ONE FACTOR GAUSSIAN SHORT RATE MODEL IMPLEMENTATION. 1. model

Size: px
Start display at page:

Download "ONE FACTOR GAUSSIAN SHORT RATE MODEL IMPLEMENTATION. 1. model"

Transcription

1 ONE FACTOR GAUSSIAN SHORT RATE MODEL IMPLEMENTATION P. CASPERS First Version March 1, This Version March 1, 2013 Abstract. We collect some results in Piterbarg, Interest Rate Modelling, needed for the implementation of a GSR model. We develop explicit formulas for pieceise constant volatility and reversion parameters under the forard measure. The short rate dynamics is given by 1. model (1.1) dr(t) = κ(t)(θ(t) r(t))dt + σ r (t)dw (t) under the risk neutral measure. κ, σ r are pieceise constant. Setting x(t) := r(t) f(t, t) ith f(t, T ) denoting the instanteous forard rate observed at t for T > t, the dynamics can be reritten (1.2) dx(t) = (y(t) κ(t)x(t))dt + σ r (t)dw (t) ith deterministic (1.3) y(t) = t 0 e 2 t u κ(s)ds σ r (u) 2 du In the T forard measure the dynamics becomes (1.4) dx(t) = (y(t) σ r (t) 2 G(t, T ) κ(t)x(t))dt + σ r (t)dw T (t) ith (1.5) G(t, t ) = (1.6) (1.7) (1.8) t t e u t κ(s)ds du This fits into the general treatment under 2.1 ith a(t) = κ(t) b(t) = y(t) σ r (t) 2 G(t, T ) c(t) = σ r (t) Zero bond prices can be expressed as follos Date: March 1, Electronic copy available at:

2 2 P. CASPERS (1.9) P (t, t ) = P (0, t ) P (0, t) e x(t)g(t,t ) 1 2 y(t)g(t,t ) 2 Consider the SDE 2. Basic SDE Integration (2.1) dx(t) = (a(t)x(t) + b(t))dt + c(t)dw (t) ith deterministic scalar functions a, b, c. The folloing is an explicit solution of 2.1. (2.2) x(t) = e t 0 a(u)du (x(0) + t 0 e s 0 a(u)du b(s)ds + t 0 ) e s 0 a(u)du c(s)dw (s) That means that for < t x(t) conditional on x() is normally distributed ith mean and variance given by (2.3) (2.4) ith short hand notation E(x(t) x()) = A(, t)x() + Var(x(t) x()) = t t A(s, t)b(s)ds A(s, t) 2 c(s) 2 ds (2.5) A(s, t) = e t s a(u)du 3. Formulas for the pieceise constant case Under the assumption of pieceise constant κ, σ r e are left ith the computation of some integrals for hich e derive closed form formulas here. We fix a grid 0 = t 0 < t 1 <... < t n = T such that κ and σ r are constant on each interval [t i, t i+1 ) and equal to κ i, σ r,i. We introduce the folloing notation: l(t) denotes the largest index such that t l(t) t. Likeise h(t) denotes the smallest index such that t h(t) t. Moreover e set t i,s := max(t i, s) and t s,i := min(t i, s) Formula for G(t, t ). We start ith 1.5, the formula for G(t, t ). The integrand is (3.1) e h(u) 1 u t κ(s)ds = By this (3.2) G(t, t ) = hich is h(t ) 1 tt,i+1 t i,t tu,i+1 e κi t i,t i 1 j=l(t) h(u) 1 ds = e κj(tj+1 tj,t) e κi(tu,i+1 ti,t) e κi(u ti,t) du Electronic copy available at:

