Topic 1: Policy Design: Unemployment Insurance and Moral Hazard

Similar documents
Topic 2-3: Policy Design: Unemployment Insurance and Moral Hazard

Unemployment, Consumption Smoothing and the Value of UI

Social Insurance: Connecting Theory to Data

Public Economics Lectures Part 1: Introduction

1 Unemployment Insurance

Comments on Quasi-Experimental Evidence on the Effects of Unemployment Insurance from New York State by Bruce Meyer and Wallace Mok Manuel Arellano

The Value of Unemployment Insurance

TAXES, TRANSFERS, AND LABOR SUPPLY. Henrik Jacobsen Kleven London School of Economics. Lecture Notes for PhD Public Finance (EC426): Lent Term 2012

Lectures 9 and 10: Optimal Income Taxes and Transfers

LABOR SUPPLY RESPONSES TO TAXES AND TRANSFERS: PART I (BASIC APPROACHES) Henrik Jacobsen Kleven London School of Economics

Should Unemployment Insurance Vary With the Local Unemployment Rate? Theory and Evidence

The Ramsey Model. Lectures 11 to 14. Topics in Macroeconomics. November 10, 11, 24 & 25, 2008

Empirical Approaches in Public Finance. Hilary Hoynes EC230. Outline of Lecture:

Topic 11: Disability Insurance

Chapter II: Labour Market Policy

Public Finance II

The Optimal Timing of Unemployment Benefits: Theory and Evidence from Sweden

Topic 3: Policy Design: Social Security

Frequency of Price Adjustment and Pass-through

INTERTEMPORAL ASSET ALLOCATION: THEORY

Lessons from research on unemployment policies

The Optimal Timing of Unemployment Benefits: Theory and Evidence from Sweden

Optimal Taxation and Social Insurance with Endogenous Private Insurance

NBER WORKING PAPER SERIES THE EFFECTS OF UNEMPLOYMENT INSURANCE BENEFITS: NEW EVIDENCE AND INTERPRETATION. Johannes F. Schmieder Till von Wachter

Consumption and Savings (Continued)

Canadian Labour Market and Skills Researcher Network

(Incomplete) summary of the course so far

Chetty, Looney, and Kroft Salience and Taxation: Theory and Evidence Amy Finkelstein E-ZTax: Tax Salience and Tax Rates

Booms and Banking Crises

Econ 551 Government Finance: Revenues Winter 2018

Econ 230B Spring FINAL EXAM: Solutions

Convergence of Life Expectancy and Living Standards in the World

Optimal Credit Market Policy. CEF 2018, Milan

Uninsured Unemployment Risk and Optimal Monetary Policy

State Dependency of Monetary Policy: The Refinancing Channel

Lecture 5: Labour Economics and Wage-Setting Theory

Lecture 9: Social Insurance: General Concepts

THE GREAT RECESSION: UNEMPLOYMENT INSURANCE AND STRUCTURAL ISSUES

Achieving Actuarial Balance in Social Security: Measuring the Welfare Effects on Individuals

Unemployment Insurance and Worker Mobility

Unfunded Pension and Labor Supply: Characterizing the Nature of the Distortion Cost

Lecture 2 General Equilibrium Models: Finite Period Economies

The Welfare Cost of Asymmetric Information: Evidence from the U.K. Annuity Market

LECTURE: UNEMPLOYMENT COMPENSATION HILARY HOYNES UC DAVIS EC230 OUTLINE OF LECTURE:

Chapter 3 Introduction to the General Equilibrium and to Welfare Economics

Unemployed but Optimistic: Optimal Insurance Design with Biased Beliefs

Models of Directed Search - Labor Market Dynamics, Optimal UI, and Student Credit

EC426-Public Economics. Class 2, Question1

Labour Supply, Taxes and Benefits

CESifo / DELTA Conference on Strategies for Reforming Pension Schemes

TAXABLE INCOME RESPONSES. Henrik Jacobsen Kleven London School of Economics. Lecture Notes for MSc Public Economics (EC426): Lent Term 2014

Introduction. Jean Imbs NYUAD 1 / 45

Lecture 11: Unemployment Insurance, Disability Insurance, and Workers Compensation

Hilary Hoynes UC Davis EC230. Taxes and the High Income Population

Measuring Ex-Ante Welfare in Insurance Markets

Peer Effects in Retirement Decisions

Camille Landais Assessing the welfare effects of unemployment benefits using the regression kink design

