.edu.pl Aggregation with a double non-convex labor

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS J. Korean Math. Soc. 44 (2007, No. 1, pp. 139 150 OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS Bong-Gyu Jang Reprinted from the Journal of the Korean Mathematical

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

AGGREGATE IMPLICATIONS OF WEALTH REDISTRIBUTION: THE CASE OF INFLATION

AGGREGATE IMPLICATIONS OF WEALTH REDISTRIBUTION: THE CASE OF INFLATION AGGREGATE IMPLICATIONS OF WEALTH REDISTRIBUTION: THE CASE OF INFLATION Matthias Doepke University of California, Los Angeles Martin Schneider New York University and Federal Reserve Bank of Minneapolis

More information

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle Birkbeck MSc/Phd Economics Advanced Macroeconomics, Spring 2006 Lecture 2: The Consumption CAPM and the Equity Premium Puzzle 1 Overview This lecture derives the consumption-based capital asset pricing

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Lecture 2: Stochastic Discount Factor

Lecture 2: Stochastic Discount Factor Lecture 2: Stochastic Discount Factor Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Stochastic Discount Factor (SDF) A stochastic discount factor is a stochastic process {M t,t+s } such that

More information

Carnegie Mellon University Graduate School of Industrial Administration

Carnegie Mellon University Graduate School of Industrial Administration Carnegie Mellon University Graduate School of Industrial Administration Chris Telmer Winter 2005 Final Examination Seminar in Finance 1 (47 720) Due: Thursday 3/3 at 5pm if you don t go to the skating

More information

Defined contribution retirement plan design and the role of the employer default

Defined contribution retirement plan design and the role of the employer default Trends and Issues October 2018 Defined contribution retirement plan design and the role of the employer default Chester S. Spatt, Carnegie Mellon University and TIAA Institute Fellow 1. Introduction An

More information

COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS

COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS DAN HATHAWAY AND SCOTT SCHNEIDER Abstract. We discuss combinatorial conditions for the existence of various types of reductions between equivalence

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Spot and forward dynamic utilities. and their associated pricing systems. Thaleia Zariphopoulou. UT, Austin

Spot and forward dynamic utilities. and their associated pricing systems. Thaleia Zariphopoulou. UT, Austin Spot and forward dynamic utilities and their associated pricing systems Thaleia Zariphopoulou UT, Austin 1 Joint work with Marek Musiela (BNP Paribas, London) References A valuation algorithm for indifference

More information

Behavioral Finance and Asset Pricing

Behavioral Finance and Asset Pricing Behavioral Finance and Asset Pricing Behavioral Finance and Asset Pricing /49 Introduction We present models of asset pricing where investors preferences are subject to psychological biases or where investors

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information