3 ONE FACTOR GAUSSIAN SHORT RATE MODEL IMPLEMENTATION 3 (3.3) h(t ) 1 ( 1 e κi(t t,i+1 ti,t) κ i ) i 1 j=l(t) e κj(tj+1 tj,t) We abbreviate this by (3.4) G(t, t ) = h(t ) 1 η i i 1 j=l(t) γ j is dependent on t if and only if j = l(t). In this case i > l(t) necessarily. η i is dependent on t if and only if i = l(t). In these cases (3.5) (3.6) γ j dt = e κj(tj+1 t) κ j γ j η i dt = tκ i e κi(t t,i+1 t) κ 2 i If j > l(t) resp. i > l(t) these integrals can be computed trivially by multiplying γ j resp. η i by the interval length over hich the integral is computed Formula for y(t). We continue ith 1.3. The integrand here is (3.7) e 2 t u κ(s)ds σ r (u) 2 = We get (3.8) y(t) = hich is i=0 i=l(u) σ 2 r,ie 2κi(tt,i+1 ti,u) tt,i+1 e 2κi(tt,i+1 u) σr,je 2 2κj(tt,j+1 tj) t i j=i+1 du (3.9) i=0 σ2 r,i 2κ i [ 1 e 2κi(tt,i+1 ti)] e 2κj(tt,j+1 tj) j=i+1 and hich e abbreviate by (3.10) y(t) = i=0 α i β j j=i+1 α i resp. β j is dependent on t if and only if i = h(t) 1 resp. j = h(t) 1. In the latter case i < h(t) 1 necessarily. In these cases

4 4 P. CASPERS (3.11) (3.12) α i dt = σ2 r,i (tκ i + e 2κi(t ti) ) 2κ 2 i β j dt = e 2κj(t tj) 2κ j If i < h(t) 1 resp. j < h(t) 1 these integrals can trivially computed by multiplying α i resp. β j by the interval length over hich the integral is computed Formula for A(s, t). No e continue ith the formulas for conditional expectation and variance 2.3. First of all e notice that (3.13) A(s, t) = i=l(s) e κi(tt,i+1 ti,s) = i=l(s) ζ i is dependent on s if and only if i = l(s). In this case (3.14) ζ i ds = 1 κ i e κi(tt,i+1 s) If i > l(s) the integral can be computed trivially by multiplying ζ i by the interval length over hich the integral is computed Formula for E(x(t) x()) The easy part. The first term A(, t)x() in the conditional expectation can easily be computed ith the result obtained so far. The second term is (3.15) t A(s, t)(y(s) σ r (s) 2 G(s, T ))ds First not so easy part of the integral. Let s start ith the integral over A(s, t)y(s), hich is (3.16) k=l() tt,k+1 t k, k l=0 α l ζ i i=k k j=l+1 β j ζ i ds We integrate each single summand, i.e. e fix k and l. ζ i depends on s iff i = k. beta depends on s iff j = k. α l depends on s iff l = k. Consider the case l < k first. Then α l does not depend on s. Amongst the factors in round brackets exactly ζ k and β k are depending on s. In essence e are left ith computation of (3.17) ζ k β k ds hich is (3.18) e κ k(t t,k+1 s) e (s t k ) ds

5 ONE FACTOR GAUSSIAN SHORT RATE MODEL IMPLEMENTATION 5 This again is explicitly (3.19) 1 κ k e κ ks+κ k (2t k t t,k+1 ) No consider the case l = k. In this case exactly the factors alpha k and ζ k depend on s. Note that β k does not occur in the product in this case. We have therefore to evaluate (3.20) ζ k α k ds = This simplifies to e κ k(t t,k+1 s) σ2 r,k [ 1 e (s t k ) ] ds σ 2 r,k (3.21) e κ k(t t,k+1 s) e κ ks+κ k (2t k t t,k+1 ) ds hich is in explicit terms (3.22) σ 2 r,k 2κ 2 k (e κ ks+κ k (2t k t t,k+1 ) + e κ k(t t,k+1 s) ) Second not so easy part of the integral. Similarly the integral over A(s, t)σ r (s) 2 G(s, T ) can be ritten (3.23) k=l() σ 2 k tt,k+1 t k, h(t ) 1 l=k η l l 1 ζ i γ j i=k j=k ds As above, fix k and l. η l is dependent on s iff l = k, ζ i is dependent on s iff i = k, γ j is dependent on s iff j = k. Again e start it the case l > k. As above e are left ith ζ k γ k, hich is (3.24) and explicitly (3.25) e κ k(t t,k+1 s) e κ k(t k+1 s) ds e s κ k (t t,k+1 +t k+1 ) If on the other hand l = k, e face η k ζ k hich can be computed as (3.26) and further e κ k(t t,k+1 s) ( 1 e κ k (t T,k+1 s) κ k ) ds (3.27) 2e κ k(t t,k+1 s) e s κ k (t T,k+1 +t t,k+1 ) 2κ 2 k