Hiring the Herd: Optimal Unemployment Insurance with. Asymmetric Information

Keynesian Views On The Fiscal Multiplier

Optimal Labor Income Taxation. Thomas Piketty, Paris School of Economics Emmanuel Saez, UC Berkeley PE Handbook Conference, Berkeley December 2011

Labour Supply and Taxes

For students electing Macro (8702/Prof. Smith) & Macro (8701/Prof. Roe) option

1. Cash-in-Advance models a. Basic model under certainty b. Extended model in stochastic case. recommended)

Transfer Pricing by Multinational Firms: New Evidence from Foreign Firm Ownership

Comprehensive Exam. August 19, 2013

Annex: Alternative approaches to corporate taxation Ec426 Lecture 8 Taxation and companies 1

Reforming the Social Security Earnings Cap: The Role of Endogenous Human Capital

Generalized Compensation Principle

Growth Options, Incentives, and Pay-for-Performance: Theory and Evidence

Theoretical Tools of Public Finance. 131 Undergraduate Public Economics Emmanuel Saez UC Berkeley

Does the Social Safety Net Improve Welfare? A Dynamic General Equilibrium Analysis

Booms and Busts in Asset Prices. May 2010

Ramsey Asset Taxation Under Asymmetric Information

A Structural Model of Continuous Workout Mortgages (Preliminary Do not cite)

Economics 2450A: Public Economics Section 7: Optimal Top Income Taxation

FINANCIAL REPRESSION AND LAFFER CURVES

Does Extending Unemployment Benefits Improve Job Quality?

Moral Hazard. Economics Microeconomic Theory II: Strategic Behavior. Shih En Lu. Simon Fraser University (with thanks to Anke Kessler)

Lecture Notes - Insurance

Adjustment Costs, Firm Responses, and Labor Supply Elasticities: Evidence from Danish Tax Records

Transactions with Hidden Action: Part 1. Dr. Margaret Meyer Nuffield College

1. Money in the utility function (continued)

Economic stability through narrow measures of inflation

Optimal Spatial Taxation

Public budget accounting and seigniorage. 1. Public budget accounting, inflation and debt. 2. Equilibrium seigniorage

Health Care Reform or Labor Market Reform? A Quantitative Analysis of the Affordable Care Act

Principles of Optimal Taxation

ECON 652: Graduate Public Economics I

Should Unemployment Insurance Vary With the Unemployment Rate? Theory and Evidence

Notes VI - Models of Economic Fluctuations

Macroeconomics 2. Lecture 6 - New Keynesian Business Cycles March. Sciences Po

Knowledge of Future Job Loss and Implications for Unemployment Insurance

0. Finish the Auberbach/Obsfeld model (last lecture s slides, 13 March, pp. 13 )

Fiscal Consolidation in a Currency Union: Spending Cuts Vs. Tax Hikes

Estimating a Life Cycle Model with Unemployment and Human Capital Depreciation

Kolsrud, Jonas; Landais, Camille; Nilsson, Peter; Spinnewijn, Johannes

1 Dynamic programming

Microeconomic Foundations of Incomplete Price Adjustment

Optimal tax and transfer policy

SDP Macroeconomics Final exam, 2014 Professor Ricardo Reis

Transcription:

Introduction Trade-off Optimal UI Empirical Topic 1: Policy Design: Unemployment Insurance and Moral Hazard Johannes Spinnewijn London School of Economics Lecture Notes for Ec426 1 / 39

Introduction Trade-off Optimal UI Empirical Topics & Question in Public Economics Classical division in Public Economics: Taxation: How does and should government raise revenues? Spending: How does and should government spend revenues? Same fundamental questions for both topics: When and how should the government intervene? How do government policies affect economic behavior? 2 / 39

Introduction Trade-off Optimal UI Empirical Focus on Social Insurance Definition of Social Insurance? Social Insurance = government transfers based on events which cause a loss of income Examples are unemployment, disability, health, retirement,... Welfare = means-tested transfers such as poverty alleviation, housing benefits. SI is the biggest and most rapidly growing part of Government Expenditures GE have increased as a percentage of national income throughout the 20th century. Now close to 50 percent of national income in OECD countries. GE have shifted towards social security and health insurance in particular expected increase in GE causes worries about future solvability Generosity of SI (i.e. replacement of lost income) differs significantly among countries. 3 / 39

Introduction Trade-off Optimal UI Empirical Distribution of UK Government Spending Figure: Source: IFS 2008-2009. Up-to-date rule-of-thumb: 20% on Pensions, 20% on Health, 20% on Welfare, 15% on Education 4 / 39