6 6 P. CASPERS 3.5. Formula for Var(x(t) x()). Finally e analyze the integral representing the conditional variance, hich is (3.28) As before e rite t A(s, t) 2 σ r (t) 2 ds (3.29) k=l() σ 2 r,k tt,k+1 t k, i=k ζ 2 i ds For fixed k the term not covered yet is ζk 2 ds, hich is (3.30) e (t t,k+1 s) ds = e(s t t,k+1 ) address, P. Caspers: pcaspers1973@googl .com

Interest rate models and Solvency II

Interest rate models and Solvency II www.nr.no Outline Desired properties of interest rate models in a Solvency II setting. A review of three well-known interest rate models A real example from a Norwegian insurance company 2 Interest rate

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Chapter 14. The Multi-Underlying Black-Scholes Model and Correlation

Chapter 14. The Multi-Underlying Black-Scholes Model and Correlation Chapter 4 The Multi-Underlying Black-Scholes Model and Correlation So far we have discussed single asset options, the payoff function depended only on one underlying. Now we want to allow multiple underlyings.

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Lecture 5: Review of interest rate models

Lecture 5: Review of interest rate models Lecture 5: Review of interest rate models Xiaoguang Wang STAT 598W January 30th, 2014 (STAT 598W) Lecture 5 1 / 46 Outline 1 Bonds and Interest Rates 2 Short Rate Models 3 Forward Rate Models 4 LIBOR and

More information

9.1 Principal Component Analysis for Portfolios

9.1 Principal Component Analysis for Portfolios Chapter 9 Alpha Trading By the name of the strategies, an alpha trading strategy is to select and trade portfolios so the alpha is maximized. Two important mathematical objects are factor analysis and

More information

PDE Approach to Credit Derivatives

PDE Approach to Credit Derivatives PDE Approach to Credit Derivatives Marek Rutkowski School of Mathematics and Statistics University of New South Wales Joint work with T. Bielecki, M. Jeanblanc and K. Yousiph Seminar 26 September, 2007

More information

Multiperiod Market Equilibrium

Multiperiod Market Equilibrium Multiperiod Market Equilibrium Multiperiod Market Equilibrium 1/ 27 Introduction The rst order conditions from an individual s multiperiod consumption and portfolio choice problem can be interpreted as

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Libor Market Model Version 1.0

Libor Market Model Version 1.0 Libor Market Model Version.0 Introduction This plug-in implements the Libor Market Model (also know as BGM Model, from the authors Brace Gatarek Musiela). For a general reference on this model see [, [2

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY Applied Mathematical and Computational Sciences Volume 7, Issue 3, 015, Pages 37-50 015 Mili Publications MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY J. C.

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE DOI: 1.1214/ECP.v7-149 Elect. Comm. in Probab. 7 (22) 79 83 ELECTRONIC COMMUNICATIONS in PROBABILITY OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE FIMA KLEBANER Department of Mathematics & Statistics,

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

A Hybrid Commodity and Interest Rate Market Model

A Hybrid Commodity and Interest Rate Market Model A Hybrid Commodity and Interest Rate Market Model University of Technology, Sydney June 1 Literature A Hybrid Market Model Recall: The basic LIBOR Market Model The cross currency LIBOR Market Model LIBOR

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

Stochastic Local Volatility models for Inflation

Stochastic Local Volatility models for Inflation Stochastic Local Volatility models for Inflation LexiFi White Paper Vivien Bégot Quantitative Analytics, LexiFi vivien.begot@lexifi.com May 2016 Abstract We present an algorithm based on the particle method,

More information

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is $60. (ii) The call option currently sells for $0.15 more