Introduction Trade-off Optimal UI Empirical Social Security Spending as a Share of National Income, 1949 to 2011 Source: 1949 50 to 2007 08 from ONS series ANLY; 2008 09 to 2010 11 from HM Treasury, Budget 2009. 5 / 39

Introduction Trade-off Optimal UI Empirical NHS Spending as a Share of National Income, 1949 to 2011 Source: 1949 50 to 2007 08 from Offi ce of Health Economics; 2008 09 to 2010 11 uses plans for NHS England from HM Treasury, Budget 2009 6 / 39

Introduction Trade-off Optimal UI Empirical Change in Distribution of US Gov. spending, 1960 vs. 2014 Source: Gruber s Textbook 7 / 39

Introduction Trade-off Optimal UI Empirical International Comparison of Social Expenditures Share of GDP, 2007 vs. peak vs. 2014 Source: OECD 8 / 39

Introduction Trade-off Optimal UI Empirical Why have social insurance? General motivation for insurance: pool risks of risk-averse individuals Unemployment: loss of earnings due to involuntary unemployment Health: risk of health shocks/expenses Social security: loss of earnings at old age But why is government intervention needed to provide this insurance? First and Second Welfare Theorem optimal insurance allocation could be decentralized So why care about individuals not having health insurance in the US? 9 / 39

Introduction Trade-off Optimal UI Empirical Why have social insurance? Typical answer is market failure due to asymmetric information private information about actions leads to moral hazard; increase in coverage increases the probability that the risk occurs private information about risks leads to adverse selection; higher risk types are more likely to buy insurance Does this provide a rational for government intervention? in case of adverse selection it does; government has advantage over private insurers that it can mandate insurance if governments intervene for other reasons, understanding how interventions affect selection and incentives is essential for optimal design 10 / 39

Introduction Trade-off Optimal UI Empirical What else can explain government interventions? Other Market Failures externalities, aggregate risks, redistribution, imperfect competition,... Behavioral failures people make mistakes, do not internalize the true impact of their actions on themselves Trade-off between costs and benefits of government intervention 1 information: how does government aggregate information on preferences and technology to choose optimal production and allocation? 2 politicians not necessarily a benevolent planner in reality; face incentive constraints themselves 3 why does govt. know better what s desirable for you (e.g. wearing a seatbelt, not smoking, saving more) 11 / 39

Introduction Trade-off Optimal UI Empirical Outline Lecture 1-2 Unemployment Insurance & Moral Hazard Lecture 2-3 Health Insurance & Adverse Selection Lecture 4 Social Security Lecture 5 Education Lecture 6 Externalities Lecture 7 Behavioural Public Economics 12 / 39

Introduction Trade-off Optimal UI Empirical Approach Integration of theory with empirical evidence to derive quantitative predictions about policy theoretical analysis of core issues empirical analysis of direct and indirect effects institutional framework (incomplete) Behavioral public economics: focus on non-standard decision makers where relevant Critical about question; why government? 13 / 39

Introduction Trade-off Optimal UI Empirical Logistics Slides and reading list posted in advance on Frank s website Background textbooks: Public Finance and Public Policy by Gruber Handbook of Public Economics (recent Vol. 5 in particular) Contact: Email: j.spinnewijn@lse.ac.uk Offi ce hours: Tuesday 4-5 (32LIF 3.24) 14 / 39

Introduction Trade-off Optimal UI Empirical This Lecture: UI & Moral Hazard 1 Moral Hazard: Insurance vs. Incentives 2 Optimal level of UI benefits [Baily-Chetty model] 1 Model of Moral Hazard - generalizes for other applications 2 Suffi cient Statistics Approach - use of envelope conditions 3 Empirical estimation to test for optimality of program 15 / 39

Introduction Trade-off Optimal UI Empirical Unemployment Insurance: Basic Trade-off Insurance against unemployment loss of current (and potentially future) earnings uninsured unemployed experience drop in consumption If fully insured, unemployed has no (monetary) incentive to keep/get a job moral hazard on the job and during unemployment Central trade-off: insurance vs. incentives optimal generosity 16 / 39

Introduction Trade-off Optimal UI Empirical Static Generosity: Replacement Rate Common measure of program s size is its replacement rate r = (net) benefit (net) wage UI reduces agents effective wage rate to w(1 r) Typical profile: 17 / 39