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

Derivative Securities

Derivative Securities Derivative Securities he Black-Scholes formula and its applications. his Section deduces the Black- Scholes formula for a European call or put, as a consequence of risk-neutral valuation in the continuous

More information

Analytical formulas for local volatility model with stochastic. Mohammed Miri

Analytical formulas for local volatility model with stochastic. Mohammed Miri Analytical formulas for local volatility model with stochastic rates Mohammed Miri Joint work with Eric Benhamou (Pricing Partners) and Emmanuel Gobet (Ecole Polytechnique Modeling and Managing Financial

More information

Credit Risk in Lévy Libor Modeling: Rating Based Approach

Credit Risk in Lévy Libor Modeling: Rating Based Approach Credit Risk in Lévy Libor Modeling: Rating Based Approach Zorana Grbac Department of Math. Stochastics, University of Freiburg Joint work with Ernst Eberlein Croatian Quants Day University of Zagreb, 9th

More information

The Valuation of Bermudan Guaranteed Return Contracts

The Valuation of Bermudan Guaranteed Return Contracts The Valuation of Bermudan Guaranteed Return Contracts Steven Simon 1 November 2003 1 K.U.Leuven and Ente Luigi Einaudi Abstract A guaranteed or minimum return can be found in different financial products,

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2

Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs. Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 Investigation of Dependency between Short Rate and Transition Rate on Pension Buy-outs Arık, A. 1 Yolcu-Okur, Y. 2 Uğur Ö. 2 1 Hacettepe University Department of Actuarial Sciences 06800, TURKEY 2 Middle

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

MATH 220: DUHAMEL S PRINCIPLE

MATH 220: DUHAMEL S PRINCIPLE MATH 22: DUHAMEL S PRINCIPLE Although we have lved only the homogeneous heat equation on R n, the same method employed there al lves the inhomogeneous PDE. As an application of these methods, let s lve

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

MATHEMATICAL FINANCE EXAM 2003/4 RP s solutions & comments

MATHEMATICAL FINANCE EXAM 2003/4 RP s solutions & comments MATHEMATICAL FINANCE EXAM 23/4 RP s solutions & comments This version is from January 8, 24, ie. after the exam and after I ve gone through your answers. Since I m not the one taking the exam, I can be

More information

Stochastic Calculus for Finance II - some Solutions to Chapter IV

Stochastic Calculus for Finance II - some Solutions to Chapter IV Stochastic Calculus for Finance II - some Solutions to Chapter IV Matthias Thul Last Update: June 9, 25 Exercise 4. This proof is fully analogous to the one of Theorem 4.2.. We want to show that for s

More information

Toward a coherent Monte Carlo simulation of CVA

Toward a coherent Monte Carlo simulation of CVA Toward a coherent Monte Carlo simulation of CVA Lokman Abbas-Turki (Joint work with A. I. Bouselmi & M. A. Mikou) TU Berlin January 9, 2013 Lokman (TU Berlin) Advances in Mathematical Finance 1 / 16 Plan

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

Discrete time interest rate models

Discrete time interest rate models slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part II József Gáll University of Debrecen, Faculty of Economics Nov. 2012 Jan. 2013, Ljubljana Introduction to discrete

More information

1 Math 797 FM. Homework I. Due Oct. 1, 2013

1 Math 797 FM. Homework I. Due Oct. 1, 2013 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Math 797 FM. Homework I.

More information

Implementing the HJM model by Monte Carlo Simulation

Implementing the HJM model by Monte Carlo Simulation Implementing the HJM model by Monte Carlo Simulation A CQF Project - 2010 June Cohort Bob Flagg Email: bob@calcworks.net January 14, 2011 Abstract We discuss an implementation of the Heath-Jarrow-Morton

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Principal Curvatures

Principal Curvatures Principal Curvatures Com S 477/577 Notes Yan-Bin Jia Oct 26, 2017 1 Definition To furtheranalyze thenormal curvatureκ n, we make useof the firstandsecond fundamental forms: Edu 2 +2Fdudv +Gdv 2 and Ldu