Introduction Trade-off Optimal UI Empirical Dynamic Generosity: Duration of Eligibility Source: Gruber s book 18 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model Canonical analysis of optimal level of UI benefits: Baily (1978) Shows that the optimal benefit level can be expressed as a fn of a small set of parameters in a static model Once viewed as being of limited practical relevance because of strong assumptions Chetty (2006) shows formula actually applies with arbitrary choice variables and constraints Parameters identified by Baily are suffi cient statistics for welfare analysis robust yet simple guide for optimal policy 19 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Setup Static model with two states: an agent is either employed and earns wage w or unemployed and has no income Agent is initially unemployed. Controls probability of remaining unemployed by exerting search effort If the agent searches at cost e, the probability of finding a job equals π (e) with π > 0, π < 0 20 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Setup UI system that pays constant benefit b to unemployed agents Benefits financed by lump sum tax τ paid by the employed agents Govt s balanced budget constraint: π (e) τ (1 π (e)) b = 0 Agent s expected utility, with u(c) utility over consumption, is π (e) u(w τ) + (1 π (e))u(b) e 21 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: First Best Solution In first best, there is no moral hazard problem Government chooses b and e (determining τ) to maximize agent s welfare: ( max π (e) u w 1 π (e) ) b + (1 π (e))u(b) e b,e π (e) Solution to this problem is FOC b : FOC e : u (c e ) = u (c u ) full insurance π (e) [u (c e ) u (c u )] 1 + π (e) π(e) bu (c e ) = 0 22 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Second Best Solution In second best, effort is unobserved by govt. moral hazard Problem: agents only consider private marginal benefits and cost when choosing e agent does not internalize the effect on the govt s budget constraint e I (b, τ) : π (e) [u (c e ) u (c u )] 1 = 0 e S (b, τ) : π (e) [u (c e ) u (c u )] 1 + π (e) π(e) bu (c e ) = 0 hence, agent searches too little from a social perspective source of ineffi ciency 23 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Second Best Solution Government s problem is to maximize agent s expected utility, taking into account agent s behavioral responses: such that max π (e) u(w τ) + (1 π (e))u(b) e b,τ,e BC : π (e) τ (1 π (e))b = 0 IC : π (e) [u (w τ) u (b)] 1 = 0 Denote by e (b) and τ (b), the functions satisfying BC and IC The (unconstrained) problem of the government is max V (b) = π (e (b)) u(w τ (b)) + (1 π (e (b)))u(b) e (b) b 24 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Two Approaches to Optimal Policy Problems Focus in public finance is on deriving an empirically implementable solution to this problem: 1 Structural: specify complete models of economic behavior and estimate the primitives identify b as a fn. of deep parameters: returns and cost of job search, discount rates, nature of borrowing constraints, informal ins. arrangements. challenge: diffi cult to identify all primitive parameters in an empirically compelling manner 2 Suffi cient Statistics: derive formulas for b as a fn. of high-level elasticities these elasticities can be estimated using reduced-form methods estimate statistical relationships using research designs that exploit quasi-experimental exogenous variation. Baily-Chetty model is an example of this approach 25 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Second Best Solution At an interior optimum, dv /db(b ) = 0 (1 π (e))u (b) π (e) u (w τ) dτ db + { π (e) [u (w τ) u (b)] 1 } de db = 0 Since the expected utility has been optimized over e, the Envelope Thm implies: (1 π (e))u (c u ) π (e) u (c e ) dτ db = 0 Key here is that we can neglect the de db term given the agent s optimization, the impact on expected utility through effort is of second order this holds for any optimal behavior by the agent, e.g. endogenous consumption (Chetty 2006) 26 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Second Best Solution The change in effort does have a first order effect on the government s UI budget With τ (b) = (1 π(e(b))) b, we find π(e(b)) dv (b) db dτ db = 1 π (e) π (e) = 1 π (e) π (e) π (e) π (e) 2 de db b (1 + ε 1 π(e),b ) π (e) = (1 π (e)){u (c u ) (1 + ε 1 π(e),b )u (c e )} π (e) 27 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Baily-Chetty model: Second Best Solution This yields the optimality condition u (c u ) u (c e ) } u (c e ) {{ } MB LHS is marginal social benefit of UI = ε 1 π(e),b π (e) }{{} MC benefit of transferring $1 from high to low state due to increased insurance MB is decreasing in insurance coverage RHS is marginal social cost of UI cost of transferring $1 due to decreased search effort MC is constant (or decreasing less) with insurance coverage Comparative statics; ceteris paribus, if MC is higher, optimal UI benefits should be lower if MB is higher, optimal UI benefits should be higher 28 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Implementation: Consumption-Based Formula Can we identify suffi cient statistics to test for the optimality of the current system? Write marginal utility gap using a Taylor expansion: u (c u ) u (c e ) u (c e )(c u c e ) Defining coeffi cient of relative risk aversion γ = u (c)c, we u (c) can write u (c u ) u (c e ) u u (c e ) u c c e c = γ c c Gap in marginal utilities is a function of curvature of utility (risk aversion) and consumption drop from high to low states 29 / 39