More information

Genetics and/of basket options

Genetics and/of basket options Genetics and/of basket options Wolfgang Karl Härdle Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de Motivation 1-1 Basket derivatives

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

ACTSC 445 Final Exam Summary Asset and Liability Management

ACTSC 445 Final Exam Summary Asset and Liability Management CTSC 445 Final Exam Summary sset and Liability Management Unit 5 - Interest Rate Risk (References Only) Dollar Value of a Basis Point (DV0): Given by the absolute change in the price of a bond for a basis

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Effectiveness of CPPI Strategies under Discrete Time Trading

Effectiveness of CPPI Strategies under Discrete Time Trading Effectiveness of CPPI Strategies under Discrete Time Trading S. Balder, M. Brandl 1, Antje Mahayni 2 1 Department of Banking and Finance, University of Bonn 2 Department of Accounting and Finance, Mercator

More information

Derivation of the Price of Bond in the Recovery of Market Value Model

Derivation of the Price of Bond in the Recovery of Market Value Model Derivation of the Price of Bond in the Recovery of Market Value Model By YanFei Gao Department of Mathematics & Statistics, McMaster University Apr. 2 th, 25 1 Recovery models For the analysis of reduced-form

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Fractional Black - Scholes Equation

Fractional Black - Scholes Equation Chapter 6 Fractional Black - Scholes Equation 6.1 Introduction The pricing of options is a central problem in quantitative finance. It is both a theoretical and practical problem since the use of options

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

Finance II. May 27, F (t, x)+αx f t x σ2 x 2 2 F F (T,x) = ln(x).

Finance II. May 27, F (t, x)+αx f t x σ2 x 2 2 F F (T,x) = ln(x). Finance II May 27, 25 1.-15. All notation should be clearly defined. Arguments should be complete and careful. 1. (a) Solve the boundary value problem F (t, x)+αx f t x + 1 2 σ2 x 2 2 F (t, x) x2 =, F

More information

Financial Risk Forecasting Chapter 3 Multivariate volatility models

Financial Risk Forecasting Chapter 3 Multivariate volatility models Financial Risk Forecasting Chapter 3 Multivariate volatility models Jon Danielsson 2017 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com Published by

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

(c) Consider a standard Black-Scholes market described in detail in

(c) Consider a standard Black-Scholes market described in detail in Tentamen i 5B1575 Finansiella Derivat. Måndag 27 augusti 2007 kl. 14.00 19.00. Examinator: Camilla Landén, tel 790 8466. Tillåtna hjälpmedel: Inga. Allmänna anvisningar: Lösningarna skall vara lättläsliga

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES

CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES CHAPTER 2: STANDARD PRICING RESULTS UNDER DETERMINISTIC AND STOCHASTIC INTEREST RATES Along with providing the way uncertainty is formalized in the considered economy, we establish in this chapter the

More information

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives

Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives Simon Man Chung Fung, Katja Ignatieva and Michael Sherris School of Risk & Actuarial Studies University of

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Hedging of Credit Derivatives in Models with Totally Unexpected Default

Hedging of Credit Derivatives in Models with Totally Unexpected Default Hedging of Credit Derivatives in Models with Totally Unexpected Default T. Bielecki, M. Jeanblanc and M. Rutkowski Carnegie Mellon University Pittsburgh, 6 February 2006 1 Based on N. Vaillant (2001) A

More information

Vayanos and Vila, A Preferred-Habitat Model of the Term Stru. the Term Structure of Interest Rates

Vayanos and Vila, A Preferred-Habitat Model of the Term Stru. the Term Structure of Interest Rates Vayanos and Vila, A Preferred-Habitat Model of the Term Structure of Interest Rates December 4, 2007 Overview Term-structure model in which investers with preferences for specific maturities and arbitrageurs

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advanced Stochastic Processes. David Gamarnik LECTURE 16 Applications of Ito calculus to finance Lecture outline Trading strategies Black Scholes option pricing formula 16.1. Security price processes,

More information

Double Exponential Smoothing

Double Exponential Smoothing Production Planning I Prepared by Faramarz Khosravi IENG/MANE 33 lecture notes Reference: PRODUCTION, Planning, Control, and Integration by SIPPER & BULFIN Chapter - Part 3: TIME SERIES METHODS (Trend

More information

I. Time Series and Stochastic Processes

I. Time Series and Stochastic Processes I. Time Series and Stochastic Processes Purpose of this Module Introduce time series analysis as a method for understanding real-world dynamic phenomena Define different types of time series Explain the

More information

Option Pricing for Discrete Hedging and Non-Gaussian Processes

Option Pricing for Discrete Hedging and Non-Gaussian Processes Option Pricing for Discrete Hedging and Non-Gaussian Processes Kellogg College University of Oxford A thesis submitted in partial fulfillment of the requirements for the MSc in Mathematical Finance November

More information

16. Inflation-Indexed Swaps

16. Inflation-Indexed Swaps 6. Inflation-Indexed Swaps Given a set of dates T,...,T M, an Inflation-Indexed Swap (IIS) is a swap where, on each payment date, Party A pays Party B the inflation rate over a predefined period, while

More information

The Self-financing Condition: Remembering the Limit Order Book

The Self-financing Condition: Remembering the Limit Order Book The Self-financing Condition: Remembering the Limit Order Book R. Carmona, K. Webster Bendheim Center for Finance ORFE, Princeton University November 6, 2013 Structural relationships? From LOB Models to

More information

Hedging Basket Credit Derivatives with CDS

Hedging Basket Credit Derivatives with CDS Hedging Basket Credit Derivatives with CDS Wolfgang M. Schmidt HfB - Business School of Finance & Management Center of Practical Quantitative Finance schmidt@hfb.de Frankfurt MathFinance Workshop, April

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Financial Risk Management

Financial Risk Management Risk-neutrality in derivatives pricing University of Oulu - Department of Finance Spring 2018 Portfolio of two assets Value at time t = 0 Expected return Value at time t = 1 Asset A Asset B 10.00 30.00

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Pricing the Bermudan Swaption with the Efficient Calibration and its Properties

Pricing the Bermudan Swaption with the Efficient Calibration and its Properties Pricing the Bermudan Swaption with the fficient Calibration and its Properties Yasuhiro TAMBA agoya University of Commerce and Business Abstract This paper presents a tree construction approach to pricing

More information

Mean-variance hedging when there are jumps

Mean-variance hedging when there are jumps Mean-variance hedging when there are jumps Andrew E.B. Lim Department of Industrial Engineering and Operations Research University of California Berkeley, CA 9472 Email: lim@ieor.berkeley.edu March 22,

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Discounting a mean reverting cash flow

Discounting a mean reverting cash flow Discounting a mean reverting cash flow Marius Holtan Onward Inc. 6/26/2002 1 Introduction Cash flows such as those derived from the ongoing sales of particular products are often fluctuating in a random

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Credit Risk, I. Summer School in Financial Mathematics September Ljubljana

Credit Risk, I. Summer School in Financial Mathematics September Ljubljana Credit Risk, I. Summer School in Financial Mathematics 7-20 September 2009 Ljubljana 1 I.Hazard Process Approach of Credit Risk: A Toy Model 1. The Model 2. Toy Model and Martingales 3. Valuation and Trading

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

7 th General AMaMeF and Swissquote Conference 2015

7 th General AMaMeF and Swissquote Conference 2015 Linear Credit Damien Ackerer Damir Filipović Swiss Finance Institute École Polytechnique Fédérale de Lausanne 7 th General AMaMeF and Swissquote Conference 2015 Overview 1 2 3 4 5 Credit Risk(s) Default

More information

Web-based Supplementary Materials for. A space-time conditional intensity model. for invasive meningococcal disease occurence

Web-based Supplementary Materials for. A space-time conditional intensity model. for invasive meningococcal disease occurence Web-based Supplementary Materials for A space-time conditional intensity model for invasive meningococcal disease occurence by Sebastian Meyer 1,2, Johannes Elias 3, and Michael Höhle 4,2 1 Department

More information