Introduction Trade-off Optimal UI Empirical Baily-Chetty First Best Second Best Implementation: Consumption-Based Formula Theorem The optimal unemployment benefit level b satisfies where c c = c e c u c e γ c c (b ) ε 1 π(e),b π (e) = consumption drop during unemployment γ = u (c e ) u (c e ) c e = coeffi cient of relative risk aversion ε = d log 1 π (e) d log b = unemployment elasticity 30 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Estimating the Moral Hazard Cost Lots of empirical work on labor supply effect of social insurance. Overview by Krueger and Meyer (2002) Early literature used cross-sectional variation in replacement rates. Problem: this implies a comparison of high and low wage earners, whose employment prospects may be very different! This gave way in late 80s/early 90s to modern methods using more exogenous variation/quasi-experiments difference in UI generosity across states, across time, across group... state experiments with UI bonuses (Meyer 1995) Evidence suggests elasticity of around 0.5. 31 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Difference-in-Differences Estimates Compare a group affected by a change in the unemployment policy (T ) to a group for which the unemployment policy is unchanged (C). Let B and A denote before and after the reform. The effect on the exit probability can be estimated by the difference-in-differences [ ] [ ] π T π C = π T A π T B π C A π C B. [ ] before-after estimator a group comparison π T A πt B [ π T A πc A is biased by time effects ] is biased by group effects The dif-in-dif removes (group-invariant) time effects and (time-invariant) group effects. The identification assumption is that groups follow parallel trends over time, absent the policy change. 32 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing 33 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Spike in hazard rate Most striking evidence for moral hazard effect of unemployment insurance: spike in hazard rate at benefit exhaustion. Source: Schmieder et al. QJE 2011 34 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Estimating the Consumption Smoothing Benefits The smoothing benefits can be estimated as well, but we should take into account that UI crowds out self-insurance some people use their savings when unemployed some people borrow from banks of family c u = b + savings c e = w τ savings however, many unemployed have no savings and face borrowing constraints Gruber analyzes drop in food consumption c e c u c e and estimates how this is affected by a change in the benefit ratio b w. 35 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Simulated Instruments Same problem: the difference in consumption drop for individuals with high and low replacement rates is not only due to the replacement rate differential. Alternative solution: Simulated Instruments take a representative subsample of individuals S sub for each individual i in state j at year t in the original sample calculate the subsample s average replacement rate if all individuals of the subsample had lived in state j at year t ) simulated ( b w bs,j,t simulated w s = Σ sɛs sub j,t ( ) simulated ( ) use bw as an instrument for bw j,t i,j,t The approach exploits only variation in the generosity of the state UI system over time ( difference-in-difference). Underlying the identification is a similar parallel-trends assumption. 36 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Estimating the Insurance Value Gruber runs IV regression ( ) ce c u c e and finds: i,j,t = β 1 + β 2 ( b w ) i,j,t + β 3 δ j + β 4 τ t + ε i β 1 = 0.24, β 2 = 0.28 without UI, cons drop would be about 24% a 10 pp increase in UI replacement rate causes 2.8 pp reduction in cons. drop. with current replacement rate (b/w = 0.5), cons drop is about 10% Is current level optimal? γ 10%? = 0.5 37 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Calibrating the Model We can find the optimal level using our estimates γ c c γ(β 1 + β 2 b w ) ε b Results: w varies considerably with γ ε/π γ 1 2 3 4 5 10 0 0 0.20 0.41 0.50 0.68 b w Consumption smoothing benefits seem small relative to the moral hazard cost of unemployment insurance? 38 / 39

Introduction Trade-off Optimal UI Empirical MH Elasticity Consumption Smoothing Summary Policy maker faces trade-off between the provision of insurance and the provision of incentives. Simple model with search efforts can capture this trade-off. Model generalizes for other behavioral responses like saving, moral hazard on the job, quality of job matches,... if behavior is optimal, change in behavior has second-order effect on welfare only the effect on the government s budget constraint is important and this is captured by the unemployment probability Empirical evidence suggests that job seekers are quite responsive to monetary incentives, implying that consumption benefits need to be large to justify generous unemployment benefits 39 / 39